Introduction to Operational Amplifiers

Similar documents
Homework Assignment 01

Introduction to Analog Interfacing. ECE/CS 5780/6780: Embedded System Design. Various Op Amps. Ideal Op Amps

Homework Assignment 03

ES250: Electrical Science. HW6: The Operational Amplifier

Lecture Notes Unit-III

Survival Skills for Circuit Analysis

or Op Amps for short

L02 Operational Amplifiers Applications 1

Operational Amplifiers. Boylestad Chapter 10

An electronic unit that behaves like a voltagecontrolled

Introduction to Op Amps

Chapter 3: Operational Amplifiers

Lesson number one. Operational Amplifier Basics

Homework Assignment True or false. For both the inverting and noninverting op-amp configurations, V OS results in

+ power. V out. - power +12 V -12 V +12 V -12 V

Chapter 10: Operational Amplifiers

UNIT I. Operational Amplifiers

Designing Information Devices and Systems I Fall 2015 Anant Sahai, Ali Niknejad Homework 9. This homework is due November 2, 2015, at Noon.

Lecture # 4 Network Analysis

CHARACTERIZATION OF OP-AMP

Linear IC s and applications

C H A P T E R 02. Operational Amplifiers

Example #6 1. An amplifier with a nominal gain

Section 4: Operational Amplifiers

Homework Assignment 07

MAS.836 HOW TO BIAS AN OP-AMP

Designing Information Devices and Systems I Fall 2018 Homework 10

2.996/6.971 Biomedical Devices Design Laboratory Lecture 7: OpAmps

HOME ASSIGNMENT. Figure.Q3

Chapter 2. Operational Amplifiers

EXAM Amplifiers and Instrumentation (EE1C31)

1. Consider the closed loop system shown in the figure below. Select the appropriate option to implement the system shown in dotted lines using

Circuit produces an amplified negative version of v IN = R R R

Basic Information of Operational Amplifiers

Homework Assignment 07

Precision Rectifier Circuits

2. The. op-amp in and 10K. (a) 0 Ω. (c) 0.2% (d) (a) 0.02K. (b) 4. The. 5 V, then. 0V (virtual. (a) (c) Fall V. (d) V.

Homework Assignment 01

v 0 = A (v + - v - ) (1)

Operational Amplifiers

EEE118: Electronic Devices and Circuits

Dimensions in inches (mm) .268 (6.81).255 (6.48) .390 (9.91).379 (9.63) .045 (1.14).030 (.76) 4 Typ. Figure 1. Typical application circuit.

Operational Amplifiers

ECE-342 Test 1: Sep 27, :00-8:00, Closed Book. Name : SOLUTION

EE LINEAR INTEGRATED CIRCUITS & APPLICATIONS

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2)

Amplifiers in systems

Homework Assignment 13

ENGR 201 Homework, Fall 2018

Operational Amplifiers (Op Amps)

2.3 The Non-Inverting Configuration

Differential Amplifier : input. resistance. Differential amplifiers are widely used in engineering instrumentation

Applied Electronics II

Common Reference Example

ECE3040 Assignment9. 1. The figures show inverting amplifier circuits.

Lecture 11. Operational Amplifier (opamp)

Precision OPERATIONAL AMPLIFIER

Dimensions in inches (mm) .021 (0.527).035 (0.889) .016 (.406).020 (.508 ) .280 (7.112).330 (8.382) Figure 1. Typical application circuit.

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

Micropower, Single-Supply, Rail-to-Rail, Precision Instrumentation Amplifiers MAX4194 MAX4197

UNIT - 1 OPERATIONAL AMPLIFIER FUNDAMENTALS

Operational Amplifier BME 360 Lecture Notes Ying Sun

Chapter 9: Operational Amplifiers

12/01/2009. Practice with past exams

Source Transformation

Precision, Low Power, Micropower Dual Operational Amplifier OP290

Dual Low Power Operational Amplifier, Single or Dual Supply OP221

Lecture #2 Operational Amplifiers

Chapter 2. Operational Amplifiers

Ideal Op Amps. The Two Golden Rules for circuits with ideal op-amps*

ECE103 Spring Homework 1

Homework Assignment 02

Physical Limitations of Op Amps

Input Offset Voltage (V OS ) & Input Bias Current (I B )

Zero Drift, Unidirectional Current Shunt Monitor AD8219

OPERATIONAL AMPLIFIER PREPARED BY, PROF. CHIRAG H. RAVAL ASSISTANT PROFESSOR NIRMA UNIVRSITY

Common mode rejection ratio

EECE251 Circuit Analysis I Set 5: Operational Amplifiers

DUAL OP AMP AND VOLTAGE REFERENCE General Description. Features

Paper-1 (Circuit Analysis) UNIT-I

CHARACTERISTICS OF OPERATIONAL AMPLIFIERS - I

Chapter 2. Operational Amplifiers

FSK DEMODULATOR / TONE DECODER

ECE Lab #4 OpAmp Circuits with Negative Feedback and Positive Feedback

Emitter Coupled Differential Amplifier

Chapter 9: Operational Amplifiers

General-Purpose CMOS Rail-to-Rail Amplifiers AD8541/AD8542/AD8544

Ultralow Offset Voltage Operational Amplifier OP07

Ultraprecision Operational Amplifier OP177

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A.

EUA6210 Output Capacitor-less 67mW Stereo Headphone Amplifier

General-Purpose CMOS Rail-to-Rail Amplifiers AD8541/AD8542/AD8544

ENE/EIE 211 : Electronic Devices and Circuit Design II Lecture 1: Introduction

Concepts to be Reviewed

350MHz, Ultra-Low-Noise Op Amps

LINEAR IC APPLICATIONS

Section 6 Chapter 2: Operational Amplifiers

Homework Assignment 13

DUAL ULTRA MICROPOWER RAIL-TO-RAIL CMOS OPERATIONAL AMPLIFIER

Unit WorkBook 1 Level 4 ENG U22 Electronic Circuits and Devices 2018 UniCourse Ltd. All Rights Reserved. Sample

Transcription:

P. R. Nelson ECE 322 Fall 2012 p. 1/50 Introduction to Operational Amplifiers Phyllis R. Nelson prnelson@csupomona.edu Professor, Department of Electrical and Computer Engineering California State Polytechnic University, Pomona

P. R. Nelson ECE 322 Fall 2012 p. 2/50 Ideal Op Amp Op amp symbol: - input (V m ) input (V p ) output ( ) Ideal op amp model: 1. If there is a branch connecting the output to the - input, V p V m = 0 2. There are no currents flowing into or out of the input terminals.

P. R. Nelson ECE 322 Fall 2012 p. 3/50 How It Works If there is a branch connecting the output to the - input, the op amp adjusts so that V p = V m... unless it can t. (Thinking ahead, what could go wrong?)

P. R. Nelson ECE 322 Fall 2012 p. 4/50 Inverting Amp R 2 input ( ) output ( )

P. R. Nelson ECE 322 Fall 2012 p. 4/50 Inverting Amp R 2 input ( ) V m = V p = 0 output ( )

P. R. Nelson ECE 322 Fall 2012 p. 4/50 Inverting Amp R 2 input ( ) V m = V p = 0 V m V m R 2 = 0 output ( )

Inverting Amp R 2 input ( ) V m = V p = 0 V m V m R 2 = 0 output ( ) = R 2 P. R. Nelson ECE 322 Fall 2012 p. 4/50

P. R. Nelson ECE 322 Fall 2012 p. 5/50 Noninverting Amp R 2 output ( ) input ( )

P. R. Nelson ECE 322 Fall 2012 p. 5/50 Noninverting Amp R 2 output ( ) input ( ) V m = V p =

P. R. Nelson ECE 322 Fall 2012 p. 5/50 Noninverting Amp R 2 output ( ) input ( ) V m = V p = V m 0 V m R 2 = 0

Noninverting Amp R 2 output ( ) input ( ) V m = V p = V m 0 V m R 2 = 0 = 1 R 2 P. R. Nelson ECE 322 Fall 2012 p. 5/50

P. R. Nelson ECE 322 Fall 2012 p. 6/50 Questions????

P. R. Nelson ECE 322 Fall 2012 p. 7/50 Example 1 R 2 V ref

P. R. Nelson ECE 322 Fall 2012 p. 7/50 Example 1 R 2 V ref V m = V p = V ref V m V m R 2 = 0

P. R. Nelson ECE 322 Fall 2012 p. 8/50 Example 1 cont d R 2 V ref

P. R. Nelson ECE 322 Fall 2012 p. 8/50 Example 1 cont d R 2 V ref = ( R2 ) ( 1 R ) 2 V ref

P. R. Nelson ECE 322 Fall 2012 p. 8/50 Example 1 cont d R 2 V ref SUPERPOSITION! = ( R2 ) ( 1 R ) 2 V ref

P. R. Nelson ECE 322 Fall 2012 p. 9/50 Example 2 V S R S I i R L I L V O

P. R. Nelson ECE 322 Fall 2012 p. 9/50 Example 2 V S R S I i R L V O I L I L = V S V O R L I i = V S = I L V S R S

P. R. Nelson ECE 322 Fall 2012 p. 10/50 V S R S I i R L I L V O I L I i = ( 1 R S )

P. R. Nelson ECE 322 Fall 2012 p. 10/50 V S R S I i R L I L V O I L I i = ( 1 R S ) This is a current-controlled current source (current amplifier).

P. R. Nelson ECE 322 Fall 2012 p. 11/50 Example 3 R 2

P. R. Nelson ECE 322 Fall 2012 p. 11/50 Example 3 R 2 Rule 1 doesn t apply.

P. R. Nelson ECE 322 Fall 2012 p. 11/50 Example 3 R 2 Rule 1 doesn t apply. Now what?

P. R. Nelson ECE 322 Fall 2012 p. 12/50 A Comparison R 2 R 2

P. R. Nelson ECE 322 Fall 2012 p. 12/50 A Comparison R 2 R 2 The same external circuit, but different opamp input connections.

P. R. Nelson ECE 322 Fall 2012 p. 12/50 A Comparison R 2 R 2 The same external circuit, but different opamp input connections. Look again at a familiar example...

P. R. Nelson ECE 322 Fall 2012 p. 13/50 Inverting Amp Voltage R 2 = 1 kω R 2 = 100 kω

P. R. Nelson ECE 322 Fall 2012 p. 13/50 Inverting Amp Voltage R 2 = 1 kω R 2 = 100 kω = 0.5 V

P. R. Nelson ECE 322 Fall 2012 p. 13/50 Inverting Amp Voltage R 2 = 1 kω R 2 = 100 kω = 0.5 V = R 2 = 50 V

P. R. Nelson ECE 322 Fall 2012 p. 13/50 Inverting Amp Voltage R 2 = 1 kω R 2 = 100 kω = 0.5 V = R 2 = 50 V ALWAYS?

P. R. Nelson ECE 322 Fall 2012 p. 14/50 Inverting Amp Power R 2 = R L = 1 kω R L R 2 = 100 kω = 0.5 V = 50 V

P. R. Nelson ECE 322 Fall 2012 p. 14/50 Inverting Amp Power R 2 = R L = 1 kω R L R 2 = 100 kω = 0.5 V = 50 V P in = 2 = 0.25 mw P out = [] 2 R L = 2.5 W = 10 4 P in

Inverting Amp Power R 2 = R L = 1 kω R L R 2 = 100 kω = 0.5 V = 50 V P in = 2 = 0.25 mw P out = [] 2 R L = 2.5 W = 10 4 P in What supplies this output power? P. R. Nelson ECE 322 Fall 2012 p. 14/50

Ideal op amp model rule 1 (V p V m = 0 if the output is connected to the - input) means that the op amp adjusts. P. R. Nelson ECE 322 Fall 2012 p. 15/50

P. R. Nelson ECE 322 Fall 2012 p. 15/50 Ideal op amp model rule 1 (V p V m = 0 if the output is connected to the - input) means that the op amp adjusts. The ideal op amp model thus assumes a dependent voltage source inside the opamp.

P. R. Nelson ECE 322 Fall 2012 p. 15/50 Ideal op amp model rule 1 (V p V m = 0 if the output is connected to the - input) means that the op amp adjusts. The ideal op amp model thus assumes a dependent voltage source inside the opamp. This source must be able to supply power.

P. R. Nelson ECE 322 Fall 2012 p. 15/50 Ideal op amp model rule 1 (V p V m = 0 if the output is connected to the - input) means that the op amp adjusts. The ideal op amp model thus assumes a dependent voltage source inside the opamp. This source must be able to supply power. The op amp requires an external power supply.

P. R. Nelson ECE 322 Fall 2012 p. 15/50 Ideal op amp model rule 1 (V p V m = 0 if the output is connected to the - input) means that the op amp adjusts. The ideal op amp model thus assumes a dependent voltage source inside the opamp. This source must be able to supply power. The op amp requires an external power supply. The output voltage is limited by the power supply voltage(s)!

P. R. Nelson ECE 322 Fall 2012 p. 16/50 Output Voltage Limits V sp V m V p V sm Vo = V p lim V p > V m 0 V p = V m V p < V m V m lim

P. R. Nelson ECE 322 Fall 2012 p. 16/50 Output Voltage Limits V sp V m V p V sm Vo = V p lim V sp V m lim V sm V p lim V p > V m 0 V p = V m V p < V m V m lim

P. R. Nelson ECE 322 Fall 2012 p. 17/50 Ideal Op Amp VTC V p lim V p V m V m lim

P. R. Nelson ECE 322 Fall 2012 p. 18/50 Example 3 Continued R 2

P. R. Nelson ECE 322 Fall 2012 p. 18/50 Example 3 Continued V p = ( R1 R 2 ) R 2

P. R. Nelson ECE 322 Fall 2012 p. 18/50 Example 3 Continued V p = ( R1 R 2 ) R 2 = V p = 0

P. R. Nelson ECE 322 Fall 2012 p. 18/50 Example 3 Continued V p = ( R1 R 2 ) R 2 = V p = 0 If V p, equals either V p lim or V m lim.

P. R. Nelson ECE 322 Fall 2012 p. 19/50 ut = V p lim < V p 0 = V p > V p V m lim V p = ( R1 R 2 )

P. R. Nelson ECE 322 Fall 2012 p. 19/50 ut = V p lim < V p 0 = V p > V p V m lim V p = ( R1 R 2 ) These equations can t be solved for given,

P. R. Nelson ECE 322 Fall 2012 p. 19/50 ut = V p lim < V p 0 = V p > V p V m lim V p = ( R1 R 2 ) These equations can t be solved for given, but there is a range of for a given value of.

P. R. Nelson ECE 322 Fall 2012 p. 20/50 Choose some values to make the calculations concrete: = 1 kω R 2 = 5 kω V ± lim = ±6.0 V

P. R. Nelson ECE 322 Fall 2012 p. 20/50 Choose some values to make the calculations concrete: = 1 kω R 2 = 5 kω V ± lim = ±6.0 V If = V p lim = 6.0 V

P. R. Nelson ECE 322 Fall 2012 p. 20/50 Choose some values to make the calculations concrete: = 1 kω R 2 = 5 kω V ± lim = ±6.0 V If = V p lim = 6.0 V ( ) 1 kω V p = 1 kω 5 kω 6 V = 1 V

P. R. Nelson ECE 322 Fall 2012 p. 20/50 Choose some values to make the calculations concrete: = 1 kω R 2 = 5 kω V ± lim = ±6.0 V If = V p lim = 6.0 V ( ) 1 kω V p = 1 kω 5 kω 6 V = 1 V If = V m lim = 6 V

Choose some values to make the calculations concrete: = 1 kω R 2 = 5 kω V ± lim = ±6.0 V If = V p lim = 6.0 V ( ) 1 kω V p = 1 kω 5 kω 6 V = 1 V If = V m lim = 6 V ( ) 1 kω V p = 1 kω 5 kω (6 V) = 1 V P. R. Nelson ECE 322 Fall 2012 p. 20/50

P. R. Nelson ECE 322 Fall 2012 p. 21/50 1 V < < 1 V: Two values of > 1 V: = 6 V < 1 V: = 6 V

P. R. Nelson ECE 322 Fall 2012 p. 22/50 Schmitt Trigger V p lim Stable point Switch point For between the switch points, the circuit has memory. Switch point Stable point V m lim depends on history as well as the current value of.

P. R. Nelson ECE 322 Fall 2012 p. 23/50 Example 4 R 2 Now it s your turn. Sketch vs.

P. R. Nelson ECE 322 Fall 2012 p. 24/50 Hint 1 ( R1 ) ( R2 ) V p = R 2 R 2

P. R. Nelson ECE 322 Fall 2012 p. 24/50 Hint 1 ( R1 ) ( R2 ) V p = R 2 R 2 WHY?

P. R. Nelson ECE 322 Fall 2012 p. 24/50 Hint 1 ( R1 ) ( R2 ) V p = R 2 R 2 WHY? superposition and the voltage divider formula, or KCL at the op amp terminal plus algebra

P. R. Nelson ECE 322 Fall 2012 p. 24/50 Hint 1 ( R1 ) ( R2 ) V p = R 2 R 2 WHY? superposition and the voltage divider formula, or KCL at the op amp terminal plus algebra Voltage dividers, superposition, current dividers, and the Thevénin and Norton equivalent circuits can save a lot of algebra, and potentially errors!

P. R. Nelson ECE 322 Fall 2012 p. 25/50 Hints 2 & 3 Hint 2: The switch points are at V p = 0 V.

P. R. Nelson ECE 322 Fall 2012 p. 25/50 Hints 2 & 3 Hint 2: The switch points are at V p = 0 V. Hint 3: switch = ( R1 R 2 )

P. R. Nelson ECE 322 Fall 2012 p. 26/50 Another Schmitt Trigger V lim R 2 V p lim R 2 V m lim V m lim

P. R. Nelson ECE 322 Fall 2012 p. 27/50 Questions????

P. R. Nelson ECE 322 Fall 2012 p. 28/50 Finite Open Loop Gain - input (V m ) input (V p ) Rule 1 becomes = A vo (V p V m ) output ( )

P. R. Nelson ECE 322 Fall 2012 p. 28/50 Finite Open Loop Gain - input (V m ) input (V p ) Rule 1 becomes = A vo (V p V m ) output ( ) A vo = A vo finite V p V m

P. R. Nelson ECE 322 Fall 2012 p. 28/50 Finite Open Loop Gain - input (V m ) input (V p ) Rule 1 becomes = A vo (V p V m ) output ( ) A vo = A vo finite V p V m V p V m 0

P. R. Nelson ECE 322 Fall 2012 p. 29/50 Finite Gain Circuit Model If V m lim < < V p lim the op amp can be modeled as a voltage-controlled voltage source: V p A(V p V m ) V m

P. R. Nelson ECE 322 Fall 2012 p. 30/50 Inverting Amp, Finite Gain Rule 1: R 2 = A vo (0 V V m ) Rule 2: V m V m R 2 = 0 = R 2 ( ) 1 1 A vo 1 R 2

P. R. Nelson ECE 322 Fall 2012 p. 31/50 Differential Input Offset Voltage The internal components that connect to the and - terminals of an op amp are not perfectly identical due to process variations. A small voltage difference V IO must be used at the input of a real op amp to make the output voltage zero. V IO = 0 V

P. R. Nelson ECE 322 Fall 2012 p. 32/50 The differential input offset voltage is modeled by a voltage source in series with the terminal of an ideal op amp. V IO V p V m The value of V IO can be either positive or negative.

P. R. Nelson ECE 322 Fall 2012 p. 33/50 Example 5: Integrator Although I used resistors to derive the closed-loop gain of the inverting amplifier, the same reasoning works with complex impedances. C 2

P. R. Nelson ECE 322 Fall 2012 p. 33/50 Example 5: Integrator Although I used resistors to derive the closed-loop gain of the inverting amplifier, the same reasoning works with complex impedances. C 2 = = 1 jω C 2 C 2 dt

P. R. Nelson ECE 322 Fall 2012 p. 34/50 C 2 V IO

P. R. Nelson ECE 322 Fall 2012 p. 34/50 C 2 V IO = V IO 1 C 2 ( V IO ) dt

P. R. Nelson ECE 322 Fall 2012 p. 34/50 C 2 V IO = V IO 1 C 2 ( V IO ) dt If = 0, there is still a signal (V IO ) to integrate. The steady-state output with = 0 V will be at V p lim or V m lim.

P. R. Nelson ECE 322 Fall 2012 p. 35/50 Stability of V IO If the value of V IO could be measured, the error it introduces could be eliminated by adding a voltage to cancel it. However, V IO changes with temperature and drifts over time as the op amp ages. Approaches to minimizing errors due to V IO will be discussed later.

P. R. Nelson ECE 322 Fall 2012 p. 36/50 Input Bias and Input Offset Currents Some current flows into the input terminals of a real op amp.

P. R. Nelson ECE 322 Fall 2012 p. 36/50 Input Bias and Input Offset Currents Some current flows into the input terminals of a real op amp. V p V m I p I m These currents can be modeled as current sources I p and I m external to an ideal op amp.

Designer s Model I OS /2 V p V m I B I B The input bias current I B and input offset current I OS are in data sheets. I B = I m I p 2 I OS = I m I p I m = I B I OS 2 I p = I B I OS 2 P. R. Nelson ECE 322 Fall 2012 p. 37/50

P. R. Nelson ECE 322 Fall 2012 p. 38/50 Example 6: Inverting Amp With I B and I OS R 2 I m

P. R. Nelson ECE 322 Fall 2012 p. 38/50 Example 6: Inverting Amp With I B and I OS R 2 I m R 2 I m = 0

P. R. Nelson ECE 322 Fall 2012 p. 38/50 Example 6: Inverting Amp With I B and I OS R 2 I m R 2 I m = 0 = R 2 R 2 I m I m = I B ± I OS 2

P. R. Nelson ECE 322 Fall 2012 p. 39/50 Numerical Example I m R 2 = 10 kω R 2 = 1 MΩ n = 0 V I B = 100 na I OS = 0 na

P. R. Nelson ECE 322 Fall 2012 p. 39/50 Numerical Example I m R 2 = 10 kω R 2 = 1 MΩ n = 0 V I B = 100 na I OS = 0 na = 0.1 V

P. R. Nelson ECE 322 Fall 2012 p. 39/50 Numerical Example I m R 2 = 10 kω R 2 = 1 MΩ n = 0 V I B = 100 na I OS = 0 na = 0.1 V How can the circuit be redesigned to minimize this error?

P. R. Nelson ECE 322 Fall 2012 p. 40/50 Redesign Ideas Idea 1: Smaller R 2, constant R 2 /

P. R. Nelson ECE 322 Fall 2012 p. 40/50 Redesign Ideas Idea 1: Smaller R 2, constant R 2 /... but is the input resistance of this circuit, which is often specified.

P. R. Nelson ECE 322 Fall 2012 p. 40/50 Redesign Ideas Idea 1: Smaller R 2, constant R 2 /... but is the input resistance of this circuit, which is often specified. Idea 2: Add a voltage at the terminal.

P. R. Nelson ECE 322 Fall 2012 p. 40/50 Redesign Ideas Idea 1: Smaller R 2, constant R 2 /... but is the input resistance of this circuit, which is often specified. Idea 2: Add a voltage at the terminal.... but we don t know what value to use because we don t know I m.

P. R. Nelson ECE 322 Fall 2012 p. 40/50 Redesign Ideas Idea 1: Smaller R 2, constant R 2 /... but is the input resistance of this circuit, which is often specified. Idea 2: Add a voltage at the terminal.... but we don t know what value to use because we don t know I m. Idea 3: I B flows in both op amp terminals...

P. R. Nelson ECE 322 Fall 2012 p. 40/50 Redesign Ideas Idea 1: Smaller R 2, constant R 2 /... but is the input resistance of this circuit, which is often specified. Idea 2: Add a voltage at the terminal.... but we don t know what value to use because we don t know I m. Idea 3: I B flows in both op amp terminals...... so we could use a resistor at the terminal to generate a voltage proportional to I B.

P. R. Nelson ECE 322 Fall 2012 p. 41/50 New Design R 2 I m R 3 I p

P. R. Nelson ECE 322 Fall 2012 p. 41/50 New Design R 2 I m R 3 I p = ( R2 ) R 2 I m ( 1 R ) 2 R 3 I p

P. R. Nelson ECE 322 Fall 2012 p. 41/50 New Design R 2 I m R 3 I p = ( R2 ) R 2 I m R 3 = R 2 = ( 1 R 2 ( R2 ) ) R 3 I p R 2 I OS

P. R. Nelson ECE 322 Fall 2012 p. 42/50 Improvement = 10 kω R 2 = 1 MΩ n = 0 V I B = 90 na I OS = 20 na I m = 100 na = 20 mv (100 mv without R 3 )

P. R. Nelson ECE 322 Fall 2012 p. 42/50 Improvement = 10 kω R 2 = 1 MΩ n = 0 V I B = 90 na I OS = 20 na I m = 100 na = 20 mv (100 mv without R 3 ) A more typical case with the same gain: = 1 kω R 2 = 100 kω = 2 mv

P. R. Nelson ECE 322 Fall 2012 p. 42/50 Improvement = 10 kω R 2 = 1 MΩ n = 0 V I B = 90 na I OS = 20 na I m = 100 na = 20 mv (100 mv without R 3 ) A more typical case with the same gain: = 1 kω R 2 = 100 kω = 2 mv Small R 2 minimizes I OS errors!

P. R. Nelson ECE 322 Fall 2012 p. 43/50 Output Resistance So far we have neglected the internal impedance of the voltage-controlled voltage source.

P. R. Nelson ECE 322 Fall 2012 p. 43/50 Output Resistance So far we have neglected the internal impedance of the voltage-controlled voltage source. We need to use a Thevénin equivalent circuit instead of an ideal source.

P. R. Nelson ECE 322 Fall 2012 p. 43/50 Output Resistance So far we have neglected the internal impedance of the voltage-controlled voltage source. We need to use a Thevénin equivalent circuit instead of an ideal source. A vo (V p V m ) A vo (V p V m ) R o

P. R. Nelson ECE 322 Fall 2012 p. 43/50 Output Resistance So far we have neglected the internal impedance of the voltage-controlled voltage source. We need to use a Thevénin equivalent circuit instead of an ideal source. A vo (V p V m ) A vo (V p V m ) R o Output resistance is important when the op amp supplies significant current.

P. R. Nelson ECE 322 Fall 2012 p. 44/50 Example 7: Audio Amplifier 24 kω 1 kω 1 kω 8 Ω

P. R. Nelson ECE 322 Fall 2012 p. 44/50 Example 7: Audio Amplifier 24 kω 1 kω 1 kω 8 Ω Want 100 mw RMS... to 8 Ω speaker

P. R. Nelson ECE 322 Fall 2012 p. 44/50 Example 7: Audio Amplifier 24 kω 1 kω 1 kω 8 Ω Want 100 mw RMS... to 8 Ω speaker / = 25

P. R. Nelson ECE 322 Fall 2012 p. 44/50 Example 7: Audio Amplifier 24 kω 1 kω 1 kω 8 Ω Want 100 mw RMS... to 8 Ω speaker / = 25 = 0.894 V RMS = 1.26 V peak = 50.6 mv peak

P. R. Nelson ECE 322 Fall 2012 p. 45/50 With 15 Ω R o 24 kω 1 kω X 1 kω 15 Ω 8 Ω V x R o = R L R 2

P. R. Nelson ECE 322 Fall 2012 p. 46/50 V x = 1 R o ( 1 R L 1 R 2 [1 1Av ]) = 2.88

P. R. Nelson ECE 322 Fall 2012 p. 46/50 V x = 1 R o ( 1 R L 1 R 2 [1 1Av ]) = 2.88 V x = 3.64 V peak

P. R. Nelson ECE 322 Fall 2012 p. 46/50 V x = 1 R o ( 1 R L 1 R 2 [1 1Av ]) = 2.88 V x = 3.64 V peak You would not like the sound if you run this circuit from a 3 V supply (two AA batteries in series)!

P. R. Nelson ECE 322 Fall 2012 p. 47/50 Finite Input Impedance Model: V p R p C P R d C d V m R m C m

P. R. Nelson ECE 322 Fall 2012 p. 48/50 Example 8: Amp for High-R Sensor 24 kω 1 kω 0.1µA sensor 1 MΩ

P. R. Nelson ECE 322 Fall 2012 p. 48/50 Example 8: Amp for High-R Sensor 24 kω 1 kω 0.1µA sensor 1 MΩ Ideal op amp model = 0.1µA 1 MΩ ( 1 ) 24 kω 1 kω = 2.5 V

P. R. Nelson ECE 322 Fall 2012 p. 49/50 With Finite R p 24 kω 1 kω 1 MΩ R p = 2 MΩ 0.1µA sensor

P. R. Nelson ECE 322 Fall 2012 p. 49/50 With Finite R p 24 kω 1 kω 1 MΩ R p = 2 MΩ 0.1µA sensor = 0.1µA (1 MΩ 2 MΩ) ( 1 ) 24 kω 1 kω = 1.67 V

P. R. Nelson ECE 322 Fall 2012 p. 50/50 Other Effects This discussion has covered only a few of the most important op amp parameters. For an extensive listing of op amp parameters, see section 11-2 of Op Amps For Everyone.