DESIGN OF MODIFIED SINGLE INPUT MULTIPLE OUTPUT DC-DC CONVERTER

Similar documents
D E NAIK, et al, International Journal of Research Sciences and Advanced Engineering [IJRSAE] TM Volume 2, Issue 7, PP: , 2014.

Single Input Multiple Output Dc-Dc Converter with Inverted Output

An Improved Single Input Multiple Output Converter

Implementation of an Interleaved High-Step-Up Dc-Dc Converter with A Common Active Clamp

DC-DC Converter with Coupled-Inductor For Multiple-Outputs

A High Gain Single Input Multiple Output Boost Converter

An Advanced No isolated High-Efficiency Single-Input Multiple-Output Converters

Inductor Coupled Single-Input Multiple-Output (SIMO) DC-DC Converter

Analysis and Design of a Bidirectional Isolated buck-boost DC-DC Converter with duel coupled inductors

Level Shifting Switched Capacitor Voltage Copier Circuits with Feedback Control

A Pv Fed Buck Boost Converter Combining Ky And Buck Converter With Feedback

ZCS-PWM Converter for Reducing Switching Losses

Linear Transformer based Sepic Converter with Ripple Free Output for Wide Input Range Applications

Hybrid Full-Bridge Half-Bridge Converter with Stability Network and Dual Outputs in Series

ZVT Buck Converter with Synchronous Rectifier

ZERO VOLTAGE TRANSITION SYNCHRONOUS RECTIFIER BUCK CONVERTER

Interleaved Boost Converter Fed DC Machine with Zero Voltage Switching and PWM Technique

Modelling and Simulation of High Step up Dc-Dc Converter for Micro Grid Application

Voltage Controlled Non Isolated Bidirectional DC-DC Converter with High Voltage Gain

Closed Loop Controlled Low Noise SMPS System Using Forward Converter

Soft-Switching Two-Switch Resonant Ac-Dc Converter

LLC Resonant Converter for Battery Charging Application

Closed Loop Control of Single-Input Multiple-Output DC DC Converter

A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor

High Frequency Soft Switching Of PWM Boost Converter Using Auxiliary Resonant Circuit

International Journal of Engineering Science Invention Research & Development; Vol. II Issue VIII February e-issn:

Soft-Switched High Efficiency CCM Boost Converter with High Voltage Gain

IN THE high power isolated dc/dc applications, full bridge

Design Consideration for High Power Zero Voltage Zero Current Switching Full Bridge Converter with Transformer Isolation and Current Doubler Rectifier

TYPICALLY, a two-stage microinverter includes (a) the

Implementation of Voltage Multiplier Module in Interleaved High Step-up Converter with Higher Efficiency for PV System

Bridgeless Cuk Power Factor Corrector with Regulated Output Voltage

ISSN Vol.07,Issue.06, July-2015, Pages:

Simulation and Performance Evaluation of Closed Loop Pi and Pid Controlled Sepic Converter Systems

Five-Level Full-Bridge Zero Voltage and Zero Current Switching DC-DC Converter Topology

CLOSED LOOP CONTROL OF HIGH STEP-UP DC/DC CONVERTER BASED ON COUPLED INDUCTOR AND SWITCHED-CAPACITOR

Novel Zero-Current-Switching (ZCS) PWM Switch Cell Minimizing Additional Conduction Loss

Page 1026

SCIENCE & TECHNOLOGY

A NOVEL SOFT-SWITCHING BUCK CONVERTER WITH COUPLED INDUCTOR

Soft switching of multioutput flyback converter with active clamp circuit

A DC DC Boost Converter for Photovoltaic Application

A New Phase Shifted Converter using Soft Switching Feature for Low Power Applications

I. INTRODUCTION II. LITERATURE REVIEW

Power Factor Corrected Single Stage AC-DC Full Bridge Resonant Converter

International Journal of Advance Engineering and Research Development. Current Ripple Reduction Using Two Inductor Boost Converter

Integrating Coupled Inductor and Switched- Capacitor based high gain DC-DC converter for PMDC drive

SIMULATION OF HIGH BOOST CONVERTER FOR CONTINUOUS AND DISCONTINUOUS MODE OF OPERATION WITH COUPLED INDUCTOR

Hardware Implementation of Interleaved Converter with Voltage Multiplier Cell for PV System

Full Bridge DC-DC Step-Up Converter With ZVZCS PWM Control Scheme

Sepic Topology Based High Step-Up Step down Soft Switching Bidirectional DC-DC Converter for Energy Storage Applications

The Parallel Loaded Resonant Converter for the Application of DC to DC Energy Conversions

Soft Switching with Cascaded Transformers to Drive the PMDC Motor

A High Efficient DC-DC Converter with Soft Switching for Stress Reduction

Dynamic Performance Investigation of Transformer less High Gain Converter with PI Controller

HIGH GAIN MULTIPLE OUTPUT DC-DC CONVERTER

Embedded Controlled Multiple Output Boost Converter

Safety Based High Step Up DC-DC Converter for PV Module Application

A High Step-Up Boost-Flyback Converter with Voltage Multiplier Module for Photovoltaic System

Review and Analysis of a Coupled Inductor Based Bidirectional DC-DC Converter

An Interleaved High Step-Up Boost Converter With Voltage Multiplier Module for Renewable Energy System

Soft-Switching Active-Clamp Flyback Microinverter for PV Applications

An Effective Method over Z-Source Inverter to Reduce Voltage Stress through T-Source Inverter

Self Lifted SEPIC-Cuk Combination Converter

A High Voltage Gain Interleaved Boost Converter with Dual Coupled Inductors

HIGH GAIN MULTIPLE-INPUT DC-DC CONVERTER FOR HYBRID ENERGY SYSTEMS

ANALYSIS OF BIDIRECTIONAL DC-DC CONVERTER FOR LOW POWER APPLICATIONS

Performance Evaluation of Isolated Bi-directional DC/DC Converters with Buck, Boost operations

Performance Enhancement of a Novel Interleaved Boost Converter by using a Soft-Switching Technique

K.Vijaya Bhaskar. Dept of EEE, SVPCET. AP , India. S.P.Narasimha Prasad. Dept of EEE, SVPCET. AP , India.

Modified Buck-Boost Converter with High Step-up and Step-Down Voltage Ratio

DYNAMIC CONTROL OF INTERLEAVED BOOST CONVERTER FOR AUTOMOTIVE LED LIGHTING APPLICATION

ANALYSIS OF ZVT DC-DC BUCK-BOOST CONVERTER

Design and Simulation of New Efficient Bridgeless AC- DC CUK Rectifier for PFC Application

Fuel Cell Based Interleaved Boost Converter for High Voltage Applications

Multiple Output Converter Based On Modified Dickson Charge PumpVoltage Multiplier

An Efficient Cascade H-Bridge Multilevel Inverter for Power Applications

An Interleaved Boost Converter with LC Coupled Soft Switching Mahesh.P 1, Srilatha.D 2 1 M.Tech (PE) Scholar, 2 Associate Professor

Single switch three-phase ac to dc converter with reduced voltage stress and current total harmonic distortion

Implementation Full Bridge Series Resonant Buck Boost Inverter

Student Department of EEE (M.E-PED), 2 Assitant Professor of EEE Selvam College of Technology Namakkal, India

BIDIRECTIONAL dc dc converters are widely used in

Voltage Balancing Control of Improved ZVS FBTL Converter for WECS

PSIM Simulation of a Buck Boost DC-DC Converter with Wide Conversion Range

Hybrid Transformer Based High Boost Ratio DC-DC Converter for Photovoltaic Applications

Narasimharaju. Balaraju *1, B.Venkateswarlu *2

CHAPTER 3 DC-DC CONVERTER TOPOLOGIES

Resonant Converter Forreduction of Voltage Imbalance in a PMDC Motor

A Bidirectional Series-Resonant Converter For Energy Storage System in DC Microgrids

A Three Phase Power Conversion Based on Single Phase and PV System Using Cockcraft-Walton Voltage

Analysis, Design and Implementation of Snubberless Bidirectional Current Fed Full Bridge Voltage Doubler

Soft-Switching DC-DC Converters Based on A Phase Shift Controlled Active Boost Rectifier Using Fuzzy Controller

IJMIE Volume 2, Issue 9 ISSN:

A NOVEL APPROACH FOR INTEGRATED PUSHPULL CONVERTER USING ZVT-PWM TECHNIQUE IN DC UPS

A Dual Half-bridge Resonant DC-DC Converter for Bi-directional Power Conversion

A High Step-Up DC-DC Converter

A NOVEL High Step-Up Converter with a Voltage Multiplier Module for a Photo Voltaic System

ADVANCED HYBRID TRANSFORMER HIGH BOOST DC DC CONVERTER FOR PHOTOVOLTAIC MODULE APPLICATIONS

A High Voltage Gain DC-DC Boost Converter for PV Cells

PERFORMANCE ANALYSIS OF SEVEN LEVEL INVERTER WITH SOFT SWITCHING CONVERTER FOR PHOTOVOLTAIC SYSTEM

Transcription:

Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 10, October 2014, pg.373 379 RESEARCH ARTICLE ISSN 2320 088X DESIGN OF MODIFIED SINGLE INPUT MULTIPLE OUTPUT DC-DC CONVERTER Bukya Rajesh 1 M.Tech 1 Guide: Sri. Khaja Khader Mohiuddin 2 HOD: Sri. T.V.V. Pavan Kumar 3 M.Tech, Associate Professor 23 Global Institute of Engineering & Technology 123 Abstract: In this paper modified single input multiple output dc-dc converters can be used to give a multi outputs. It has three outputs. That is low voltage power source is converted into high-voltage dc bus and middle voltage output terminals. This dc-dc converter utilizes the properties of voltage clamping and soft switching based on a coupled inductor. In this paper, the design of SIMO dc-dc converter along with modes of operation has been presented using MATLAB / SIMULINK. Simulation results thus obtained show that, the objectives of highefficiency, high step up ratio and various levels of output voltages. Keywords Coupled inductor, single-input multiple-output (SIMO) converter, soft switching, voltage clamping I. INTRODUCTION Multiple output converters are widely used in the industrial applications. Designing multi-output converters presents a remarkable challenge for the power supply designer. Converters utilizing a single primary power stage and generating more than one isolated output voltage are called multi-output converters. The basic requirements are small size and high efficiency. High switching frequency is necessary for achievement of small size. If the switching frequency is increased then the switching loss will increase. This decreases the efficiency of the power supplies. To solve this problem, some kinds of soft switching techniques need to be used to operate under high switching frequency. Zero Voltage Switched (ZVS) technique and Zero Current Switched (ZCS) technique are two commonly used soft switching methods. By using 2014, IJCSMC All Rights Reserved 373

these techniques, either voltage or current is zero during switching transition, which largely reduce the switching loss and also increase the reliability for the power supplies. Applications may require step-up, or at times even a bipolar supply from the same battery supply. Bipolar supplies also find a wide range of application in organic light emitting diodes. As a result, the design of a power management IC typically comprises boost to step-up, buck-boost to generate negative supply, and linear regulators to meet different supplies for various circuit applications. Several methods have been proposed to regulate the multiple outputs, to reduce the conduction loss, the MOSFET switch with low turn-on resistance is used; dc dc converters are widely used in low and high-power applications. Patra et al. [1] presented a SIMO dc dc converter capable of simultaneously generating buck, boost, and inverted outputs. However, over three switches for one output were required. This scheme is only suitable for the low output voltage and power application, and its power conversion is degenerated due to the operation of hard switching. Nami et al.[2] proposed a new dc dc multi-output boost converter, which can share its total output between different series of output voltages for low and high power applications. In this scheme, over two switches for one output were required, and its control scheme was complicated. Besides, the corresponding output power cannot supply for individual loads independently. Chen et al.[3] investigated a multiple-output dc dc converter with shared zerocurrent switching (ZCS) lagging leg. Although this converter with the soft-switching property can reduce the switching losses, this combination scheme with three full-bridge converters is more complicated, so that the achievement of high conversion efficiency is difficult and its cost is also increased. A new generation of single input multiple output (SIMO) dc dc converters has been developed based on boost and inverted topologies. However, in these configurations, loads are independently constructed except the negative output [4]. In the proposed SIMO converter, the techniques of soft switching and voltage clamping are adopted to reduce the switching and conduction losses via the utilization of a low voltage rated power switch with a small R ds (on). This project presents a newly designed SIMO dc dc converter based on boost and inverted derived topologies with a coupled inductor. The motivation of this project is to design a single input multiple output converter for increasing the conversion efficiency, voltage gain [5], reducing the complex control and saving the cost of manufacturing. II. LITERATURE REVIEW Nami et al. proposed Multi-output DC DC converters based on diode-clamped converters configuration topology and control strategy a new dc dc multi-output boost converter, which can share its total output between different series of output voltages for lowand high-power applications. Unfortunately, over two switches for one output were required, and its control scheme was complicated. Besides, the corresponding output power cannot supply for individual loads independently. Chen et al. The Multiple-Output DC DC Converter With Shared ZCS Lagging Leg investigated a multiple-output dc dc converter with shared zerocurrent switching (ZCS) lagging leg. Although this converter with the soft-switching property can reduce the switching losses, this combination scheme with three full-bridge converters is more complicated, so that the objective of high-efficiency power conversion is difficult to achieve, and its cost is inevitably increased. This study presents a newly designed SIMO converter with a coupled inductor. The proposed converter uses one power switch to achieve the objectives of high-efficiency power conversion, high step-up ratio, and different output voltage levels. In the proposed SIMO converter, the techniques of soft switching and voltage. clamping 2014, IJCSMC All Rights Reserved 374

are adopted to reduce the switching and conduction losses via the utilization of a low-voltagerated power switch with a small RDS(on). Because the slew rate of the current change in the coupled inductor can be restricted by the leakage inductor, the current transition time enables the power switch to turn ON with the ZCS property easily, and the effect of the leakage inductor can alleviate the losses caused by the reverse-recovery current. Additionally, the problems of the stray inductance energy and reverse-recovery currents within diodes in the conventional boost converter also can be solved, so that the high-efficiency power conversion can be achieved. The voltages of middle-voltage output terminals can be appropriately adjusted by the design of auxiliary inductors; the output voltage of the high-voltage dc bus can be stably controlled by a simple proportional-integral (PI) control. III. TOPOLOGY OVERVIEW AND ANALYSES A. Block Diagram Fig.1 Proposed Single Input Multiple Output dc-dc converter Block Diagram Single Input Multiple Output dc-dc converter. The DC Source block consists of the dc input power source and a capacitor. The value of input is in the range of 12V. Switch Integrated with Coupled Inductor block consisting of a coupled inductor, a MOSFET switch and a diode. The coupled inductor primary has a series connected leakage inductor and a parallel connected magnetizing inductor. Output Voltage 1 Circuit consists of an auxiliary inductor, a diode and a filter capacitor. The value of output voltage 1 is 28V. Output Voltage 2 Circuit consists of a capacitor combination. In addition, the series connected diode and a filter capacitor is used. The value of output voltage 2 is 200V. Output Voltage 3 circuit consists of two MOSFET switches, two diodes and two capacitors. The value of output voltage 3 is -200V. B. Circuit Diagram & Description The system configuration of the proposed SIMO converter topology to generate three different voltage levels from a single-input power source is depicted in Fig. 2. This SIMO converter contains six parts including an input side circuit (ISC), a clamped circuit, a coupled inductor secondary circuit, output voltage 1 circuit, output voltage 2 circuit and output voltage 3 circuit. The major symbol representations are summarized as follows. V dc (i dc ) and V 01 (i 01 ) denote the voltages (currents) of the input power source and the output load at the input side voltage circuit and the output voltage 1 circuit, respectively; V 02 and i 02 are the output voltage 2014, IJCSMC All Rights Reserved 375

and current in the output voltage 2 circuit. V 03 and i 03 are the output voltage and current in the output voltage 3 circuit. C 01, C 02 and C 03 are the filter capacitors at the ISC, an output voltage 3 circuit, respectively; C 1, C 2 and C 3 are the clamped and coupled inductor secondary circuit capacitors in the clamped and coupled inductor secondary circuits respectively. Fig.2 Proposed Single Input Multiple Output dc-dc converter Circuit Diagram L P and L S represent individual inductors in the primary and secondary sides of the coupled inductor respectively, where the primary side is connected to the input power source; L aux is the auxiliary inductor. The main switch is expressed as S 1 in the ISC, S 2 and S 3 are the switches used in the output voltage circuit 3. The equivalent load in the output voltage circuit 1 is represented as R 01, the output load is represented as R 02 in the output voltage circuit 2 and the output load is represented as R 03 in the output voltage circuit 3. The circuit diagram has the six diodes namely D 1, D 2, D 3, D 4, D 5 and D 6 respectively. The coupled inductor in Fig.2 can be modeled as an ideal transformer including the magnetizing inductor L mp and the leakage inductor L kp. IV. SIMULINK MODEL AND RESULTS The design of single input multiple output DC-DC converter is modeled using MATLAB/Simulink and the simulation model is shown in Fig. 2014, IJCSMC All Rights Reserved 376

Fig.4 Simulink model of proposed converter 2014, IJCSMC All Rights Reserved 377

Fig.5(a) to Fig.5(h) shows the simulation results of the proposed circuit. Fig.5(a) shows the simulated waveform of input voltage, here the input voltage of circuit is about 12V. Fig.5(b) shows the simulated waveform of gate pulses for switch S 1, S 2 &S 3.Fig.5(c) shows the simulated waveform of output current 1, here the output current of the circuit 1 is about 1A. 2014, IJCSMC All Rights Reserved 378

V. CONCLUSION This paper has presented a SIMO dc dc converter and this coupled inductor based converter was applied well to a single input power source plus three output terminals composed of two boost and one inverted voltages. The proposed SIMO converter is suitable for the application required one common ground, which is preferred in most applications. As mentioned above the voltage gain can be substantially increased by using a coupled inductor, the stray energy can be recycled by a clamped capacitor into the output terminal 1 or output terminal 2 to ensure the property of voltage clamping and an auxiliary inductor is designed for providing the charge power to the load 1 and assisting the switch turned ON under the condition of ZCS. Thus the proposed SIMO converter provides designers with an alternative choice for converting a low voltage source to multiple boost outputs with inverted voltage output efficiently. REFERENCES [1] P. Patra, A. Patra, and N. Misra, A single-inductor multiple-output switcher with simultaneous buck, boost and inverted outputs, IEEE Trans. Power Electron., vol. 27, no. 4, pp. 1936 1951, Apr. 2012. [2] A. Nami, F. Zare, A. Ghosh, and F. Blaabjerg, Multiple-output DC DC converters based on diodeclamped converters configuration: Topology and control strategy, IET Power Electron., vol. 3, no. 2, pp. 197 208, 2010. [3] Y. Chen, Y. Kang, S. Nie, and X. Pei, The multiple-output DC DC converter with shared ZCS lagging leg, IEEE Trans. Power Electron., vol. 26, no. 8, pp. 2278 2294, Aug. 2011. [4] Dongwon Kwon, Graduate Student Member, IEEE, and Gabriel A. Rincón-Mora, Senior Member, IEEE, Single-Inductor Multiple-Output Switching DC DC Converters, IEEE transactions on circuits and systems ii: express briefs, vol. 56, no. 8, august 2009. [5] Rong-Jong Wai, Senior Member, IEEE, Chung-You Lin, Rou-Yong Duan, and Yung-Ruei Chang, Member, IEEE, High-Efficiency DC-DC Converter With High Voltage Gain and Reduced Switch Stress, IEEE transactions on industrial electronics, vol. 54, no. 1, February 2007. [6] R. J. Wai and R. Y. Duan, High step-up converter with coupled inductor, IEEE Trans. Power Electron., vol. 20, no. 5, pp. 1025 1035, Sep. 2005. 2014, IJCSMC All Rights Reserved 379