2A, 6V, 1.5MHz, 17μA I Q, COT Synchronous Step Down Switcher In 8-pin TSOT23

Similar documents
1A, 6V, 1.5MHz, 17μA I Q, COT Synchronous Step Down Switcher In 8-pin TSOT23

MP2143 3A, 5.5V, 1.2MHz, 40μA I Q, COT Synchronous Step Down Switcher

MP2144 2A, 5.5V, 1.2MHz, 40μA I Q, COT Synchronous Step Down Switcher

MPM V Input, 0.6A Module Synchronous Step-Down Converter with Integrated Inductor DESCRIPTION FEATURES APPLICATIONS

MPM V-5.5V, 4A, Power Module, Synchronous Step-Down Converter with Integrated Inductor

MP2131 High Efficiency, 4 A, 5.5 V, 1.2 MHz Synchronous Step-Down Converter

MP1496S High-Efficiency, 2A, 16V, 500kHz Synchronous, Step-Down Converter

MP V, 4A Synchronous Step-Down Coverter

MP2313 High Efficiency 1A, 24V, 2MHz Synchronous Step Down Converter

MP A, 50V, 1.2MHz Step-Down Converter in a TSOT23-6

MP1496 High-Efficiency, 2A, 16V, 500kHz Synchronous, Step-Down Converter

MP1495 High Efficiency 3A, 16V, 500kHz Synchronous Step Down Converter

MP2324 High Efficiency 2A, 24V, 500kHz Synchronous Step-Down Converter

MP2115 2A Synchronous Step-Down Converter with Programmable Input Current Limit

MP2494 2A, 55V, 100kHz Step-Down Converter

MP2225 High-Efficiency, 5A, 18V, 500kHz Synchronous, Step-Down Converter

MP2122 6V, 2A, Low Quiescent Current Dual, SYNC Buck Regulator

MP2314 High Efficiency 2A, 24V, 500kHz Synchronous Step Down Converter

5.5V, 4A, 1.2MHz, High-Efficiency, 40μA I Q Constant On-Time Synchronous, Step-Down Switcher FEATURES

MP2314S 2A, 24V, 500kHz, High-Efficiency, Synchronous, Step-Down Converter

MP2105 1MHz, 800mA Synchronous Step-Down Converter

MP8619 8A, 25V, 600kHz Synchronous Step-down Converter

MP1484 3A, 18V, 340KHz Synchronous Rectified Step-Down Converter

MP28200 Ultra-Low 500nA I q, High Efficiency, Wide Input 2V-5.5V, 1.5MHz, 200mA, Step-Down Regulator

MP2315 High Efficiency 3A, 24V, 500kHz Synchronous Step Down Converter

MP1482 2A, 18V Synchronous Rectified Step-Down Converter

MP MHz, 700mA, Fixed-Frequency Step-Up Driver for up to 10 White LEDS

NB634 High Effeciency 5A, 24V, 500kHz Synchronous Step-down Converter

MP2109 Dual 1.2MHz, 800mA Synchronous Step-Down Converter

SR A, 30V, 420KHz Step-Down Converter DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION

MP A, 36V, 700KHz Step-Down Converter with Programmable Output Current Limit

MP1472 2A, 18V Synchronous Rectified Step-Down Converter

MP2482 5A, 30V, 420kHz Step-Down Converter

MP2307 3A, 23V, 340KHz Synchronous Rectified Step-Down Converter

MP A, 24V, 1.4MHz Step-Down Converter

MP2305 2A, 23V Synchronous Rectified Step-Down Converter

MP4420 High Efficiency 2A, 36V, Synchronous Step Down Converter

MP1482 2A, 18V Synchronous Rectified Step-Down Converter

MP A, 30V, 420kHz Step-Down Converter

MP A, 55V, 100kHz Step-Down Converter with Programmable Output OVP Threshold

MP A, 24V, 1.4MHz Step-Down White LED Driver

MP KHz/1.3MHz Boost Converter with a 2A Switch

MP3115 High-Efficiency, Single-Cell Alkaline, 1.3MHz Synchronous Step-up Converter with Output Disconnect

MP A, 55V, 480kHz Step-Down Converter in a TSOT23-6

MP A, 24V, 1.4MHz Step-Down Converter in a TSOT23-6

MP A, 24V, 700KHz Step-Down Converter

36V, 1MHz, 0.6A Step-Down Converter With 35μA Quiescent Current VOUT 3.3V/0.6A

MP MHz, 350mA Boost Converter

MP mA, 1.2MHz, Synchronous, Step-up Converter with Output Disconnect FEATURES DESCRIPTION

MP5090 Low I Q, Dual-Channel, 3A/2A Load Switch

PACKAGE REFERENCE. ELECTRICAL CHARACTERISTICS V IN = 12V, T A = +25 C, unless otherwise noted.

MP V - 21V, 0.8A, H-Bridge Motor Driver in a TSOT23-6

MP A, 500KHz Synchronous Rectified Step-up Converter

MP2497-A 3A, 50V, 100kHz Step-Down Converter with Programmable Output OVP Threshold

MP A, 15V, 800kHz Synchronous Buck Converter

MP A, 24V, 1.4MHz Step-Down White LED Driver

MP5410 Low Start-up Voltage Boost Converter with Four SPDT Switches

MP9942. High Efficiency 2A, 36V, 410kHz Synchronous Step-Down Converter with Power Good DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION

MP2355 3A, 23V, 380KHz Step-Down Converter

NB634 High Efficiency 5A, 24V, 500kHz Synchronous Step-down Converter

MP2259 1A, 16V, 1.4MHz Step-Down Converter

MP MHz, 18V Step-Up Converter

MP1570 3A, 23V Synchronous Rectified Step-Down Converter

MP9447 High-Efficiency, Fast-Transient, 5A, 36V Synchronous, Step-Down Converter

MP1482 2A, 18V Synchronous Rectified Step-Down Converter

MP2363 3A, 27V, 365KHz Step-Down Converter

EUP A, Synchronous Step-Down Converter DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit

MP4690 Smart Bypass For LED Open Protection

MP2249 1MHz, 6V, 3A, Low-Voltage Synchronous Step-Down Converter

MP2303A 3A, 28V, 360kHz Synchronous Rectified Step-Down Converter

eorex EP MHz, 600mA Synchronous Step-down Converter

MP A Fixed Frequency White LED Driver

MP A, 5.5V Synchronous Step-Down Switching Regulator

1.2A, 23V, 1.4MHz Step-Down Converter

EUP A, Synchronous Step-Down Converter DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit

MP A, 24V, 1.4MHz Step-Down Converter in a TSOT23-6

MP20051 Low Noise, High PSRR, 1A Linear Regulator

2A, 20V Synchronous Step-Down Converter DESCRIPTION FEATURES APPLICATIOS TYPICAL APPLICATION. Parameters Subject to Change Without Notice

MP A,1MHz, Synchronous, Step-up Converter with Output Disconnect

EUP MHz, 800mA Synchronous Step-Down Converter with Soft Start

MP28164 High-Efficiency, Single-Inductor, Buck-Boost Converter with 4.2A Switches

MPM3620A. 24 V/2 A DC/DC Module Synchronous Step-Down Converter with Integrated Inductor DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION

MP6901 Fast Turn-off Intelligent Controller

MP9943 High Efficiency 3A Peak, 36V, Synchronous Step-Down Converter With Power Good

2A, 23V, 340KHz Synchronous Step-Down Converter

MP V, 7A, Low R DSON Load Switch With Programmable Current Limit

AT7252 2A, 20V Synchronous Step-Down Converter

MP A, 15V, 800KHz Synchronous Buck Converter

MP A, 24V, 1.4MHz Step-Down White LED Driver in a TSOT23-6

MP6902 Fast Turn-off Intelligent Controller

MP2263 Wide Input 3.3V - 30V, 3A, 12µA I Q, Synchronous, Step-Down Converter with External Soft Start and Power Good in Small 2x3mm QFN Package

MP V to 5.5V Input, 1.2MHz, Dual-ch LCD Bias Power Supply

2A,4.5V-21V Input,500kHz Synchronous Step-Down Converter FEATURES GENERAL DESCRIPTION APPLICATIONS TYPICAL APPLICATION

MP4458 1A, 4MHz, 36V Step-Down Converter

n Application l Notebook Systems and I/O Power l Digital Set Top Boxes l LCD Display, TV l Networking, XDSL Modem n Typical Application VIN 4.

MP A, 28V, 1.4MHz Step-Down Converter

SGM6132 3A, 28.5V, 1.4MHz Step-Down Converter

HM8113B. 3A,4.5V-16V Input,500kHz Synchronous Step-Down Converter FEATURES GENERAL DESCRIPTION APPLICATIONS TYPICAL APPLICATION

MP62130/MP V/5V, Single-Channel 500mA Current-Limited Power Distribution Switch with Output Discharge

MP8845 5A, Highly Efficient, Synchronous, Step-Down Switcher with I 2 C Interface

Transcription:

The Future of Analog IC Technology DESCRIPTION The MP2161 is a monolithic step-down switch mode converter with built-in internal power MOSFETs. It achieves 2A continuous output current from a 2.5 to 6 input voltage with excellent load and line regulation. The output voltage can be regulated as low as 0.6. The Constant-On-Time control scheme provides fast transient response and eases loop stabilization. Fault condition protection includes cycle-by-cycle current limiting and thermal shutdown. The MP2161 is available in the small TSOT23-8 package and requires a minimum number of readily available standard external components. The MP2161 is ideal for a wide range of applications including High Performance DSPs, FPGAs, PDAs, and portable instruments. MP2161 2A, 6, 1.5MHz, 17μA I Q, COT Synchronous Step Down Switcher In 8-pin TSOT23 FEATURES ery Low I Q : 17μA Default 1.5MHz Switching Frequency EN and Power Good for Power Sequencing Wide 2.5 to 6 Operating Input Range Output Adjustable from 0.6 Up to 2A Output Current 100% Duty Cycle in Dropout 100mΩ and 60mΩ Internal Power MOSFET Switches Cycle-by-Cycle Over Current Protection Short Circuit Protect with Hiccup Mode Stable with Low ESR Output Ceramic Capacitors Available in a TSOT23-8 Package APPLICATIONS Wireless/Networking Cards Portable Instruments Battery Powered Devices Low oltage I/O System Power All MPS parts are lead-free and adhere to the RoHS directive. For MPS green status, please visit MPS website under Products, Quality Assurance page. MPS and The Future of Analog IC Technology are registered trademarks of Monolithic Power Systems, Inc. TYPICAL APPLICATION MP2161 Rev. 1.1 www.monolihicpower.com 1

ORDERING INFORMATION Part Number* Package Top Marking MP2161GJ TSOT23-8 See Below * For Tape & Reel, add suffix Z (e.g. MP2161GJ Z); TOP MARKING AEB: product code of MP2161GJ; Y: year code; PACKAGE REFERENCE TOP IEW PG 1 8 EN IN 2 7 FB SW 3 6 AGND PGND 4 5 TSOT23-8 ABSOLUTE MAXIMUM RATINGS (1) Supply oltage IN... 6.5 SW... -0.3 (-1.5 for <20ns&-4 for <8ns) to 6.5 (10 for <10ns) All Other Pins... -0.3 to 6.5 Junction Temperature... 150C Lead Temperature... 260C Continuous Power Dissipation (T A = +25 C) (2)...... 1.25W Storage Temperature... -65C to +150C Recommended Operating Conditions (3) Supply oltage IN... 2.5 to 6 Operating Junction Temp. (T J ). -40 C to +125 C Thermal Resistance (4) θ JA θ JC TSOT23-8... 100... 55... C/W Notes: 1) Exceeding these ratings may damage the device. 2) The maximum allowable power dissipation is a function of the maximum junction temperature T J (MAX), the junction-toambient thermal resistance θ JA, and the ambient temperature T A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P D (MAX) = (T J (MAX)-T A )/θ JA. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage. 3) The device is not guaranteed to function outside of its operating conditions. 4) Measured on JESD51-7, 4-layer PCB. MP2161 Rev. 1.1 www.monolihicpower.com 2

ELECTRICAL CHARACTERISTICS (5) IN = 5, T A = +25C, unless otherwise noted. Parameter Symbol Condition Min Typ Max Units Feedback oltage FB 2.5 IN 6-3% 0.600 +3% T A =-40 o C to +85 o C (6) -3.5% +3.5% Feedback Current I FB FB = 0.6 10 50 na PFET Switch On Resistance R DSON P 100 mω NFET Switch On Resistance R DSON N 60 mω Switch Leakage EN = 0, IN = 6 SW = 0 and 6 /% 0 1 μa PFET Current Limit 2.7 3.2 4.0 A ON Time Switching frequency T ON F s IN =5, =1.2 185 IN =3.6, =1.2 245 =1.2-20% 1500 +20% khz/% T A =-40 o C to +85 o C (6) -25% 1500 +25% khz/% Minimum Off Time T MIN-OFF 60 ns Soft-Start Time T SS-ON 1.5 ms Power Good Upper Trip Threshold PG H FB voltage respect to the regulation ns +10 % Power Good Lower Trip Threshold PG L -10 % Power Good Delay PG D 50 μs Power Good Sink Current Capability PG-L Sink 1mA 0.4 Power Good Logic High oltage PG-H IN =5, FB =0.6 4.9 Power Good Internal Pull Up Resistor Under oltage Lockout Threshold Rising Under oltage Lockout Threshold Hysteresis R PG 550 kω 2.15 2.3 2.45 260 m EN Input Logic Low oltage 0.4 EN Input Logic High oltage 1.2 EN Input Current EN =2 1.5 μa EN =0 0 μa Supply Current (Shutdown) EN =0, IN =3 20 100 na Supply Current (Quiescent) EN =2, FB =0.63, IN =5 17 20 μa Thermal Shutdown (5) 150 C Thermal Hysteresis (5) 30 C Notes: 5) Guaranteed by design. 6) Guaranteed by characterization test. MP2161 Rev. 1.1 www.monolihicpower.com 3

TYPICAL PERFORMANCE CHARACTERISTICS IN = 5, = 1.2, L = 1.0µH, T A = +25ºC, unless otherwise noted. 40 30 20 10 Quiescent Current vs. Input oltage 0 2 2.5 3 3.5 4 4.5 5 5.5 6 INPUT OLTAGE () 0.003 0.0025 0.002 0.0015 0.001 0.0005 0 Shutdown Current vs. Input oltage 2 2.5 3 3.5 4 4.5 5 5.5 6 INPUT OLTAGE () 2.00 1.50 1.00 0.50 0.00 Load Regulation IN =5-0.50 IN =6-1.00-1.50-2.00 0 0.5 1 1.5 2 2.5 LOAD CURRENT (A) Line Regulation 1.00 0.80 0.60 0.40 Load=1A Load=2A 0.20 0.00-0.20-0.40 Load=0A -0.60-0.80-1.00 2 3 4 5 6 INPUT OLTAGE () 50 45 40 35 30 25 20 15 10 5 0 Case Temp Rise IN =3, =1.2 0 0.5 1 1.5 2 2.5 PUT CURRENT (A) Case Temp Rise IN =5, =3.3 50 45 40 35 30 25 20 15 10 5 0 0 0.5 1 1.5 2 2.5 PUT CURRENT (A) Efficiency 100 95 IN =3.3 90 85 80 75 70 IN =5 IN =6 65 60 55 50 1 10 100 1000 10000 LOAD CURRENT(mA) Efficiency 5/3.3 IN to 1.8 100 90 80 IN =5 IN =3.3 70 60 50 0 0.5 1 1.5 2 2.5 I (A) Efficiency 5 IN to 3.3 100 90 80 70 60 50 0 0.5 1 1.5 2 2.5 I (A) MP2161 Rev. 1.1 www.monolihicpower.com 4

TYPICAL PERFORMANCE CHARACTERISTICS (continued) IN = 5, = 1.2, L = 1.0µH, T A = +25ºC, unless otherwise noted. MP2161 Rev. 1.1 www.monolihicpower.com 5

TYPICAL PERFORMANCE CHARACTERISTICS (continued) IN = 5, = 1.2, L = 1.0µH, T A = +25ºC, unless otherwise noted MP2161 Rev. 1.1 www.monolihicpower.com 6

PIN FUNCTIONS Pin # 1 PG 2 IN Name Description 3 SW Switch Output 4 PGND Power ground Power Good Indicator. The output of this pin is an open drain with internal pull up resistor to IN. PGOOD is pulled up to IN when the FB voltage is within 10% of the regulation level, if FB voltage is out of that regulation range, it is LOW. Supply oltage. The MP2161 operates from a +2.5 to +6 unregulated input. C1 is needed to prevent large voltage spikes from appearing at the input. 5 Input sense pin for output voltage 6 AGND Analogy ground for internal control circuit 7 FB Feedback pin. An external resistor divider from the output to GND, tapped to the FB pin, sets the output voltage. 8 EN On/Off Control MP2161 Rev. 1.1 www.monolihicpower.com 7

BLOCK DIAGRAM IN EN Bias & oltage Reference Soft start + COMP - TH + + E.A. - 0.6 RST Constant On -Time Pulse PWM PWM PDR Lo-Iq Main Switch (PCH) FB Lo-Iq Ramp Generator + + FBCOMP - Lo-Iq SW EN Lo-Iq Hi-Z Driver NDR Synchronous Rectifier (NCH) SW IN GND FB for Fixed Output 0.66 + COMP - + COMP - 0.54 + COMP - Lo-Iq PG Figure 1: MP2161 Block Diagram MP2161 Rev. 1.1 www.monolihicpower.com 8

OPERATION MP2161 uses constant on-time control with input voltage feed forward to stabilize the switching frequency over full input range. At light load, MP2161 employs a proprietary control of low side switch and inductor current to eliminate ringing on switching node and improve efficiency. Constant On-time Control Compare to fixed frequency PWM control, constant on-time control offers the advantage of simpler control loop and faster transient response. By using input voltage feed forward, MP2161 maintains a nearly constant switching frequency across input and output voltage range. The ontime of the switching pulse can be estimated as: T ON IN 0.667 s To prevent inductor current run away during load transient, MP2161 fixes the minimum off time to be 60ns. However, this minimum off time limit will not affect operation of MP2161 in steady state in any way. Light Load Operation In light load condition, MP2161 uses a proprietary control scheme to save power and improve efficiency. The MP2161 will turn off the low side switch when inductor current starts to reverse. Then MP2161 works in discontinuous conduction mode (DCM) operation. The DCM mode happens only after low side switch turned off by ZCD circuit. Considering the ZCD circuit propagation time, the typical delay is 30ns. It means the inductor current still fall after the ZCD is trigger during this delay. If the inductor current falling slew rate is fast (o voltage is high or close to in), the low side MOSFET is turned off at the moment inductor current may be negative. This phenomena will cause MP2161 can not enter DCM operation. If the DCM mode is required, the off time of low side MOSFET in CCM should be longer than 60ns. It means the maximum duty is 90% to guarantee DCM mode at light load. For example, IN is 3.4 and is 3.3, the off time in CCM is 20ns. It is difficult to enter DCM at light load. And using smaller inductor can improve it and make it enter DCM easily. Enable When input voltage is greater than the undervoltage lockout threshold (ULO), typically 2.3, MP2161 can be enabled by pulling EN pin to higher than 1.2. Leaving EN pin float or pull down to ground will disable MP2161. There is an internal 1Meg Ohm resistor from EN pin to ground. Soft Start MP2161 has built-in soft start that ramps up the output voltage in a controlled slew rate, avoiding overshoot at startup. The soft start time is about 1.5ms typical. Power GOOD Indictor MP2161 has an open drain with 550kΩ pull-up resistor pin for power good indicator PGOOD. When FB pin is within +/-10% of regulation voltage, i.e. 0.6, PGOOD pin is pulled up to IN by the internal resistor. If FB pin voltage is out of the +/-10% window, PGOOD pin is pulled down to ground by an internal MOS FET. The MOS FET has a maximum R dson of less than 100 Ohm. Current limit MP2161 has a typical 3.2A current limit for the high side switch. When the high side switch hits current limit, MP2161 will touch the hiccup threshold until the current lower down. This will prevent inductor current from continuing to build up which will result in damage of the components. Short Circuit and Recovery MP2161 enters short circuit protection mode also when the current limit is hit, and tries to recover from short circuit with hiccup mode. In short circuit protection, MP2161 will disable output power stage, discharge soft-start cap and then automatically try to soft-start again. If the short circuit condition still holds after softstart ends, MP2161 repeats this operation cycle till short circuit disappears and output rises back to regulation level. MP2161 Rev. 1.1 www.monolihicpower.com 9

APPLICATION INFORMATION COMPONENT SELECTION Setting the Output oltage The external resistor divider is used to set the output voltage (see Typical Application on page 1). The feedback resistor R1 can not be too large neither too small considering the trade-off for stability and dynamic. Choose R1 to be around 120kΩ to 200kΩ. R2 is then given by: R1 R2 out 1 0.6 The feedback circuit is shown as Figure 2. MP2161 FB R1 R2 out Figure 2: Feedback Network Table 1 lists the recommended resistors value for common output voltages. Table 1 Resistor Selection for Common Output oltages () R1 (kω) R2 (kω) 1.0 200(1%) 300(1%) 1.2 200(1%) 200(1%) 1.8 200(1%) 100(1%) 2.5 200(1%) 63.2(1%) 3.3 200(1%) 44.2(1%) Selecting the Inductor A 0.68µH to 2.2µH inductor is recommended for most applications. For highest efficiency, the inductor DC resistance should be less than 15mΩ. For most designs, the inductance value can be derived from the following equation. L 1 (IN ) I f IN L OSC Where I L is the inductor ripple current. Choose inductor current to be approximately 30% of the maximum load current. The maximum inductor peak current is: IL IL(MAX) ILOAD 2 Selecting the Input Capacitor The input current to the step-down converter is discontinuous, therefore a capacitor is required to supply the AC current to the step-down converter while maintaining the DC input voltage. Use low ESR capacitors for the best performance. Ceramic capacitors with X5R or X7R dielectrics are highly recommended because of their low ESR and small temperature coefficients. For most applications, a 10µF capacitor is sufficient. For higher output voltage, 47uF may be needed for more stable system. Since the input capacitor absorbs the input switching current it requires an adequate ripple current rating. The RMS current in the input capacitor can be estimated by: I C1 I LOAD IN 1 IN The worse case condition occurs at IN = 2, where: ILOAD IC1 2 For simplification, choose the input capacitor whose RMS current rating greater than half of the maximum load current. The input capacitor can be electrolytic, tantalum or ceramic. When using electrolytic or tantalum capacitors, a small and high quality ceramic capacitor, i.e. 0.1μF, should be placed as close to the IC as possible. When using ceramic capacitors, make sure that they have enough capacitance to provide sufficient charge to prevent excessive voltage ripple at input. The input voltage ripple caused by capacitance can be estimated by: ILOAD IN 1 fs C1 IN IN MP2161 Rev. 1.1 www.monolihicpower.com 10

Selecting the Output Capacitor The output capacitor (C2) is required to maintain the DC output voltage. Ceramic capacitors are recommended. Low ESR capacitors are preferred to keep the output voltage ripple low. The output voltage ripple can be estimated by: 1 1 RESR fs L1 IN 8fS C2 Where L 1 is the inductor value and R ESR is the equivalent series resistance (ESR) value of the output capacitor. Using ceramic capacitors, the impedance at the switching frequency is dominated by the capacitance. The output voltage ripple is mainly caused by the capacitance. For simplification, the output voltage ripple can be estimated by: 2 1 8f S L1C2 IN In the case of tantalum or electrolytic capacitors, the ESR dominates the impedance at the switching frequency. For simplification, the output ripple can be approximated to: 1 RESR fs L 1 IN The characteristics of the output capacitor also affect the stability of the regulation system. PCB Layout Proper layout of the switching power supplies is very important, and sometimes critical for proper function. For the high-frequency switching converter, poor layout design can result in poor line or load regulation and stability issues. The high current paths (GND, IN and SW) should be placed very close to the device with short, direct and wide traces. The input capacitor needs to be as close as possible to the IN and GND pins. The external feedback resistors should be placed next to the FB pin. Keep the switching node SW short and away from the feedback network. IN SW C1 GND PG 1 2 3 4 EN 8 7 6 5 R1 C2 R2 AGND Figure 3: PCB Layout Recommendation Design Example Below is a design example following the application guidelines for the specifications: Table 2: Design Example IN 5 1.2 f SW 1500kHz The detailed application schematic is shown in Figure 4. The typical performance and circuit waveforms have been shown in the Typical Performance Characteristics section. For more device applications, please refer to the related Evaluation Board Datasheets. MP2161 Rev. 1.1 www.monolihicpower.com 11

TYPICAL APPLICATION CIRCUITS Figure 4: Typical Application Circuit MP2161 Rev. 1.1 www.monolihicpower.com 12

PACKAGE INFORMATION TSOT23-8 See note 7 EXAMPLE TOP MARK PIN 1 ID IAAAA TOP IEW RECOMMENDED LAND PATTERN SEATING PLANE SEE DETAIL ''A'' FRONT IEW SIDE IEW NOTE: DETAIL ''A'' 1) ALL DIMENSIONS ARE IN MILLIMETERS. 2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURR. 3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. 4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.10 MILLIMETERS MAX. 5) JEDEC REFERENCE IS MO-193, ARIATION BA. 6) DRAWING IS NOT TO SCALE. 7) PIN 1 IS LOWER LEFT PIN WHEN READING TOP MARK FROM LEFT TO RIGHT, (SEE EXAMPLE TOP MARK) NOTICE: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications. MP2161 Rev. 1.1 www.monolithicpower.com 13