Study of Channel Operating Margin for Backplane and Direct Attach Cable Channels

Similar documents
Study of Channel Operating Margin for Backplane and Direct Attach Cable Channels

Baseline COM parameters for 50G Backplane and Copper Cable specifications

Variation of COM Parameters for Package Trace and Termination Resistance

A possible receiver architecture and preliminary COM Analysis with GEL Channels

For IEEE 802.3ck March, Intel

100 GEL C2M Flyover Host Files: Tp0 to Tp2, With and Without Manufacturing Variations, for Losses 9, 10, 11, 12, 13, and 14 db

Channel operating margin for PAM4 CDAUI-8 chip-to-chip interfaces

Effective Return Loss (ERL): A New Parameter To Limit COM Variability

Baseline proposals for copper twinaxial cable specifications Chris DiMinico MC Communications/PHY-SI LLC/Panduit

Chip-to-module far-end TX eye measurement proposal

Richard Mellitz, Intel Corporation July, 2015 Waikoloa, HI. IEEE P802.3bs 400 Gb/s Ethernet Task Force July 15, Waikoloa, HI

NRZ CHIP-CHIP. CDAUI-8 Chip-Chip. Tom Palkert. MoSys 12/16/2014

IEEE 802.3bj Test Points and Parameters 100 Gb/s copper cable Chris DiMinico MC Communications/ LEONI Cables & Systems LLC

Proposed Baseline text for: Chip-to-module 400 Gb/s eightlane Attachment Unit Interface (CDAUI-8) Tom Palkert MoSys Jan

Preliminary COM results for two reference receiver models

IEEE 802.3bj: 100GBASE-CR4 Test Points and Parameters Chris DiMinico MC Communications/ LEONI Cables & Systems LLC

Adding a No FEC cable (CA-N) to 25GBASE-CR. Mike Dudek QLogic 3/9/15

Return Loss of Test Channel for Rx ITT in Clause 136 (#72)

T10/05-428r0. From: Yuriy M. Greshishchev, PMC-Sierra Inc. Date: 06 November 2005

Beta and Epsilon Point Update. Adam Healey Mark Marlett August 8, 2007

IEEE Electrical Backplane/ Twinax Cu Cable SG Objectives. Lake Tahoe, NV May 2011

CFORTH-X2-10GB-CX4 Specifications Rev. D00A

06-496r3 SAS-2 Electrical Specification Proposal. Kevin Witt SAS-2 Phy Working Group 1/16/07

IEEE CX4 Quantitative Analysis of Return-Loss

HSSG Copper Objectives

802.3ba copper cable assembly baseline proposal. Chris Di Minico MC Communications

400G-FR4 Technical Specification

1Gbps to 12.5Gbps Passive Equalizer for Backplanes and Cables

DWDM XENPAK Transceivers, 32 wavelengths, SC Connectors, 80km over Single Mode Fiber

Baseline Proposal for 100G Backplane Specification Using PAM2. Mike Dudek QLogic Mike Li Altera Feb 25, 2012

Considerations for CRU BW and Amount of Untracked Jitter

802.3ba CR4/10, SR4/SR10 loss budgets. IEEE P802.3ba July 2009 San Francisco

CAUI-4 Chip Chip Spec Discussion

Chris DiMinico MC Communications/PHY-SI LLC/Panduit NGOATH Study Group

BTI-10GLR-XN-AS. 10GBASE-LR XENPAK Transceiver,1310nm, SC Connectors, 10km over Single-Mode Fiber. For More Information: DATA SHEET

25Gb/s Ethernet Channel Design in Context:

DWDM XENPAK Transceiver, 32 wavelengths, SC Connectors, 80km over Single Mode Fiber

PROLABS XENPAK-10GB-SR-C

High-Speed Link Tuning Using Signal Conditioning Circuitry in Stratix V Transceivers

06-011r0 Towards a SAS-2 Physical Layer Specification. Kevin Witt 11/30/2005

IEEE Std 802.3ap (Amendment to IEEE Std )

32Gbaud PAM4 True BER Measurement Solution

X2-10GB-LR-OC Transceiver, 1310nm, SC Connectors, 10km over Single-Mode Fiber.

To learn statistical bit-error-rate (BER) simulation, BER link noise budgeting and using ADS to model high speed I/O link circuits

Beyond 25 Gbps: A Study of NRZ & Multi-Level Modulation in Alternative Backplane Architectures

10GBASE-T Transmitter Key Specifications

Signal Integrity Tips and Techniques Using TDR, VNA and Modeling. Russ Kramer O.J. Danzy

Comprehensive TP2 and TP3 Testing

CAUI-4 Consensus Building, Specification Discussion. Oct 2012

Transmit Waveform Calibration for Receiver Testing. Kevin Witt & Mahbubul Bari Jan 15, r1

High Speed Characterization Report

PAM4 interference Tolerance test ad hoc report. Mike Dudek QLogic Charles Moore Avago Nov 13, 2012

Richard Mellitz, Intel Corporation January IEEE 802.3by 25 Gb/s Ethernet Task Force

High Speed Characterization Report

x-mgc Part Number: FCU-022M101

40 AND 100 GIGABIT ETHERNET CONSORTIUM

SAS-2 6Gbps PHY Specification

yellow highlighted text indicates refinement is needed turquoise highlighted text indicates where the text was original pulled from

PCB Routing Guidelines for Signal Integrity and Power Integrity

High Speed Characterization Report

Hybrid Passive Copper 100GE QSFP28 to 4x 25GE SFP28 GQS-4P28+PC-XXXXC

Considera*ons for CRU BW 400 GbE PMDs in Support of Comments

100 Gb/s: The High Speed Connectivity Race is On

SFP+ Active Copper Cable. Datasheet. Quellan Incorporated F e a t u r e s A P P L I C A T I O N S. O r d e r i n g

Bridging the Measurement and Simulation Gap Sarah Boen Marketing Manager Tektronix

56+ Gb/s Serial Transmission using Duobinary Signaling

SERDES for 100Gbps. May 24, 2017 Bart Zeydel, Francesco Caggioni, Tom Palkert

An Initial Investigation of a Serial 100 Gbps PAM4 VSR Electrical Channel

High Speed Characterization Report

Features: Compliance: Applications. Warranty: B21-GT Cisco 10Gb Ethernet Base CX4 X2 Module HP Compatible

100G QSFP28 DAC Passive Copper Cable SLQS28-100PC-XX

ECEN720: High-Speed Links Circuits and Systems Spring 2017

PHY PMA electrical specs baseline proposal for 803.an

IEEE P802.3bs D Gb/s & 400 Gb/s Ethernet 4th Sponsor recirculation ballot comments

Parameter Minimum Maximum Units Supply voltage V Data input voltage V Control input voltage V

High Speed Characterization Report

High Speed Characterization Report

High Speed Characterization Report

Arista 40GBASE-XSR4-AR. Part Number: 40GBASE-XSR4-AR 40GBASE-XSR4-AR OVERVIEW APPLICATIONS PRODUCT FEATURES. FluxLight, Inc

ECEN720: High-Speed Links Circuits and Systems Spring 2017

EE290C Spring Lecture 5: Equalization Techniques. Elad Alon Dept. of EECS 9" FR4 26" FR4. 9" FR4, via stub.

University of New Hampshire InterOperability Laboratory Gigabit Ethernet Consortium

AN 835: PAM4 Signaling Fundamentals

Engineering the Power Delivery Network

IEEE P802.3cd 50 Gb/s, 100 Gb/s, 200 Gb/s Ethernet 3rd Task Force review comments

The Practical Limitations of S Parameter Measurements and the Impact on Time- Domain Simulations of High Speed Interconnects

Ultra320 SCSI with Receiver Equalization, 25 meters into a Backplane with 6 loads. Russ Brown Quantum Corporation

400G-BD4.2 Multimode Fiber 8x50Gbps Technical Specifications

OIF CEI 6G LR OVERVIEW

Ensuring Signal and Power Integrity for High-Speed Digital Systems

DP Array DPAM/DPAF Final Inch Designs in Serial ATA Generation 1 Applications 10mm Stack Height. REVISION DATE: January 11, 2005

Effect of Power Noise on Multi-Gigabit Serial Links

Cisco QSFP-40G-SR4. Part Number: QSFP-40G-SR4 PRODUCT FEATURES APPLICATIONS. FluxLight, Inc

Low frequency jitter tolerance Comments 109, 133, 140. Piers Dawe IPtronics. Charles Moore Avago Technologies

Data Sheet. Description. Features. Transmitter. Applications. Receiver. Package

ULTRASCALE DDR4 DE-EMPHASIS AND CTLE FEATURE OPTIMIZATION WITH STATISTICAL ENGINE FOR BER SPECIFICATION

IEEE P802.3bs D Gb/s & 400 Gb/s Ethernet 4th Sponsor recirculation ballot comments

T Q S Q 7 4 H 9 J C A

Q2 QMS-DP/QFS-DP Series 11 mm Stack Height Final Inch Designs in Serial ATA Generation 1 Applications. Revision Date: February 22, 2005

RiseUp RU8-DP-DV Series 19mm Stack Height Final Inch Designs in Serial ATA Generation 1 Applications. Revision Date: March 18, 2005

Transcription:

Study of Channel Operating Margin for Backplane and Direct Attach Cable Channels Upen Reddy Kareti - Cisco Adam Healey Broadcom Ltd. IEEE P802.3cd Task Force, July 25-28 2016, San Diego

Supporters Joel Goergen, Cisco Richard Mellitz, Samtec Ali Ghiasi, Ghiasi Quantum LLC James Fife, etopus Scott Sommers, Molex Tom Palkert, Molex, MACOM Yasuo Hidaka, Fujitsu 2

Presentation overview Continuation of the work from kareti_50ge_ngoath_01b_0316 Identify major barriers to improved Channel Operating Margin (COM) Begin with the parameter set from the previous presentation Consider possible enhancements Improve package and device termination Optimize equalization Reduce Gaussian noise contributors Observe impact of these enhancements on COM for backplane and direct attach copper cable channels Include channels in the vicinity of the 30 db insertion loss objective 3

Initial COM parameters Table 93A- 1 parameters I/O control Table 93A 3 parameters Parameter Se:ng Units Informa?on DIAGNOSTICS 1 logical Parameter Se:ng Units f_b 26.5625 GBd DISPLAY_WINDOW 1 logical package_tl_gamma0_a1_a2 [0 1.734e- 3 1.455e- 4] f_min 0.05 GHz Display frequency domain 1 logical package_tl_tau 6.141E- 03 ns/mm Delta_f 0.01 GHz CSV_REPORT 1 logical package_z_c 90 Ohm C_d [2.3e- 4 2.3e- 4] nf [TX RX] RESULT_DIR.\results\COM50_{date}\ z_p select [1] [test cases to run] SAVE_FIGURES 0 logical Table 92 12 parameters z_p (TX) [30] mm [test cases] Port Order [1 2 3 4] Parameter Se:ng z_p (NEXT) [12] mm [test cases] RUNTAG _CDAUI- 8 board_tl_gamma0_a1_a2 [0 4.114e- 4 2.547e- 4] z_p (FEXT) [30] mm [test cases] Receiver tes?ng board_tl_tau 6.191E- 03 ns/mm z_p (RX) [30] mm [test cases] RX_CALIBRATION 0 logical board_z_c 110 Ohm C_p [1.1e- 4 1.1e- 4] nf [TX RX] Sigma BBN step 5.00E- 03 V z_bp (TX) 151 mm R_0 50 Ohm IDEAL_TX_TERM 0 logical z_bp (NEXT) 72 mm R_d [55 55] Ohm [TX RX] T_r 8.00E- 03 ns z_bp (FEXT) 72 mm f_r 0.75 *e T_r_filter_type 0 logical z_bp (RX) 151 mm c(0) 0.6 min T_r_meas_point 0 logical c(- 1) [- 0.15:0.05:0] [min:step:max] c(- 2) [- 0.15:0.05:0] [min:step:max] Non standard control op?ons c(1) [- 0.35:0.05:0] [min:step:max] INC_PACKAGE 1 logical g_dc [- 20:1:0] db [min:step:max] IDEAL_RX_TERM 0 logical f_z 10.625 GHz INCLUDE_CTLE 1 logical f_p1 10.625 GHz INCLUDE_TX_RX_FILTER 1 logical f_p2 1.00E+99 GHz COM_CONTRIBUTION 0 logical A_v 0.45 V CDR_OVERSAMPLED 0 logical A_fe 0.45 V A_ne 0.65 V L 4 M 32 N_b 15 UI b_max(1) 0.5 b_max(2..n_b) 0.2 sigma_rj 0.01 UI A_DD 0.02 UI eta_0 2.60E- 08 V^2/GHz SNR_TX 31.1 db R_LM 0.95 DER_0 1.00E- 04 Opera?onal control COM Pass threshold 3 db Include PCB 0 Value 0, 1, 2 g_dc_hp [- 7:1:0] [min:step:max] f_hp_pz 0.6640625 GHz 4

Observations from kareti_50ge_ngoath_01b_0316 Residual ISI is consistently the largest impairment As loss increases, the Gaussian noise terms become significant ~30 db 5

Improve package and device termination Consider reducing device capacitance C_d to 180 ff Note the package transmission line impedance package_z_c is 90 Ohms in the initial parameters Note that the initial parameters do not include the transmitter rise time filter added by IEEE Std 802.3by-2016 and subsequently employed by CDAUI-8 chip-to-chip 6

Optimize equalization Considerations for the transmitter Change c( 2) sweep so that is that it has higher resolution (2.5%) and sign opposite to c( 1) Considerations for the receiver Extend range of g_dc (to 22 db) and g_dc_hp (to 8 db) Consider finer resolution for g_dc and g_dc_hp (0.5 db steps) Increase the range of the first DFE tap b_max(1) but leave b_max(2..n_b) at 0.2 (this is consistent with dominant 1 st tap assumption used for precoding analysis) Optimize the DFE length N_b to the smallest value that provides the majority of the benefit (12) 7

Reduce Gaussian noise contributors Consider increasing transmitter signal-to-noise ratio SNR_TX and/or reducing one-sided noise spectral density eta_0 Sweep SNR_TX across the values 31.1 db, 32.5 db, and 33.4 db Sweep eta_0 from 1.3 x 10 8 to 2.6 x 10 8 V 2 /GHz in 0.5 db steps Jitter parameters are unchanged 8

Results for backplane channels CISCO Channels TE Connecovity Channels Ch1 Ch2 Ch3 Ch4 Ch5 Ch6 Ch7 Ch8 Ch9 Ch10 Ch1 Ch2 Ch3 Ch4 Inseroon Loss @ NQ, db 10.7876 12.4579 17.3145 20.874 22.3474 25.3573 27.6685 30.1441 32.859 34.9828 32.0325 31.1419 31.9702 33.173 FOM_ILD 0.31042 0.30047 0.28196 0.31335 0.28224 0.3028 0.31005 0.30382 0.31247 0.34579 0.27181 0.14762 0.26931 0.27802 ICN, mv 1.2534 1.1147 0.81725 0.72664 0.69128 0.64907 0.60807 0.57276 0.55667 0.54711 0.77071 0.77071 0.77071 0.77071 Change Log COM @ DER_0 = 1e- 4 1 Inioal COM parameters 4.7856 4.5463 4.5937 4.259 3.7685 3.3116 2.6154 2.0145 0.63969-0.32395 1.0317 1.9057 0.88624 0.89587 2 + T_r filter : 13 ps Gaussian w/ beta = 2 4.4121 4.1437 4.0116 3.8358 3.1353 2.7217 2.1248 1.0906-0.21448-1.229 0.3365 1.0513 0.15777 0.1401 3 4 5 6 + C_d = 180 ff; c(- 2) = [0:0.025:0.1]; g_dc(min) = - 22; g_dc_hp(min) = - 8 + eta_0 = 1.3e- 08; N_b = 12; b_max(1) = 1; b_max(2..n_b) = 0.2 + g_dc(min) = - 20; g_dc_hp(min) = - 6; 0.5 db step size; b_max(2..n_b) = 1 + eta_0 = 1.64e- 08; SNR_TX = 32.5; b_max(1)=0.7; b_max(2..n_b)=0.2 5.2627 4.9626 5.0527 4.8218 4.1382 3.7551 2.926 2.0915 0.88624-0.41551 1.2999 2.0145 1.0808 1.0024 5.2627 4.9929 5.1211 5.0829 4.3937 4.2225 3.5828 3.0733 2.3381 1.6499 3.0856 3.596 2.7932 2.9626 5.2558 5.0205 5.1211 5.0829 4.4515 4.2225 3.6223 3.1105 2.3609 1.6709 3.1353 3.6223 2.8534 2.9748 5.6924 5.4024 5.519 5.4329 4.7314 4.4081 3.7551 3.1229 2.2589 1.4116 2.9139 3.5697 2.5336 2.7454 7 + eta_0 = 1.84e- 08; SNR_TX = 33.4; 5.9294 5.6212 5.725 5.5968 4.8673 4.4951 3.8088 3.1105 2.1916 1.2899 2.8413 3.5305 2.5104 2.6861 Acknowledgement: Thanks to TE Connectivity for providing available measured channels for this analysis 9

Results for direct attach cable channels 3 m Cables TE Connecovity Amphenol Generic Molex FCI Cable Gauge 26 AWG 28 AWG 30 AWG 26 AWG 26 AWG 26 AWG 26 AWG Inseroon Loss @ NQ, db 27.5009 30.0043 32.1525 28.8481 28.8481 27.2336 27.9278 FOM_ILD 0.19026 0.27513 0.23573 0.2976 0.2976 0.1363 0.18498 ICN, mv 0.62665 0.46826 0.42365 0.86665 1.5935 0.86358 0.49285 Change Log COM @ DER_0 = 1e- 4 1 Inioal COM parameters 4.1242 2.926 1.841 2.6743 2.1026 3.9309 4.0685 2 + T_r filter : 13 ps Gaussian w/ beta = 2 3.2735 2.0915 0.87663 1.9057 1.4116 3.223 3.2609 3 4 5 6 + C_d = 180 ff; c(- 2) = [0:0.025:0.1]; g_dc(min) = - 22; g_dc_hp(min) = - 8 + eta_0 = 1.3e- 08; N_b = 12; b_max(1) = 1; b_max(2..n_b) = 0.2 + g_dc(min) = - 20; g_dc_hp(min) = - 6; 0.5 db step size; b_max(2..n_b) = 1 + eta_0 = 1.64e- 08; SNR_TX = 32.5; b_max(1)=0.7; b_max(2..n_b)=0.2 4.1662 2.8413 1.841 2.7693 2.1359 4.0408 4.027 5.0673 4.1102 3.5305 3.8358 3.098 4.8978 4.8978 5.0673 4.1522 3.5436 3.8358 3.1105 5.0053 4.9283 5.1927 4.1943 3.4139 3.8764 3.1353 5.1927 5.0829 7 + eta_0 = 1.84e- 08; SNR_TX = 33.4; 5.2561 4.1802 3.3116 3.89 3.1478 5.2561 5.1612 TE Connetivity, Amphenol and FCI data from their respective contributions to IEEE P802.3by Task Force. Molex data from their contribution to IEEE 802.3 50G/NGOATH Ethernet Study Groups. Results include transmitter and receiver host board models. 10

Sensitivity analysis for Ch8 (~30 db) Sensitivity to SNR_TX Sensitivity to package_z_c SNR_TX package_z_c eta_0 eta_0 11

Sensitivity analysis for Ch8 (~30 db), continued Sensitivity to g_dc, g_dc_hp step Sensitivity to b_max g_dc, g_dc_hp step b_max at SNDR = 31.1 db eta_0 eta_0 12

Sensitivity analysis for Ch8 (~30 db), continued Sensitivity to T_r T_r eta_0 13

Sensitivity analysis for TE 3m 28 AWG (~30 db) Sensitivity to SNR_TX Sensitivity to package_z_c SNR_TX package_z_c eta_0 eta_0 14

Sensitivity analysis for TE 3m 28 AWG (~30 db), continued Sensitivity to T_r Sensitivity to b_max T_r b_max at SNDR = 31.1 db eta_0 eta_0 15

Summary of observations Enhancements to equalization were considered Biggest gains from new c( 2) range, increasing b_max(1) to 0.7, extending range for g_dc and g_dc_hp (only to a point), and increasing N_b to 12 (mostly to curb residual package reflection) Small (or no) benefit for further relaxation of DFE constraints, higher g_dc and g_dc_hp resolution, or higher N_b (unless N_b becomes large) Reductions in noise were considered and significant gains shown SNR_TX reduction implies more stringent transmitter requirements Reduction in eta_0 is no different than a reduction in the COM limit they both imply larger broadband noise amplitudes for the receiver interference tolerance test 16

Summary of observations, continued Other factors Changing package_z_c from 85 to 90 Ohms shows a visible benefit However, there is little value in pushing it further Similar observations made for C_p (not presented) A solution suitable for 30 db backplane seems more than adequate for 3 m direct attach copper cables Results indicate a solution does exist Trade-offs between transmitter, channel, and receiver requirements must be carefully considered as we work toward a baseline proposal 17

New basis for further work? Table 93A- 1 parameters I/O control Table 93A 3 parameters Parameter Se:ng Units Informa?on DIAGNOSTICS 1 logical Parameter Se:ng Units f_b 26.5625 GBd DISPLAY_WINDOW 1 logical package_tl_gamma0_a1_a2 [0 1.734e- 3 1.455e- 4] f_min 0.05 GHz Display frequency domain 1 logical package_tl_tau 6.141E- 03 ns/mm Delta_f 0.01 GHz CSV_REPORT 1 logical package_z_c 90 Ohm C_d [1.8e- 4 1.8e- 4] nf [TX RX] RESULT_DIR.\results\COM50_{date}\ z_p select [1] [test cases to run] SAVE_FIGURES 0 logical Table 92 12 parameters z_p (TX) [30] mm [test cases] Port Order [1 2 3 4] Parameter Se:ng z_p (NEXT) [12] mm [test cases] RUNTAG _CDAUI- 8 board_tl_gamma0_a1_a2 [0 4.114e- 4 2.547e- 4] z_p (FEXT) [30] mm [test cases] Receiver tes?ng board_tl_tau 6.191E- 03 ns/mm z_p (RX) [30] mm [test cases] RX_CALIBRATION 0 logical board_z_c 110 Ohm C_p [1.1e- 4 1.1e- 4] nf [TX RX] Sigma BBN step 5.00E- 03 V z_bp (TX) 151 mm R_0 50 Ohm IDEAL_TX_TERM 0 logical z_bp (NEXT) 72 mm R_d [55 55] Ohm [TX RX] T_r 1.30E- 02 ns z_bp (FEXT) 72 mm f_r 0.75 *e T_r_filter_type 1 logical z_bp (RX) 151 mm c(0) 0.6 min T_r_meas_point 0 logical c(- 1) [- 0.25:0.05:0] [min:step:max] c(- 2) [0:0.025:0.1] [min:step:max] Non standard control op?ons c(1) [- 0.25:0.05:0] [min:step:max] INC_PACKAGE 1 logical g_dc [- 20:1:0] db [min:step:max] IDEAL_RX_TERM 0 logical f_z 10.625 GHz INCLUDE_CTLE 1 logical f_p1 10.625 GHz INCLUDE_TX_RX_FILTER 1 logical f_p2 1.00E+99 GHz COM_CONTRIBUTION 0 logical A_v 0.45 V CDR_OVERSAMPLED 0 logical A_fe 0.45 V A_ne 0.63 V L 4 M 32 N_b 12 UI b_max(1) 0.7 b_max(2..n_b) 0.2 sigma_rj 0.01 UI A_DD 0.02 UI eta_0 TBD (2.60E- 08) V^2/GHz SNR_TX TBD (31.1) db R_LM 0.95 DER_0 1.00E- 04 Opera?onal control COM Pass threshold 3 db Include PCB 0 Value 0, 1, 2 g_dc_hp [- 6:1:0] [min:step:max] f_hp_pz 0.6640625 GHz 18

Thanks!! 19