Method for digital particle spectrometry Khryachkov Vitaly

Similar documents
K 223 Angular Correlation

Virtual Laboratory of Nuclear Fission Virtual practicum in the framework of the project Virtual Laboratory of Nuclear Fission

Gamma Ray Spectroscopy with NaI(Tl) and HPGe Detectors

Activities in Electronics Lab Associates are: Mrs. Arti Gupta, K.S.Golda, S.Muralithar & Dr.R.K.Bhowmik

Development of a Multi-Channel Integrated Circuit for Use in Nuclear Physics Experiments Where Particle Identification is Important

FAST DIGITIZING TECHNIQUES APPLIED TO SCINTILLATION DETECTORS

Radiation Detection Instrumentation

Digital Signal Processing for HPGe Detectors

Electronic Instrumentation for Radiation Detection Systems

The 2017 IEEE NSS-MIC. Industrial Presentation

Traditional analog QDC chain and Digital Pulse Processing [1]

NEEP 427 PROPORTIONAL COUNTERS. Knoll, Chapters 6 & 14 Sect. I & II

ORTEC Experiment 13. Gamma-Gamma Coincidence with Angular Correlation. Equipment Required

COMPTON SCATTERING. Purpose. Introduction. Fundamentals of Experiment

A CMOS INTEGRATED CIRCUIT FOR PULSE-SHAPE DISCRIMINATION*

DOE FUNDAMENTALS HANDBOOK INSTRUMENTATION AND CONTROL Volume 2 of 2

Chemistry 985. Some constants: q e 1.602x10 19 Coul, ɛ x10 12 F/m h 6.626x10 34 J-s, c m/s, 1 atm = 760 Torr = 101,325 Pa

FRS setup. FRS web page. Standard FRS detectors. Detectors needed for simulations

Measuring Atlas Radiation Backgrounds in the Muon System at Startup: A U.S. ATLAS Upgrade R&D Project

Instructions for gg Coincidence with 22 Na. Overview of the Experiment

A digital method for separation and reconstruction of pile-up events in germanium detectors. Abstract

Advanced Materials Research Vol

ORTEC. Research Applications. Pulse-Height, Charge, or Energy Spectroscopy. Detectors. Processing Electronics

arxiv:hep-ex/ v1 8 Jul 1999

SPECTROMETRIC DETECTION PROBE Model 310. Operator's manual

Gas scintillation Glass GEM detector for high-resolution X-ray imaging and CT

Mössbauer ~ Spectrometer. Following to our long-term experiences, we offer complete Mössbauer spectroscopy instrumental support

Radionuclide Imaging MII 3073 RADIONUCLIDE IMAGING SYSTEM

The Influence of Crystal Configuration and PMT on PET Time-of-Flight Resolution

LaBr 3 :Ce, the latest crystal for nuclear medicine

Physics Laboratory Scattering of Photons from Electrons: Compton Scattering

--- preliminary Experiment F80

Scintillators as an external trigger for cathode strip chambers

Silicon Photomultiplier Evaluation Kit. Quick Start Guide. Eval Kit SiPM. KETEK GmbH. Hofer Str Munich Germany.

arxiv:hep-ex/ v1 19 Apr 2002

MICOD CHARGE SENSITIVE AMPLIFIER CSA-250

Mass Spectrometry and the Modern Digitizer

Timing and cross-talk properties of BURLE multi-channel MCP PMTs

nanomca-sp datasheet I. FEATURES

Gamma Spectrometer Initial Project Proposal

Fast first practical help -- detailed instructions will follow- preliminary Experiment F80

A Sort-of Tissue Equivalent Proportional Counter (STEPC) for Space Radiation Dosimetry Applications

GAMMA-GAMMA CORRELATION Latest Revision: August 21, 2007

Goal of the project. TPC operation. Raw data. Calibration

Contents. Why waveform? Waveform digitizer : Domino Ring Sampler CEX Beam test autumn 04. Summary

Highly Segmented Detector Arrays for. Studying Resonant Decay of Unstable Nuclei. Outline

Positron Emission Tomography

Construction and Testing of a Large Acceptance. Angle, Double Sided Bragg Ionisation Chamber for. Fission Fragment Spectroscopy

Chemical Engineering 412

PoS(ICRC2017)241. Estimated Pulse Height Spectrum with Pulse Pile-Up Correction for Neutron Monitor of Mexico City

Cosmic Rays in MoNA. Eric Johnson 8/08/03

MASE: Multiplexed Analog Shaped Electronics

ORTEC ORTEC. Modular Pulse- Processing Electronics. What s in this Catalog? Who Needs this Catalog?

CHAPTER 7 MEDICINE IMAGING DEVICES

Silicon Photomultiplier

GAMMA-RAD5 User Manual

Overview 256 channel Silicon Photomultiplier large area using matrix readout system The SensL Matrix detector () is the largest area, highest channel

Digital trigger system for the RED-100 detector based on the unit in VME standard

MCP-PMT status. Samo Korpar. University of Maribor and Jožef Stefan Institute, Ljubljana Super KEKB - 3st Open Meeting, 7-9 July 2009

Citation X-Ray Spectrometry (2011), 40(4): 2. Right final form at

A user-friendly fully digital TDPAC-spectrometer

TB-5 User Manual. Products for Your Imagination

Status of the Continuous Ion Back Flow Module for TPC Detector

On the initiation of lightning in thunderclouds (Instrumentation, Supplementary information)

Photon Detector with PbWO 4 Crystals and APD Readout

XRF Instrumentation. Introduction to spectrometer

Ph 3324 The Scintillation Detector and Gamma Ray Spectroscopy

Today s Outline - January 25, C. Segre (IIT) PHYS Spring 2018 January 25, / 26

Neutron Measurements on JET using an NE213 Scintillator with Digital Pulse Shape Discrimination

Digital coincidence acquisition applied to portable β liquid scintillation counting device

Week 11: Chap. 16b Pulse Shaping

nanomca 80 MHz HIGH PERFORMANCE, LOW POWER DIGITAL MCA Model Numbers: NM0530 and NM0530Z

Study of Silicon Photomultipliers for Positron Emission Tomography (PET) Application

nanomca-ii-sp datasheet

nanodpp datasheet I. FEATURES

New Detectors for X-Ray Metal Thickness Measuring

A BaF2 calorimeter for Mu2e-II

e t Development of Low Cost γ - Ray Energy Spectrometer

CAEN Tools for Discovery

NM Module Section 2 6 th Edition Christian, Ch. 3

Investigation of a Transmission-Line Readout for Building PET Detector Modules

An ASIC dedicated to the RPCs front-end. of the dimuon arm trigger in the ALICE experiment.

ORTEC Experiment 3. Gamma-Ray Spectroscopy Using NaI(Tl) Equipment Required. Purpose. Gamma Emission

ORTEC. AN34 Experiment 14 Nuclear Lifetimes and the Coincidence Method. Equipment Needed from ORTEC. Equipment Required from Other Manufacturers

Simulation and modeling of BEGe detectors for GERDA Phase II

Normalized ADC output (arb. units) 1. γ + diode 2. p + CsI. 3. α + CsI 4. γ + CsI. Particle ID window

Simulation of Algorithms for Pulse Timing in FPGAs

Testing of the NSC Electronics Module with the GSI Clover Detector

INDEX. Firmware for DPP (Digital Pulse Processing) DPP-PSD Digital Pulse Processing for Pulse Shape Discrimination

Physics 342 Laboratory. Scattering of Photons from Free Electrons: Compton Scattering

Study of the ALICE Time of Flight Readout System - AFRO

arxiv: v1 [physics.ins-det] 3 Feb 2011

nanomca datasheet I. FEATURES

Partial Replication of Storms/Scanlan Glow Discharge Radiation

CAEN. Electronic Instrumentation. CAEN Silicon Photomultiplier Kit

Amptek Inc. Page 1 of 7

Trigger Rate Dependence and Gas Mixture of MRPC for the LEPS2 Experiment at SPring-8


Bunch-Shape Measurements at PSI s High Power Cyclotrons and Proton Beam Lines

Peculiarities of the Hamamatsu R photomultiplier tubes

Transcription:

Method for digital particle spectrometry Khryachkov Vitaly Institute for physics and power engineering (IPPE) Obninsk, Russia

The goals of Analog Signal Processing Signal amplification Signal filtering Analyzing of signals amplitude distribution Analyzing of signals timing distribution

Analog unit and its function Spectroscopy amplifier Fast amplifier Constant fraction discriminator Discriminator with fix threshold Amplitude to digital converter Time to digital converter Delay unit

Use of Digital Signal Processing in different fields Communication Radar and sonar Music Mobile phone Geology Photography Medicine

Advantages of Digital Signal Processing Stability Resettability Depth of evaluation Low mass of the equipment

Why Digital Spectrometry wasn t used in nuclear physics before? Signals in nuclear physics are fast, non periodical, contain specific noise. Big volume of information

Amplitude Nyquist frequency 15 1 a) To properly digitize signal with 5 frequency F, it must be sampled -5 at 2F samples/sec or higher. -1-15 15 b) 1 5-5 -1-15 5 1 15 2 25 3 15 1 5-5 -1-15 5 1 15 2 25 3 c) 5 1 15 2 25 3 Time, channel

Preamplifier Preamplifier Stop Digitizer Filter Input Spectroscopy amplifier Analog and digital spectrometric channel Detector ADC Computer Detector Computer Logical unit Delay Unit

Amplitude, channel How do the digital signals from the particle detector look like? 9 8 7 6 5 - CsI - Anode 1 - Anode 2 - Cathode 4 3 2 1 1 2 3 4 5 6 Time, mks

Amplitude, channel Signal Amplitude Spectroscopy Amplifier Amplitude, channel Signal Amplitude Analog spectroscopy amplifier 8 1 6 8 6 4 4 2 2 1 2 3 4 5 6 7 Time, mks 1 2 3 4 5 6 7 Time, mks

Amplitude, channel Value Amplitude, channel Digital spectroscopy amplifier 8 Convolution 1 6 1, 8 4 2 * =,5, -,5-1, 6 4 2 1 2 3 4 5 6 7 Time, mks 5 1 15 2 25 3 Time, mks 1 2 3 4 5 6 7 Time, mks

Amplitude, channel Transient process Another method for amplitude determination 9 8 Zero line Saturated signal 7 6 5 M K 4 3 2 1 N 1 2 3 4 5 Time, channel A K s( i) N im i 1 K M 1 s( i) N

Amplitude, channel Amplitude Digital Converter (ADC) 1 9 85 8 8 2,9 3, 3,1 3,2 3,3 6 Maximum 4 2 1 2 3 4 5 6 7 Time, mks

Amplitude, channel Discriminator with fix threshold 6 5 4 T 3 2 Threshold 1 12 14 16 18 2 22 24 Time, channel

Amplitude, channel Delay unit 1 8 6 4 2 Initial signal 1 2 3 4 5 6 7 8 8 6 4 2 t Delayed signal 2 3 4 5 6 7 8 Time, channel You can transfer signal to any time without any distortion of it shape. You can transfer signal not only to the right but to the left too!

Amplitude, channel Constant Fraction (CF) discriminator 16 14 a) 12 1 8 6 4 2-2 33 34 35 36 37 38 39 4 1 5-5 -1-15 b) -2 33 34 35 36 37 38 39 4 16 14 c) 12 1 8 6 4 T S 2-2 33 34 35 36 37 38 39 4 Time, ns Delayed initial signal + Inversed and attenuated initial signal = Sum of signals

I A, channel Determination of the signal appearance time with a constant fraction discriminator for digital signals. 15 12 9 - original shifted signal - reflected and scaled signal - summ of signals 6 3 Zero time estimation 42 44 46 48 5 52 54 56 58 time, ns

Amplitude -Amplitude Амплитуда New possibility for signal evaluation 3 -Amplitude 25-5 2 15 1 T S T L Amplitude inversion -1-15 -2 T S T L 5-25 -3 1 2 3 4 5 6 Time, channel 1 2 3 4 5 6 Time, channel Time inversion -5-1 -15 T L T S -2-25 -3 1 2 3 4 5 6 -Time, channel

Current, channel charge, channel Charge determination 1 8 14 12 6 4 1 8 6 2 4 2-2 2 3 4 5 6 Time, channel -2 2 3 4 5 6 Time, channel

CsI(Tl) scintillator Pu-Be neutron source collimator CsI(Tl) scintillator polyethylene radiator 226Ra source PM FEU-118

226 Ra decay scheme

CsI(Tl). Spectrometer PMT Anode Fast amplifier PMT Dinode Fast amplifier CF Delay unit Input Stop WFD CAMAC Bus Computer

I, a.u. CsI(Tl). Pulse shape for different particles 4 35 3 - - -p 25 2 15 1 5 2,5 3,75 5, 6,25 Time, mks

Ln(, a.u.) I, a.u. Decomposition of CsI(Tl) signal 25 2 8 Super-slow 15 7 1 6 Slow 5 1 5 4 8 3 Fast 6 2 4 2 1 2 4 6 8 1 12 P A, channel, 1,25 2,5 3,75 Time, mks S / *exp( ( t T ) / ) S / *exp( ( t T ) / ) L( t) Fast Fast Fast Slow Slow Slow

Ln(, a.u.) How to understand 3D spectra? 8 7 Super-slow 11 488, 6 Slow 235,8 113,9 5 4 55,5 26,6 3 2 Fast 12,85 6,29 3, 1 2 4 6 8 1 12 P A, channel

Luminescence decay time for the CsI(Tl) scintillator 7 N 6 1 =357(+-4) ns 5 4 3 2 =1287(+-25) ns 2 1 2 4 6 8 1 12 14 16 18, ns

Current, channel P (t=4 ns), a.u. S Fast, a.u. CsI(Tl). Two methods of particle identification Integration in the window Fast component area 12 1 1 p 8 8 6 c.-s. #1 c.-s. #2 6 p 4 4 2 2 24 22 2 18 16 14 12 1 8 6 4 2 2 4 6 8 1 12 P A, channel Fast component area Sf -2 7 72 74 76 78 8 82 84 86 88 9 Time, channel Total signal area N N 28 24 2 16 12 8 4 2 4 S Total, a.u. 6 8 1 c.-s. #1 p 5 1 15 2 25 3 1 1 1 1 c.-s. #2 p,1 1 2 3 4 5 6 P Fast, a.u.

CsI(Tl). Comparison of two methods R,6,5 -S F method -S (t=4 ns) method p R S S,4,3,2,1, 2 4 6 8 1 12 S A, channel

1 N 8 6 4 2 7 6 5 4 3 2 1 8 6 4 2 1 8 6 4 2 x1 x1 x1 The CsI(Tl) scintillator for particle identification 4 6 8 1 12 S A, channel All p

Block scheme of a spectrometer based on a stilbene crystal

Amplitude, channel Stilbene. Pulse shape for proton and electron with light yield of 1 MeVee 1 - neutron - gamma ray 1 1 34 36 38 4 42 44 46 48 5 52 54 56 58 Time, channel

counts Stilbene. Amplitude distributions. Digitizer vs conventional electronics 8 7 6 5 4 3 2 1 - WFD - ADC 1 2 3 4 5 6 7 A, channel

Current, channel Pulse area (2 ns), a.u. Stilbene. Pulse shape (PS): Fast versus total area 24 22 Fast component area Sf 1 252 Cf(sf) V=1.8 kv 2 18 Total signal area 8 241 Am 16 14 12 1 6 n 8 6 4 4 2-2 7 72 74 76 78 8 82 84 86 88 9 2 Time, channel 75 15 225 3 375 45 Energy, eekev

Correlation Correlation I A, channel I A, channel Stilbene. Pulse shape discrimination Separation and Correlation 6 4 4 3 2 2 n 1 n 9 6 6 - - n 5 4 3 - - n 3 2 1 2 4 6 8 1 Time, ns 2 4 6 8 1 Time, ns

Correlation Correlation I A, channel I A, channel Stilbene. Pulse shape discrimination Separation and Correlation 2 25 18 16 2 14 12 1 8 6 n 15 1 5 4 2 3 35 2 4 6 8 1 25 2 - - n 3 25 2 - - n 15 15 1 1 5 5 2 4 6 8 1 Time, ns 2 4 6 8 1 Time, ns

Correlation ampl., a.u. Stilbene. PS: Correlation versus total area 1 8 252 Cf(sf) V=1.8 kv 241 Am 6 4 2 n 75 15 225 3 375 45 Energy, eekev

M(A) Stilbene. Double Integral Method vs Correlation method 1 9 8 two integrals correlation 7 6 5 4 3 2 1 2 4 6 8 1 12 14 16 18 2 A, eekev

Stilbene. TOF: comparison of digitizer and conventional electronics 1 N -TDC -WFD 1 1 1 1 1 15 2 25 3 35 4 Time, ns

Stilbene. TOF with PSD N 1 1 - All - Gamma - Neutron 1 1 1 1 15 2 25 3 35 4 Time, ns

Proportional counter (PC). Block diagram of the experimental setup with a proportional counter FA fast amplifier, PA preamplifier, CFD constant fraction discriminator

PC. Signals from the anode of a proportional counter Q, rel. units I A, rel. units S, rel. units Q A, rel. units 6 4 2 1 5 n 1 4 T Ç 1 3 1 2 1 1 25 2 15 1 5 1 4 T,Ç 1 3 1 2 1 1 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 n T 1 2 3 4 5 Time, channels + + + + - - - - + + + - - - + + - - Proton Electron

T+2, channels T+2, channels PC. Energy vs drift time Thermal neutron + γ 6 Co (γ ray) 12 PuBe source in polyethylene 1 12 -rays 6 Co 1 8 8 6 6 4 4 2 2 2 4 6 8 1 12 Amplitude, channels 2 4 6 8 1 12 Amplitude, channels

I Max, channels PC. Amplitude of the anode signal vs maximum of the current pulse 7 6 5 4 3 2 1 2 4 6 8 1 12 Amplitude, channels

PC. The energy resolution improving N 1 1 1 1 5 1 15 2 25 3 35 Amplitude, channels The energy resolution improved from 5.2% to 4%, A response function became much better.

Ionisation chamber D x R θ + - ) cos( 1 D X e n Q Q Cth An R dx x x n X ) ( 1

Ionisation chamber with Frisch grid e n Q An ) cos( 1 D X e n Q Cat R dx x x n X ) ( 1 E, cos(θ) D x R + - θ d

Pulse shape for IC with Frisch grid n e T EK Q К =n e(1-(x/d)cosθ) P c2 P c3 Q Cat n e 1 X D cos( ) P c1 Charge T SC Time P a Q n e An -n e T SA1 T SA2 Т EA Q а =-n e

CFD Delay unit Input A Stop Input B Input C Wave form digitizer Computer Net CAMAC Fission fragments spectrometer. o CSPA FA Anode FA Grid Cathode CSPA H V o o Grid 238U FA Anode CSPA FA High voltage filter High voltage suplay o Ionization chamber: d=12 mm, height 9 mm. Working gas: Ar+1%CH4, Pressure.75 atm. Digitizer: LeCroy 2262, 4 МHz, Time scale 7 μs. 238 U sample sizes: Diameter - 6 mm. Thickness 25 μg/cm 2. Energy resolution 4 kev for 6 MeV α-particles. Angular resolution -.65 (in cos(θ) unit). Mass resolution ~1 a.m.u.

Fission fragment spectrometer properties Energy of both fragments Mass of both fragments (2E method) Emission angles of both fragments Bragg curve for both fragments Control of pile up On line measurement of electron drift velocity (working gas property on line control) Energy losses in the target correction Direct Frisch grid inefficiency measurement

232 Th(n,f), En=1,2 and 5 MeV 232 Th(n,f) 7 Y, % En=5. MeV 6 En=1.2 MeV 5 4 3 2 1 4 6 8 1 12 14 16 18 1,1,1 4 6 8 1 12 14 16 18 Mass, a.m.u.

(Q * -TKE), MeV 238 U(n,f), En=5 MeV 1 8 6 4 2 6 8 1 12 14 16 Fission fragment mass, a.m.u.

I A, channel Q A, channel 238 U(n,f), En=5 MeV. Cold fission. 16 14-1 MeV 12 12 1 1 8 8 6 6 4 4 2 2 6 8 1 12 14 16 18 4 2 1-2 MeV 3 16 14 12 2 1 8 6 1 4 2 6 8 1 12 14 16 18 28 5 2-3 MeV 24 22 4 2 18 3 16 14 14 18 26 4-5 MeV 6 8 1 12 14 16 18 5-6 MeV 6 8 1 12 14 16 18 6-7 MeV 9 8 7 6 5 4 3 2 1 3 25 Anode 1 Anode 2 M1=14.25 M2=98.75 E1=8.4 E2=114.2 cos(1)=.522 cos(2)=.515 TKE=194.6 MeV. 1.25 2.5 3.75 5. 6.25 35 2 12 1 8 2 1 6 4 2 15 8 7 6 6 8 1 12 14 16 18 3-4 MeV 35 3 6 8 1 12 14 16 18 7-8 MeV 1 5 5 4 25 2 3 2 1 15 1 5 6 8 1 12 14 16 18 6 8 1 12 14 16 18-5 2.9 3. 3.1 3.3 3.4 3.5 3.6 3.8 3.9 4. 4.1 Time, mks Mass, a.m.u..

amplitude, channel, 1-1 % TKE. MeV, barn Ionization chamber Measurement of probability of ternary fission of 232 Th and 238 U by Obninsk - 96 fast neutrons 7 o 4 1 Anode FA 1 5 Dinode FA 2 CFD CU DU HV o 6 o 2 PMT А1 PA1 Catode FA 3 FA 4 CFD Stop WFD S1 S2 S3 PA2 FA 5 S4 3 А2 PA3 FA 6 o 4,15 9 8 7 6 5 4 3 2 1 1. Insulator 2. Cathode 3. Grid 4. Anode 5. Shielding electrodes 6. Target - CsI - Anode 1 - Anode 2 - Cathode 1 2 3 4 5 6 Time, mks,1,5, 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2, 2,1 2,2 2,3 2,4 2,5 163,5 163, 162,5 162, 161,5 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2, 2,1 2,2 2,3 2,4 2,5 3, 2,5 2, 1,5 1,,5, 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2, 2,1 2,2 2,3 2,4 2,5 Neutron energy, MeV

Fast exp. area, a.u. Measurement of probability of spontaneous ternary fission of 252 Cf 12 252 Cf(sf) 1 8 6 T 4 p D 2 2 4 6 8 1 12 Energy, a.u.

Conclusions Now digital signal processing for particle registration can work. This method allows us to perform the same operation as the analog unit does. We can make more complicated evaluation of digital signals and extract additional information. We can reach better stability and resettability of obtaining results. Promising results for different types of detectors were obtained.