A novel metamaterial for miniaturization and multi-resonance in antenna

Similar documents
High gain, directive and miniaturized metamaterial C-band antenna

Size Reduction of Microstrip Patch Antenna by Using Meta-Fractal Technique

Bandwidth Enhancement of Microstrip Patch Antenna with Octagonal Complementary Split Ring Resonator Array Structure

METAMATERIAL BASED NOVEL DUAL BAND ANTENNA

Design and Analysis of Rectangular Microstrip Patch Antenna using Metamaterial for Wimax Application at 3.5GHz

Determination of Transmission and Reflection Parameters by Analysis of Square Loop Metasurface

A NOVEL DUAL-BAND PATCH ANTENNA FOR WLAN COMMUNICATION. E. Wang Information Engineering College of NCUT China

Circular Patch Antenna with CPW fed and circular slots in ground plane.

RCS Reduction of Patch Array Antenna by Complementary Split-Ring Resonators Structure

Keywords: Array antenna; Metamaterial structure; Microstrip antenna; Split ring resonator

BANDWIDTH AND GAIN ENHANCEMENT OF A SLOTTED BOWTIE ANTENNA USING PARTIAL SUBSTRATE REMOVAL

Rectangular Patch Antenna Using ARRAY OF HEXAGONAL RINGS Structure in L-band

A Compact Dual Band-Notched Ultrawideband Antenna with λ/4 Stub and Open Slots

Compact Broadband End-Fire Antenna with Metamaterial Transmission Line

Double Negative Left-Handed Metamaterials for Miniaturization of Rectangular Microstrip Antenna

Miniaturization of Branch-Line Coupler Using Composite Right/Left-Handed Transmission Lines with Novel Meander-shaped-slots CSSRR

Design and Analysis of Rectangular Microstrip Patch Antenna using Metamaterial for Better Efficiency

Research Article Modified Dual-Band Stacked Circularly Polarized Microstrip Antenna

DESIGN OF A NOVEL MICROSTRIP-FED DUAL-BAND SLOT ANTENNA FOR WLAN APPLICATIONS

A Broadband Planar Micro strip Antenna with Meta materials

Research Article Miniaturized Circularly Polarized Microstrip RFID Antenna Using Fractal Metamaterial

Design and Development of a 2 1 Array of Slotted Microstrip Line Fed Shorted Patch Antenna for DCS Mobile Communication System

STUDY OF ARTIFICIAL MAGNETIC MATERIAL FOR MICROWAVE APPLICATIONS

L-BAND COPLANAR SLOT LOOP ANTENNA FOR INET APPLICATIONS

Design & Simulation of Circular Rectangular Patch Antenna for Wireless Application

Inset Fed Microstrip Patch Antenna for X-Band Applications

Research Article Compact Dual-Band Dipole Antenna with Asymmetric Arms for WLAN Applications

Reducing Mutual Coupling in Microstrip Array Antenna Using Metamaterial Spiral Resonator

Study of Microstrip Antenna Behavior with Metamaterial Substrate of SRR Type Combined with TW

ANALYSIS OF EPSILON-NEAR-ZERO METAMATE- RIAL SUPER-TUNNELING USING CASCADED ULTRA- NARROW WAVEGUIDE CHANNELS

PERFORMANCE ANALYSIS OF MINIATURIZED PATCH ANTENNA FOR WIRELESS APPLICATIONS USING REFLECTOR

Effect of Slot Rotation on Rectangular Slot based Microstrip Patch Antenna

A Pair Dipole Antenna with Double Tapered Microstrip Balun for Wireless Communications

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

Design of Rectangular-Cut Circular Disc UWB Antenna with Band-Notched Characteristics

Effects of Two Dimensional Electromagnetic Bandgap (EBG) Structures on the Performance of Microstrip Patch Antenna Arrays

An MNG-TL Loop Antenna for UHF Near-Field RFID Applications

Design of Metamaterial Antenna For Wireless Applications

UNIVERSITI MALAYSIA PERLIS

Comparative Analysis of Microstrip Rectangular Patch Antenna with Different Feeding Techniques using HFSS

HIGH GAIN AND LOW COST ELECTROMAGNETICALLY COUPLED RECTAGULAR PATCH ANTENNA

DUAL-BAND LOW PROFILE DIRECTIONAL ANTENNA WITH HIGH IMPEDANCE SURFACE REFLECTOR

A MINIATURIZED UWB BPF BASED ON NOVEL SCRLH TRANSMISSION LINE STRUCTURE

A Broadband Omnidirectional Antenna Array for Base Station

Jae-Hyun Kim Boo-Gyoun Kim * Abstract

A COMPACT MODIFIED DISC MONOPOLE ANTENNA FOR SUPER-WIDEBAND APPLICATIONS WITH ENHANCED GAIN

ADVANCES in NATURAL and APPLIED SCIENCES

Analysis of Broadband L-probe Fed Microstrip Antennas

Performance Enhancement of Microstrip Line Quarter Wave Transformer Circular Patch Antenna with Narrow Slit at L Band

Broadband Circular Polarized Antenna Loaded with AMC Structure

Single, Dual and Tri-Band-Notched Ultrawideband (UWB) Antenna Using Metallic Strips

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

Design and Simulation of Metamaterial in Compact Broadband Microstrip Patch Antenna for Wireless Router

CHAPTER 4 DESIGN OF BROADBAND MICROSTRIP ANTENNA USING PARASITIC STRIPS WITH BAND-NOTCH CHARACTERISTIC

UWB ANTENNA WITH DUAL BAND REJECTION FOR WLAN/WIMAX BANDS USING CSRRs

Gain Enhancement of Pyramidal Horn Antenna using EBG Technique

On the Design of Plus Slotted Fractal Antenna Array

ADVANCES in NATURAL and APPLIED SCIENCES

National Severe Storm Laboratory, NOAA Paper ID:

Proposing a Criss-Cross Metamaterial Structure for Improvement of Performance Parameters of Microstrip Antennas

E-SHAPED STACKED BROADBAND PATCH ANTENNA

TRIPLE-BAND OMNI-DIRECTIONAL ANTENNA FOR WLAN APPLICATION

Slotted Rectangular Microstrip Patch Antenna for WiMax applications

Study of the Effect of Substrate Materials on the Performance of UWB Antenna

Compact UWB Planar Antenna with Triple Band EMI Reduction Characteristics for WiMAX/WLAN/X-Band Satellite Downlink Frequency

DESIGN AND ANALYSIS OF RECTANGULAR MICROSTRIP PATCH ANTENNA USING METAMATERIAL FOR BETTER EFFICIENCY

Citation Electromagnetics, 2012, v. 32 n. 4, p

Parametric Analysis of Multiple U Slot Microstrip Patch Antenna for Wireless Applications

New Design of CPW-Fed Rectangular Slot Antenna for Ultra Wideband Applications

Metamaterial Inspired CPW Fed Compact Low-Pass Filter

Micro-strip line feed I shaped slot Antenna with finite slotted ground plane for Return Loss enhancement

Frequency Switching of PIFA Using Split Ring Resonator

DUAL WIDEBAND SPLIT-RING MONOPOLE ANTENNA DESIGN FOR WIRELESS APPLICATIONS

L-slotted Microstrip Patch Antenna for WiMAX and WLAN Applications

Designing of Rectangular Microstrip Patch Antenna for C-Band Application

Design a U-sloted Microstrip Antenna for Indoor and Outdoor Wireless LAN

Magnetic Response of Rectangular and Circular Split Ring Resonator: A Research Study

Microstrip Patch Antenna Miniaturization by using Split Ring Resonators which are in-plane for WLAN Application

6464(Print), ISSN (Online) ENGINEERING Volume & 3, Issue TECHNOLOGY 3, October- December (IJECET) (2012), IAEME

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Microstrip Patch Antenna Using Suspended Techniques

CPW- fed Hexagonal Shaped Slot Antenna for UWB Applications

Mutual Coupling Reduction of Micro strip antenna array by using the Electromagnetic Band Gap structures

DESIGN AND STUDY OF INSET FEED SQUARE MICROSTRIP PATCH ANTENNA FOR S-BAND APPLICATION

Design of Reconfigurable Rectangular Patch Antenna using PIN Diode

Chapter 7 Design of the UWB Fractal Antenna

Efficient Metasurface Rectenna for Electromagnetic Wireless Power Transfer and Energy Harvesting

DESIGN AND ENHANCEMENT BANDWIDTH RECTANGULAR PATCH ANTENNA USING SINGLE TRAPEZOIDAL SLOT TECHNIQUE

Proximity fed gap-coupled half E-shaped microstrip antenna array

Research Article A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection

INVESTIGATED NEW EMBEDDED SHAPES OF ELEC- TROMAGNETIC BANDGAP STRUCTURES AND VIA EFFECT FOR IMPROVED MICROSTRIP PATCH AN- TENNA PERFORMANCE

Department of Electrical Engineering University of North Texas

AN APPROACH TO DESIGN AND OPTIMIZATION OF WLAN PATCH ANTENNAS FOR WI-FI APPLICATIONS

DESIGN OF TRI-BAND PRINTED MONOPOLE ANTENNA FOR WLAN AND WIMAX APPLICATIONS

Antenna Theory and Design

Bandwidth Enhancement of Microstrip Patch Antenna Using Metamaterials

H And U-Slotted Rectangular Microstrip Patch Antenna

Multiband Monopole Antenna With complimentary Split Ring Resonator for WLAN and WIMAX Application

Ultra Wideband Slotted Microstrip Patch Antenna for Downlink and Uplink Satellite Application in C band

II. Microstrip Resonator Design Fig. 1 shows the cross sectional view of the coupled microstrip line resonator.

Transcription:

MATERIALS SCIENCE RESEARCH ARTICLE A novel metamaterial for miniaturization and multi-resonance in antenna Parul Dawar, N.S. Raghava and Asok De Cogent Physics (2015), 2: 1123595 Page 1 of 13

MATERIALS SCIENCE RESEARCH ARTICLE A novel metamaterial for miniaturization and multi-resonance in antenna Parul Dawar 1 *, N.S. Raghava 2 and Asok De 3 Received: 16 September 2015 Accepted: 17 November 2015 Published: 21 December 2015 *Corresponding author: Parul Dawar, Department of Electronics and Communication Engineering, Guru Tegh Bahadur Institute of Technology, Guru Gobind Singh Indraprastha University, Delhi, India E-mail: paru.dawar@gmail.com Reviewing editor: Rajeev Ahuja, Uppsala University, Sweden Additional information is available at the end of the article Abstract: A new type of metamaterial-inspired patch antenna designed for having multi-resonance and minituarization has been elucidated. A novel metamaterial formed by combining 2 segment labyrinth and capacitive loaded strip has been designed by combining negative permeability and negative permittivity characteristics respectively, to form a Double Negative Group metamaterial. By adding 4 unit cells to the microstrip patch antenna resonating at 30 GHz, secondary resonances have been created around 8.5, 17.7, 20 and 23.7 GHz. Seventy-two per cent miniaturization of the structure is obtained using metamaterial-inspired antenna, but at the cost of reduction in bandwidth. Subjects: Electrical & Electronic Engineering; Electromagnetics & Communication; Materials Science Keywords: metamaterials (MTMs); antennas Parul Dawar ABOUT THE AUTHORS Parul Dawar is an assistant professor in Guru Tegh Bahadur Institute of Technology, GGSIPU, Delhi. Her research interests include Electromagnetic Field waves, Optical Communications and Microwave Electronics. She has authored two books titled Electromagnetic Field Theory and Concepts in Electromagnetic Field Theory under KATSON publications. She has attended and published various papers in National and International Conferences. N.S. Raghava, is working as an associate professor in Electronics and Communication Engineering Department in Delhi Technological University. His area of specialization is Antenna and Propagation, Microwave Engineering, Digital Communication, Wireless Communication, Cloud Computing, Information Security. Professor Asok De is, at present, professor in Electronics and Communication Engineering, Delhi College of Engineering and on lien, working as the director of NIT Patna. His fields of interest are antennas, Numerical techniques in Electromagnetic, Transmission lines etc. He has published many research papers in reputed Journals. PUBLIC INTEREST STATEMENT The main aim of this work is to obtain miniaturization and multi-resonance in the antenna using metamaterial. The need of an hour is smaller antenna which can give us same performance parameters as the larger antenna and multi-resonance is used in military applications. This is done without altering the antenna s dimensions, instead by inserting a new and novel metamaterial array on the patch and inside the substrate of the antenna. 2015 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license. Page 2 of 13

1. Introduction Rectangular Microstrip Patch Antenna (RMPA) consists of a rectangular patch over a microstrip substrate with many applications in field of communication systems. The requirement of smaller size systems and also smaller antennas in RADARS and radio sensors is increasing. Therefore, the antenna miniaturization becomes an important requirement in wireless communication systems. Various techniques like shorting posts (Waterhouse, Targonski, & Kokotoff, 1998), slotting of patch (Huang, 2001), and using high-permittivity dielectric substrate (Trippe, Bhattacharya, & Papapolymerou, 2011) have been used for miniaturization, but are not able to miniaturize the antenna to an acceptable extent and also increase the flow of surface waves. Also, the use of antenna for applications such as GPS, WLAN, requires multi-band antenna with compactness and low cost. Therefore, metamaterial structures are used. Metamaterials (MTMs) are engineered to modify the bulk permeability and/or permittivity of the medium. It is realized by placing periodically, structures that alter the material parameters, with elements of size less than the wavelength of the incoming electromagnetic wave. It results in meta i.e. altered behaviour or behaviour unattainable by natural materials. Slight changes to a repeated unit cell can be used to tune the effective bulk material properties of a MTM, replacing the need to discover suitable materials for an application with the ability to design a structure for the desired effect. Their characteristics include negative permittivity, negative permeability and negative refractive index. 2. Antenna design RMPA can be represented as two slots of width, w, and height, h, separated by transmission line of length, l. It is designed to resonate at 3.85 THz frequency with dielectric constant (ε r ) = 2.33, substrate thickness h = 2 mm, L = 2.17 mm, W = 4.23 mm on a ground plane (Balanis, 1997; Pozar, 1992). Practically, ground plane is finite with size greater than the patch dimensions by approximately six times the substrate thickness,with length, L g = 22.15 mm and width, W g = 24.6 mm. The constructional details are shown in Figure 1. Figure 1. Rectangular microstrip patch antenna: constructional details. Page 3 of 13

Microstrip feed using quarter-wave transformer has been used for feeding the antenna as calculated from Equation (1). The input impedance is taken at the base of microstrip feed line and is referred to 50Ω. i.e. Z 0. Zqw = Z rmpa Z 0 (1) where W qw and L qw represent the width (8.4 mm) and length (9.8 mm) of the quarter-wave transformer as calculated from Z qw i.e. impedance of quarter-wave transformer using Tx-Line software by AWR. Figure 2 shows the simulation results i.e. Return loss, 3D polar plot of gain, VSWR and radiation pattern in E and H plane. It can be seen that S11 i.e. return loss is 27.3 db at 30 GHz and VSWR is 1.09. Bandwidth, the range of frequencies with VSWR < 2, is 10.4 GHz. Peak realized gain is 9.6 db. Figure 2. (a) Return loss (b) peak realized gain (c) VSWR of RMPA. (a) 30.1000-27.3106-5.00 XY Plot 1 db(s(1,1)) (b) Name Theta Ang Mag 360.0000-0.0000 9.1355 Radiation Pattern 2 0-30 10.00 30 db(peakrealizedgain) Setup1 : LastAdaptive Freq='27.43GHz' Phi='90deg' -10.00 9.50-60 60 9.00 db(s (1,1 )) -15.00-90 8.50 90-20.00-120 120-25.00-150 150-29.53 24.00 26.00 28.00 30.00 32.00 34.00 35.38-180 (c) 87.24 27.7000 2.0119 m3 32.4000 1.9493 XY Plot 2 abs(vswr(1)) 75.00 62.50 abs(vswr(1 )) 50.00 37.50 25.00 12.50 m3 0.00 27.09 28.00 29.00 30.00 31.00 32.00 33.00 33.46 Page 4 of 13

3. Proposed metamaterial Multiple split rings (2-segment) Labyrinth metamaterial has been proposed having magnetic resonance. It behaves as Mu-Negative Group (MNG). It is constructionally very simple, consists of a 2-segment SRR with RT Duroid Substrate (Bilotti, Toscano, Vegni, & Aydin, 2007; Minowa et al., 2011). It is designed in such a way that the inclusions are much smaller than the operating wavelength. Such structures can be denoted by quasi-static equivalent LC circuit. Unit cell formed in HFSS is shown in Figure 3(a) with constructional details in Figure 3(b) where thickness t of the conducting Figure 3. Segment labyrinth SRR MTM (a)unit cell designed in HFSS (b)constructional details with tanβ = 0.01. (a) (b) Parameter Value (in mm) l 5.65 g 0.4 s 0.2 w 0.9 Figure 4. Combined 2-segment labyrinth CLS metamaterial. Page 5 of 13

metallic inclusions (N = 2) is 5 μm, height h of the substrate is 2 mm, conductivity ρs is 0.017 10 6 Ωm, l is the side length of the external ring, u is the width of the strips, s is the separation between two adjacent strips, g is the gap width. A capacitive-loaded strip (CLS) is a strip line that acts as an electric dipole and mimics long metallic wires (Alhawari, Ismail, Mahdi, & Abdullah, 2011). Two strips with dimensions 1.8 mm 0.4 mm and 5.65 mm 0.9 mm are designed and joined with each other in T-shape. This whole structure is integrated with 2-segment labyrinth to form a new metamaterial as shown in Figure 4. Figures 5 and 6 show the permittivity and permeability characteristics obtained from simulation of unit cell. Resonance in permittivity is obtained at 30.86 GHz and resonance in permeability is obtained at 31.45 GHz. The negative permittivity and permeability region extends from 24 to 31.45 GHz. This forms a Double Negative Group (DNG) metamaterial by combining MNG 2-segment labyrinth metamaterial with Epsilon-Negative Group CLS metamaterial. 2-segment labyrinth SRR MTM and CLS can be simplified in terms of combinations of parallel RC, series RL and L, respectively. Using transmission line theory (quasi-static regime), we can draw its equivalent circuit as in Figure 7(a) and (b). The L is the inductance per unit length of the loop and C is the equivalent capacitance. This circuit in Figure 7(a) has capacitances from two regions: (1) capacitance from gap g in the rings named C 1 in parallel with resistance R 1 (2) capacitance between the split rings named C 2 in parallel with R 3. Also, series resistance R 1 is to take into account the losses in the conductor and a shunt resistance Figure 5. Negative permittivity region. 36.24 30.8630-0.2360 XY Plot 3 re(er) 20.00 0.00 re(er) -20.00-40.00-60.00 29.50 30.00 30.50 31.00 31.50 32.00 Page 6 of 13

Figure 6. Negative permeability region. 9.82 24.0388 0.0031 m2 31.4523 0.1494 7.50 XY Plot 2 re(mr) 2.50 m2 re (m r) -2.50-7.50-12.50-14.68 23.05 23.75 25.00 26.25 27.50 28.75 30.00 31.25 32.20 R 2 and R 3 are taken to describe the losses in the dielectric substrate as shown in Figure 7(b). Here, length of the gap plays a significant role and C 1 and C 2 are of the same order of magnitude. The expressions for L and C are given by Equations (2) and (3) as below (Ghaznavi Jahromi et al., 2013): ( lavg L = μ 0 2 [ lavg ln 4 w ) ] 2 where μ 0 is the vacuum permeability, lavg is the average strip length calculated over all the rings. lavg = 4 [ l (N 1)(u + s) ] Using Equation (2.1), we get, L is 1.58 10 9 H. (2) (2.1) Using expressions, C 1 is 9.15 10 14 F and C 2 is 7.62 10 14 F. Thus, the resultant Capacitance by virtue of C 1 and C 2 is the series combination of two. So, C = C 1 + C 2 Thus C = 16.77 10 14 F. (3) Page 7 of 13

Figure 7. (a) Equivalent RLC circuit of 2-segment SRR (b) capacitive-loaded strip. The expression for L m of CLS in Figure 7(b) is given by Equation (4) as below (Dai, Wang, Li, & Liang, 2013): L m = mu hl 2 w where μ = μ 0 is the vacuum permeability and parameter value h = 2 mm and l is length and w is width of the strip. Upon calculations, L 1 = 5.65 10 9 H and L 2 = 3.95 10 9 H. Thus, combining the equivalent circuits of Figure 7(a) and (b), the resultant L = 4.88 10 9 H and C = 16.77 10 14 F. (4) The resonance of the unit cell can be obtained by putting the resultant L and C in Equation (5). 1 ω = LC The resonant frequency is found out to be 34.95 GHz. (5) Upon simulating the unit cell in HFSS, the resonant frequency is obtained as 30.6 GHz as shown in Figure 8. Therefore, nearly 12% error is found out between simulational and theoretical analysis. 4. Metamaterial rectangular microstrip patch antenna The effect on antenna s parameters has been studied as shown in Figure 9, by embedding in the middle of its substrate a metamaterial array (3 4) such that the centre of the array coincides with the centre of the antenna substrate. The double negative characteristics of metamaterial, when Page 8 of 13

Figure 8. Resonance in metamaterial unit cell. m2 0.00 30.6000-9.7934 XY Plot 1 db(s(1,1)) -2.00-4.00 db(s (1,1 )) -6.00-8.00 m2-10.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 Figure 9. Top view of MTM array inside RMPA substrate. Page 9 of 13

Figure 10. (a) Resonances in patch antenna (b) VSWR curve for metamaterial patch antenna. (a) -0.20 22.9000-27.4506 XY Plot 1 db(s(1,1)) -5.00-10.00 db(s (1,1 )) -15.00-20.00-25.00-29.87 13.25 18.75 25.00 31.25 35.20 (b) m4 21.4000 1.9836 17.50 m5 24.6000 2.0046 XY Plot 2 abs(vswr(1)) 15.00 12.50 abs(vsw R (1 )) 10.00 7.50 5.00 2.50 m4 m5 0.00 21.29 22.50 23.75 24.63 placed just below the patch, reduce the electrical length of the antenna structure, thereby obtaining miniaturization. The simulation results are shown in Figure 10(a) and (b). Page 10 of 13

VSWR for MTM array inside RMPA substrate is 1.4 and bandwidth is 3 GHz as shown in Figure 10. Upon loading the antenna with metamaterial array, the resultant resonant frequency is dependent on its constitutive parameters. Thus, when the constitutive parameters become negative, the resonance occurs in antenna. This leads to shifting of antenna s resonant frequency to that of the metamaterials resonance frequency. In the proposed antenna, it is shown that by loading a conventional rectangular patch antenna substrate with a DNG metamaterial, a sub-wavelength resonant mode on the patch will be excited (Ghaznavi Jahromi et al., 2013). This new resonance is at 22.9 GHz i.e. K band and is useful for satellite communication system. Thus, 24% miniaturization of the antenna has been obtained. Because these metamaterial structures are narrowband, the bandwidth of the proposed antenna is smaller than the conventional antenna. A new design methodology for multi-band rectangular microstrip antenna using metamaterialinspired technique is proposed (Dai et al., 2013). By placing metamaterial structure horizontally adjacent to the radiating patch, multi-band operation occurs as shown in Figure 11(a). Figure 11. (a) Proposed RMPA (b) resonances in patch antenna (c) VSWR curve. (a) (b) -0.78 XY Plot 1 db(s(1,1)) -5.00-10.00 m7 m6 m8 db(s (1,1 )) -15.00 m4-20.00 m5 m3 14.2000-30.8000-25.00 m4 8.5000-17.6528 m5 17.7000-23.4860 m6 20.0000-12.8970 m7 23.7000-10.6169-30.00 m3 m8 31.4000-14.3770-32.89 7.20 10.00 15.00 20.00 25.00 30.00 33.47 (c) 4.93 29.7000 1.9913 m2 32.1000 2.0584 XY Plot 2 abs(vswr(1)) 4.00 3.00 abs( VSW R(1)) 2.00 m2 1.00 0.00 7.66 10.00 15.00 20.00 25.00 30.00 34.15 Page 11 of 13

It can be seen that there are five resonant frequencies, 8.5, 17.7, 20, 23.7 and 31 GHz, respectively. Maximum bandwidth of nearly 2.4 GHz is obtained at the 31 GHz mode. Thus, bandwidth has been reduced. Four lower resonant frequencies are generated by the introduction of the proposed metamaterial, while the resonant frequency 31 GHz is determined by the dominant mode of the patch cavity. This is useful in GPS and WLAN applications in communication system, where multiple resonances of the antenna are required. If the mode at 8.5 GHz is considered to be dominant, then nearly 72% miniaturization of the antenna can be obtained. 5. Conclusion In this paper, novel metamaterial 2-segment labyrinth-cls has been designed and implemented using FEM-based software, Ansoft HFSS and compared with equivalent circuit based on microstrip discontinuity with 12% error. Metamaterial-embedded patch antenna has been designed with applications in communication systems, such as GPS, WLAN and satellite communication. The miniaturization in the structure has also been achieved by about 72%. There is trade-off in obtaining reduced bandwidth since the metamaterials are inherently resonant structures. Funding The authors received no direct funding for this research. Author details Parul Dawar 1 E-mail: paru.dawar@gmail.com N.S. Raghava 2 E-mail: nsraghava@gmail.com Asok De 3 E-mail: asok.de@gmail.com 1 Department of Electronics and Communication Engineering, Guru Tegh Bahadur Institute of Technology, Guru Gobind Singh Indraprastha University, Delhi, India. 2 Department of Electronics and Communication Engineering, Delhi Technological University, Delhi, India. 3 NIT Patna, Patna, Bihar, India. Citation information Cite this article as: A novel metamaterial for miniaturization and multi-resonance in antenna, Parul Dawar, N.S. Raghava & Asok De, Cogent Physics (2015), 2: 1123595. Cover image Source: Author. References Alhawari, A. R. H., Ismail, A., Mahdi, M. A., & Abdullah, R. S. A. R. (2011). Miniaturized ultra-wideband antenna using microstrip negative index metamaterial. Electromagnetics, 31, 404 418. http://dx.doi.org/10.1080/02726343.2011.590961 Balanis, C. A. (1997). Antenna theory. Hoboken, NJ: Wiley. Bilotti, F., Toscano, A., Vegni, L., & Aydin, K. (2007). Equivalentcircuit models for the design of metamaterials based on artificial magnetic inclusions. IEEE Transactions on Microwave Theory and Techniques, 55, 2865 2873. http://dx.doi.org/10.1109/tmtt.2007.909611 Dai, X.-W., Wang, Z.-Y., Li, L., & Liang, C.-H. (2013). Multi-band rectangular microstrip antenna using a metamaterialinspired technique. Progress in Electromagnetics Research Letters, 41, 87 95. http://dx.doi.org/10.2528/pierl13050308 Ghaznavi Jahromi, A., Mohajeri, F., & Feiz, N. (2013). Miniaturization of a rectangular microstrip patch antenna loaded with metamaterial. World Academy of Science, Engineering and Technology, 7, 879 882. Huang, J. (2001). A review of antenna miniaturization techniques for wireless applications. Jet Propulsion Laboratory, California Institute of Technology. Minowa, Y., Nagai, M., Tao, H., Fan, K., Strikwerda, A. C., Zhang, X., Tanaka, K. (2011). Extremely thin metamaterial as slab waveguide at terahertz frequencies. IEEE transactions on Terahertz Science and Technology, 1, 441 449. Pozar, D. M. (1992). Microstrip antennas. Proceedings of the IEEE, 80, 79 91. http://dx.doi.org/10.1109/5.119568 Trippe, A., Bhattacharya, S., & Papapolymerou, J. (2011, July). Compact microstrip antennas on a high relative dielectric constant substrate at 60 GHz. In IEEE Antennas and Propagation (APSURSI) (pp. 519 520). Spokane. Waterhouse, R. B., Targonski, S. D., & Kokotoff, D. M. (1998). Design and performance of small printed antennas. IEEE Transactions on Antennas and Propagation, 46, 1629 1633. Page 12 of 13

2015 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license. You are free to: Share copy and redistribute the material in any medium or format Adapt remix, transform, and build upon the material for any purpose, even commercially. The licensor cannot revoke these freedoms as long as you follow the license terms. Under the following terms: Attribution You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. No additional restrictions You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits. Cogent Physics (ISSN: 2331-1940) is published by Cogent OA, part of Taylor & Francis Group. Publishing with Cogent OA ensures: Immediate, universal access to your article on publication High visibility and discoverability via the Cogent OA website as well as Taylor & Francis Online Download and citation statistics for your article Rapid online publication Input from, and dialog with, expert editors and editorial boards Retention of full copyright of your article Guaranteed legacy preservation of your article Discounts and waivers for authors in developing regions Submit your manuscript to a Cogent OA journal at www.cogentoa.com Page 13 of 13