A General Formula for Impulse-Invariant Transformation for Continuous-Time Delta-Sigma Modulators Talebzadeh, J. and Kale, I.

Similar documents
Design of Continuous Time Multibit Sigma Delta ADC for Next Generation Wireless Applications

BANDPASS delta sigma ( ) modulators are used to digitize

CONTINUOUS-TIME (CT) ΔΣ modulators have gained

Paper presentation Ultra-Portable Devices

Time- interleaved sigma- delta modulator using output prediction scheme

ABSTRACT 1. INTRODUCTION

Band- Pass ΣΔ Architectures with Single and Two Parallel Paths

Combining Multipath and Single-Path Time-Interleaved Delta-Sigma Modulators Ahmed Gharbiya and David A. Johns

Modulator with Op- Amp Gain Compensation for Nanometer CMOS Technologies

A Methodology for designing Continuous-time Sigma-Delta Modulators

Basic Concepts and Architectures

The University of Texas at Austin Dept. of Electrical and Computer Engineering Final Exam

Cascaded Noise-Shaping Modulators for Oversampled Data Conversion

Oscar Belotti, Edoardo Bonizzoni & Franco Maloberti

A 12 Bit Third Order Continuous Time Low Pass Sigma Delta Modulator for Audio Applications

A Triple-mode Sigma-delta Modulator Design for Wireless Standards

A Novel Dual Mode Reconfigurable Delta Sigma Modulator for B-mode and CW Doppler Mode Operation in Ultra Sonic Applications

Data Conversion Techniques (DAT115)

Improved offline calibration for DAC mismatch in low OSR Sigma Delta ADCs with distributed feedback

Multirate DSP, part 3: ADC oversampling

Design of Tunable Continuous-Time Quadrature Bandpass Delta-Sigma Modulators

MASH 2-1 MULTI-BIT SIGMA-DELTA MODULATOR FOR WLAN L 2 ( ) ( ) 1( 1 1 1

RELAXED TIMING ISSUE IN GLOBAL FEEDBACK PATHS OF UNITY- STF SMASH SIGMA DELTA MODULATOR ARCHITECTURE

Appendix A Comparison of ADC Architectures

SYSTEM DESIGN OF A WIDE BANDWIDTH CONTINUOUS-TIME SIGMA-DELTA MODULATOR. A Thesis VIJAYARAMALINGAM PERIASAMY

NPTEL. VLSI Data Conversion Circuits - Video course. Electronics & Communication Engineering.

ADVANCES in VLSI technology result in manufacturing

Reconfigurable Low-Power Continuous-Time Sigma-Delta Converter for Multi- Standard Applications

Low- Power Third- Order ΣΔ Modulator with Cross Couple Paths for WCDMA Applications

Materials in this course have been contributed by Fernando Medeiro, José M. de la Rosa, Rocío del Río, Belén Pérez-Verdú and

Final Exam. EE313 Signals and Systems. Fall 1999, Prof. Brian L. Evans, Unique No

I-Q Signal Generation Techniques for Communication IC Testing and ATE Systems

CONTINUOUS-TIME sigma-delta (ΣΔ) modulators

WestminsterResearch

Implementation of Binary DAC and Two step ADC Quantizer for CTDS using gpdk45nm

BandPass Sigma-Delta Modulator for wideband IF signals

Interpolation by a Prime Factor other than 2 in Low- Voltage Low-Power DAC

A New Current-Mode Sigma Delta Modulator

Exploring of Third-Order Cascaded Multi-bit Delta- Sigma Modulator with Interstage Feedback Paths

Low-Complexity High-Order Vector-Based Mismatch Shaping in Multibit ΔΣ ADCs Nan Sun, Member, IEEE, and Peiyan Cao, Student Member, IEEE

Pipeline vs. Sigma Delta ADC for Communications Applications

Time-skew error correction in two-channel time-interleaved ADCs based on a two-rate approach and polynomial impulse responses

Comparison of Simulation Methods of Single and Multi-Bit Continuous Time Sigma Delta Modulators

System on a Chip. Prof. Dr. Michael Kraft

A VERY HIGH SPEED BANDPASS CONTINUOUS TIME SIGMA DELTA MODULATOR FOR RF RECEIVER FRONT END A/D CONVERSION K. PRAVEEN JAYAKAR THOMAS

DESIGN OF MULTI-BIT DELTA-SIGMA A/D CONVERTERS

Analytical Expressions for the Distortion of Asynchronous Sigma Delta Modulators

The Research and Design of An Interpolation Filter Used in an Audio DAC

INF4420. ΔΣ data converters. Jørgen Andreas Michaelsen Spring 2012

ECEN 610 Mixed-Signal Interfaces

A 102-dB-SNR mixed CT/DT ADC with capacitor digital self-calibration for RC spread compensation

System-Level Simulation for Continuous-Time Delta-Sigma Modulator in MATLAB SIMULINK

Advanced AD/DA converters. ΔΣ DACs. Overview. Motivations. System overview. Why ΔΣ DACs

ECE 627 Project: Design of a High-Speed Delta-Sigma A/D Converter

IN RECENT YEARS, there has been an explosive demand

Linearity Improvement Algorithms of Multi-bit ΔΣ DA Converter Combination of Unit Cell Re-ordering and DWA

Performance Improvement of Delta Sigma Modulator for Wide-Band Continuous-Time Applications

Asynchronous Sigma Delta Modulators for Data Conversion

A Continuous-time Sigma-delta Modulator with Clock Jitter Tolerant Self-resetting Return-to-zero Feedback DAC

Comparator Design for Delta Sigma Modulator

System Level Design of a Continuous-Time Delta-Sigma Modulator for Portable Ultrasound Scanners

Sigma-Delta ADC Tutorial and Latest Development in 90 nm CMOS for SoC

Lecture 10, ANIK. Data converters 2

A Low-Power Single-Bit Continuous-time DS Converter with 92.5dB Dynamic Range and design of Low-Voltage Σ ADCs

EE247 Lecture 22. Figures of merit (FOM) and trends for ADCs How to use/not use FOM. EECS 247 Lecture 22: Data Converters 2004 H. K.

Gábor C. Temes. School of Electrical Engineering and Computer Science Oregon State University. 1/25

Summary Last Lecture

On the Study of Improving Noise Shaping Techniques in Wide Bandwidth Sigma Delta Modulators

MODELING BAND-PASS SIGMA-DELTA MODULATORS IN SIMULINK

A new analytical approach of the impact of jitter on continuous time delta sigma converters

Digital AudioAmplifiers: Methods for High-Fidelity Fully Digital Class D Systems

Phase-shift self-oscillating class-d audio amplifier with multiple-pole feedback filter

Summary Last Lecture

Fractional- N PLL with 90 Phase Shift Lock and Active Switched- Capacitor Loop Filter

VLSI Implementation of Digital Down Converter (DDC)

Chapter 2 Analysis of Quantization Noise Reduction Techniques for Fractional-N PLL

2011/12 Cellular IC design RF, Analog, Mixed-Mode

Design and Implementation of a Sigma Delta ADC By: Moslem Rashidi, March 2009

FPGA Based Hardware Efficient Digital Decimation Filter for - ADC

HIGH-SPEED bandpass modulators are desired in

THE USE of multibit quantizers in oversampling analogto-digital

DELTA SIGMA modulators ( M s) [1], [2] are popular

Calibration of DAC mismatch errors in Σ ADC s based on a sine wave measurement.

FPGA Prototyping of Digital RF Transmitter Employing Delta Sigma Modulation for SDR

Chapter 2: Digitization of Sound

The Case for Oversampling

10 bit Delta Sigma D/A Converter with Increased S/N ratio Using Compact Adder Circuits

OVERSAMPLING analog-to-digital converters (ADCs)

A Mostly Digital Variable-Rate Continuous- Time ADC Modulator

SpringerBriefs in Electrical and Computer Engineering

CHAPTER. delta-sigma modulators 1.0

On-Chip Implementation of Cascaded Integrated Comb filters (CIC) for DSP applications

A VCO-based analog-to-digital converter with secondorder sigma-delta noise shaping

The Fundamentals of Mixed Signal Testing

ESE 531: Digital Signal Processing

2.1 BASIC CONCEPTS Basic Operations on Signals Time Shifting. Figure 2.2 Time shifting of a signal. Time Reversal.

Lecture 13. Introduction to OFDM

A K-Delta-1-Sigma Modulator for Wideband Analog-to-Digital Conversion

CONTINUOUS TIME DIGITAL SYSTEMS WITH ASYNCHRONOUS SIGMA DELTA MODULATION

A triple-mode continuous-time sigma delta modulator with switched-capacitor feedback DAC for a GSM- EDGE/CDMA2000/UMTS Receiver van Veldhoven, R.H.M.

Transcription:

WestminsterResearch http://www.westminster.ac.uk/westminsterresearch A General Formula for Impulse-Invariant Transformation for Continuous-Time Delta-Sigma Modulators Talebadeh, J. and Kale, I. This is a copy of the author s accepted version of a paper subsequently published in the proceedings of the 3th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME) 207, Giardini Naxos and Taormina, Italy 2 to 5 June 207. It is available online at: https://dx.doi.org/0.09/prime.207.797457 207 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The WestminsterResearch online digital archive at the University of Westminster aims to make the research output of the University available to a wider audience. Copyright and Moral Rights remain with the authors and/or copyright owners. Whilst further distribution of specific materials from within this archive is forbidden, you may freely distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/). In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

A General Formula for Impulse-Invariant Transformation for Continuous-Time Delta-Sigma Modulators Jafar Talebadeh and Iet Kale Applied DSP and VLSI Research Group, Department of Electronic Systems, University of Westminster, London, WW 6UW, UK Emails: Jtalebadeh@gmail.com, kalei@westminster.ac.uk Abstract, this paper presents a generalised new formula for impulse-invariant transformation which can be used to convert an nth-order Discrete-Time (DT) ΔΣ modulator to an nth-order equivalent Continuous-Time (CT) ΔΣ modulator. Impulse-invariant transformation formulas have been published in many open literature articles for s-domain to - domain conversion and vice-versa. However, some of the published works contain omissions and oversights. To verify the newly derived formulas, very many designs of varying orders have been tested and a representative 4th-order singleloop DT ΔΣ modulator converted to an equivalent CT ΔΣ modulator through the new formulas are presented in this paper. The simulation results confirm that the CT ΔΣ modulator which has been derived by these formulas works in accordance with the initial DT specifications without any noticeable degradation in performance in comparison to its original DT ΔΣ modulator prototype. Index Terms Impulse-Invariant Transformation, Delta- Sigma Modulator, Continuous-Time, Discrete-Time. I. INTRODUCTION The ΔΣ modulators are widely used in audio applications and portable devices to achieve high resolution analog-to-digital conversion for relatively low-bandwidth signals by using the oversampling and the noise-shaping techniques. CT ΔΣ modulators have drawn a lot of attention from analog designers over the last decade due to their potential to operate at higher clock frequencies in comparison to their DT counterparts. Sampling requirements are relaxed in the CT ΔΣ modulators because the sampling is inside their loop and any sampling error is shaped by their Noise-Transfer Function (NTF). The CT ΔΣ modulators have an implicit anti-aliasing filter in their forward loop filter. However, CT ΔΣ modulators suffer from several drawbacks: excess loop delay, jitter sensitivity and RC time constant variations. One way to convert a DT ΔΣ modulator to an equivalent CT ΔΣ modulator is through the use of the impulseinvariant transformation []-[6]. A DT ΔΣ modulator and a CT ΔΣ modulator are shown in Figure, and are said to be equivalent when their quantier inputs are equal at the sampling instants. = for all n () x(n) H d () q(n) H ddac () DAC F s q c (t) q c (nt ) R(s) ADC y(n) x (t) (s) ADC y(n) H c DAC Figure : The block diagrams of a) The DT ΔΣ modulator and b) The CT ΔΣ modulator. CT ΔΣ modulators and is the clock period of the ΔΣ modulators. This condition would be fulfilled if the impulse responses of the open-loop filter of the CT and DT ΔΣ modulators were equal at the sampling times. As a result () translates directly into (2): = (2) Because =, equation (2) can be simplified to give (3): = (3) The transformation in (3) is the well-known impulseinvariant transformation where,,, and represent the inverse -transform, the inverse Laplace transform, the CT DAC transfer function, the DT and the CT loop filters respectively [],[4]. Depending on the output waveform of the CT DAC, there would be an exact mapping between the DT and the CT ΔΣ modulators. The popular feedback-dac waveforms have rectangular shapes. The time and frequency (Laplace) domain responses of these waveforms are:,, 0,, = 0, h (4) Where and are the quantier inputs of the DT and = (5)

In the cases where > the DAC equation is divided into two parts as expressed by (6) and the -domain equivalents of each part is calculated separately., =, +, (6) This paper is organied as follows. To set the scene, in section II, the concept of the impulse-invariant transformation is reviewed and a general formula for s- domain to -domain conversion for ΔΣ modulator applications is derived. In section III, simulation results of the 4th-order CT and DT ΔΣ modulators are both presented and discussed in detail. Finally, conclusions are given in section IV. II. IMPULSE-INVARIANT TRANSFORMATION In order to derive the equivalent -domain transfer function of CT ΔΣ modulators with rectangular DAC waveforms, we shall start with the st order s-domain term. Equation (7) is derived by substituting (5) and the st order s-domain term into (3) as follows. = An auxiliary variable λ is deployed to derive a general formula step by step. Equation (8) is equal to (7) when λ=0 [7], [8]: = λ λ = By using the Laplace transform properties, (8) leads to (9) where represents a step function [7]. = λ λ λ (9) The continuous time variable in (9) is replaced with in (0). = λ λ λ (0) The -transform of (0) is expressed by () which results in (2) [7], [8]. = λ λ λ λ (7) (8) () = λ λ λ + λ λ λ (2) It can be proved that (2) can be obtained by calculating the st derivative with respect to the variable λ of equation (3). = λ λ λ λ (3) By substituting λ=0 into (2) the -domain equivalent of the st order s-domain term is expressed by (4). = (4) The -domain equivalent of the 2 nd order s-domain term is derived by repeating all steps in the process mentioned above as follows. = = λ = λ λ 2 λ = λ 2 λ (5) (6) (7) The -transform of (7) is given by (8) which leads to (9) [7], [8]. = 2 λ λ λ = λ λ 2 λ + 3 2λ 3 2 λ λ + 2λ 2 λ λ (8) (9) The 2 nd derivative of equation (20) with respect to the variableλis equal to (9). = λ λ 2λ λ (20) Substituting λ=0 into (9) gives (2) which is the -domain equivalent of the 2 nd order s-domain term. = 9 9+ 2 (2) Finally, the above-mentioned process is performed all over again for the 3 rd and 4 th order s-domain terms which are listed in Table I. To obtain the kth order s-domain term, the impulse-invariant transformation is written in (22). = (22)

Table I: The CT-to-DT transformation for rectangular DAC waveforms. s-domain -domain equivalent for a rectangular DAC waveform Proposed Formulas Formulas in [4] + = = + + = 2 = 2 = 2 2 2 + + = 6 = 3 + 2 + 2 =+ 6 2 + 2 + + + = 24 = 8 + 6 + 4 + 6 =+ 8 3 + 2 3 = 2 + + = 6 = 3 + 2 + 2 = 6 2 + 2 + + + = 24 = 8 + 6 + 4 + 6 =+ 8 3 + 2 3! = 24 + 6 4 + 6 λ λ λ λ λ = 24 + 6 4 + 6 By utiliing the Laplace transform properties, (22) leads to (23) [9]. = λ λ! λ! (23) The -domain equivalent for the kth order s-domain function is expressed by (24) where represents the order of the s-domain term. = λ λ! λ λ λ (24) The -domain equivalent for the st to 4 th and the general kth order s-domain terms for a rectangular DAC waveform are presented in Table I. One popular method to compensate the excess loop delay in CT ΔΣ modulators is to deploy negative feedback from the output of the DACs to the input of their quantiers as shown in Figure 2.b []. The -domain equivalent of this feedback = is developed and given by (26) as follows. = = (25) = + (26) One popular rectangular DAC waveform is the Non- Return-to-Zero (NRZ) one. The -domain equivalent of the NRZ DAC with = and =+ is calculated from (26) and is given by (27). = (27) The newly derived -domain equivalent formulas can be compared with the formulas in [4] which both are illustrated in Table I. The results of this comparison indicate that in 2 nd -order term and in 3 rd -order term are entirely different. The comparison can be done between the newly mentioned formulas and the ones presented in [] which show in 3 rd -order term are not the same. What is surprising is that even -domain equivalent formulas in [] and [4] are not identical and in 2 nd -order term and and in 3 rd -order term are completely different. III. SIMULATION RESULTS To validate the newly derived formulas presented in Table I, a 4 th -order DT ΔΣ modulator with an OverSampling Ratio (OSR) of 64 and 3-bit quantier has been designed by using the Schreier toolbox and was then converted to its 4 th -order CT ΔΣ modulator equivalent with a NonReturn-to-Zero (NRZ) DAC waveform by using DTto-CT formulas described in Table I. The block diagrams of the 4 th -order DT and CT ΔΣ modulator are shown in Figure 2. An extra feedback of fc0 is used to compensate the effect

of excess loop delay in the CT ΔΣ modulator. The coefficients of the DT ΔΣ modulator are given in (36). support the validity of the proposed formulas derived and described in this paper.,,,=0.798,0.4384,0.8769,2.0 (36) By using Table I the coefficients of the equivalent 4 th - order CT ΔΣ modulator with NRZ DAC and,= 0.2,.2 shown in Figure 2.b have been derived and presented in (37).,,,, =.689,.2266,0.5892,0.382,0.3 (37) Both modulators have been simulated by using the Mathworks SIMULINK environment and a sinusoidal input signal with amplitude of 0.7V and a frequency of 6.34 KH is applied to both modulators in the simulation. The simulation results show that the SNR of the DT and CT ΔΣ modulators are about 30.37dB and 30.2dB respectively with a clock frequency of 80MH and signal bandwidth of 625 KH. The output spectra of the DT and CT ΔΣ modulators and their respective in-band noise are approximately the same as shown in Figure 3. Power Spectral Density(dB) Figure 3: The output spectra of the fourth-order DT and CT ΔΣ modulators for a 6.34 KH input with a clock frequency of 80MH. REFERENCES x(n) x(t) a - b - (a) (b) c - f c4 f c3 f c2 f c h cdac (t) d y(n) - f c0 y(t) F s τ d T T τ d T + T t y(n) [] J. A. Cherry, and W. M. Snelgrove, Excess Loop Delay in Continuous-Time Delta-Sigma Modulators, IEEE Trans. Circuits Syst. II, vol. 46, no. 4, pp. 376-389, April 999. [2] M. Ortmanns, F. Gerfers, and Y. Manoli, A Case Study on a 2 Cascaded Continuous-Time Sigma-Delta Modulators, IEEE Trans. Circuits Syst. I, vol. 52, no. 8, pp. 55525, Aug. 2005. [3] H. Shamsi, O. Shoaei, Continuous- Time Delta-Sigma Modulators with Arbitrary DAC Waveforms, IEEE ISCAS, pp. 8790, 2006. [4] M. Ortmanns and F. Gerfers, Continuous-Time Sigma-Delta A/D Conversion, Berlin: Springer, 2006. [5] T. Kim, C. Han and, N. Maghari, A 7.2mW 75.3dB SNDR 0MH BW CT Delta-Sigma Modulator Using GM-C Based Noise-Shaped Quantier and Digital Integrator IEEE J. Solid-State Circuits, vol. 5, no. 8, pp. 840850, 206. [6] H. Chae, and M. P. Flynn, A 69dB SNDR, 25MH BW, 800 MS/s Continuous-Time Bandpass Delta Sigma Modulator Using Duty- Cycle-Controlled DAC for Low Power and Reconfigurability IEEE J. Solid-State Circuits, vol. 5, no. 3, pp. 649-659, 206. [7] E. I. Jury, Theory and Application of the -Transform Method, New York, Robert E. Krieger Publishing Co., 973. [8] P. P. G. Dyke, An introduction to Laplace Transforms and Fourier Series, Great Britain, Springer, 2004 [9] Benabes, P., Keramat, M., Kielbasa, R., A methodolgy for designing countinuous-time sigma-delta modulators Analog. Int. Circuits Signal Process. 23(3), 89 200 June, 2000. Figure 2: a) The block diagram of the fourth-order DT ΔΣ modulator and b) The block diagram of the fourth-order CT ΔΣ modulator. IV. CONCLUSION In this paper a general and novel formula for impulse invariant transformation is presented. The CT-to-DT conversion formulas for the st to 4 th order terms are derived and listed in Table I. The 4 th -order DT ΔΣ modulator and its 4 th -orde CT modulator equivalent which is derived by these formulas both were simulated by using MATLAB. Similar simulation results for both modulators