Role of distributed amplification in designing high-capacity soliton systems

Similar documents
Timing Jitter in Dispersion-Managed Soliton Systems With Distributed, Lumped, and Hybrid Amplification

Performance Evaluation of Hybrid (Raman+EDFA) Optical Amplifiers in Dense Wavelength Division Multiplexed Optical Transmission System

Efficient Approach for Modeling Collision-Induced Timing Jitter in WDM Return-to-Zero Dispersion-Managed Systems

Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion

Analytical method for designing gratingcompensated dispersion-managed soliton systems

Optical data transmission using periodic in-line all-optical format conversion

Gain characteristics of a 210 km hybrid Raman/erbium-doped fiber amplified loop

Balanced hybrid and Raman and EDFA Configuration for Reduction in Span Length

All-Optical Signal Processing and Optical Regeneration

Analysis of Self Phase Modulation Fiber nonlinearity in Optical Transmission System with Dispersion

Optical Transport Tutorial

Gain Flattened L-Band EDFA -Raman Hybrid Amplifier by Bidirectional Pumping technique

Simulative analysis of dispersion managed solitons for Long-haul optical communication system

WDM Transmitter Based on Spectral Slicing of Similariton Spectrum

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

Soliton Resonances in Dispersion Oscillating Optical Fibers

Performance Analysis of Designing a Hybrid Optical Amplifier (HOA) for 32 DWDM Channels in L-band by using EDFA and Raman Amplifier

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

Wideband Rare-earth-doped Fiber Amplification Technologies Gain Bandwidth Expansion in the C and L bands

Comparison of Theory and Experiment for Dispersion-Managed Solitons in a Recirculating Fiber Loop

Design and Comparison of Traditional and Optimized DM Soliton transmission systems at 100 Gbps. Charmy Jindal 1, Dr.Neena Gupta 2 I.

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

Power Transients in Hybrid Optical Amplifier (EDFA + DFRA) Cascades

Fiber-Optic Communication Systems

All Optical Broad-Band Multi-Raman Amplifier for Long-Haul UW-WDM Optical Communication Systems

A PIECE WISE LINEAR SOLUTION FOR NONLINEAR SRS EFFECT IN DWDM FIBER OPTIC COMMUNICATION SYSTEMS

Available online at ScienceDirect. Procedia Computer Science 93 (2016 )

Flat Frequency Comb Generation Based on Efficiently Multiple Four-Wave Mixing Without Polarization Control

S Optical Networks Course Lecture 4: Transmission System Engineering

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender

8 10 Gbps optical system with DCF and EDFA for different channel spacing

ANALYSIS OF THE CROSSTALK IN OPTICAL AMPLIFIERS

Analysis of Nonlinearities in Fiber while supporting 5G

The Parameters affecting on Raman Gain and Bandwidth for Distributed Multi-Raman Amplifier

Theoretical and Simulation Approaches for Studying Compensation Strategies of Nonlinear Effects Digital Lightwave Links Using DWDM Technology

Practical Aspects of Raman Amplifier

Lecture 3 Fiber Optical Communication Lecture 3, Slide 1

The Report of Gain Performance Characteristics of the Erbium Doped Fiber Amplifier (EDFA)

Timing Jitter In Long-haul WDM Return-To-Zero Systems

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University

CHAPTER 5 SPECTRAL EFFICIENCY IN DWDM

WDM-PON Delivering 5-Gbps Downstream/2.5-Gbps Upstream Data

Investigation of Performance Analysis of EDFA Amplifier. Using Different Pump Wavelengths and Powers

Progress In Electromagnetics Research C, Vol. 15, 37 48, 2010 TEMPERATURE INSENSITIVE BROAD AND FLAT GAIN C-BAND EDFA BASED ON MACRO-BENDING

The effect of optical phase conjugation on inter- and intra-channel nonlinearities in ultrahigh speed transmission systems

32-Channel DWDM System Design and Simulation by Using EDFA with DCF and Raman Amplifiers

ANALYSIS OF DISPERSION COMPENSATION IN A SINGLE MODE OPTICAL FIBER COMMUNICATION SYSTEM

Polarization Mode Dispersion compensation in WDM system using dispersion compensating fibre

TECHNOLOGIES for extended-reach unrepeated wavelength-division-multiplexing

ARTICLE IN PRESS. Optik 120 (2009)

EDFA SIMULINK MODEL FOR ANALYZING GAIN SPECTRUM AND ASE. Stephen Z. Pinter

Optimizing of Raman Gain and Bandwidth for Dual Pump Fiber Optical Parametric Amplifiers Based on Four-Wave Mixing

Power penalty caused by Stimulated Raman Scattering in WDM Systems

Comparative Analysis Of Different Dispersion Compensation Techniques On 40 Gbps Dwdm System

Overview Of EDFA for the Efficient Performance Analysis

Forward Pumping Based Fiber Optical Raman Amplifiers in Different Optical Fiber Transmission Medium Systems *Ahmed Nabih Zaki Rashed

Simultaneous pulse amplification and compression in all-fiber-integrated pre-chirped large-mode-area Er-doped fiber amplifier

Analysis of Gain and NF using Raman and hybrid RFA-EDFA

Packet clock recovery using a bismuth oxide fiber-based optical power limiter

Optical Fibre Amplifiers Continued

Kuldeep Kaur #1, Gurpreet Bharti *2

A Novel Design Technique for 32-Channel DWDM system with Hybrid Amplifier and DCF

Prabhjeet Singh a, Narwant Singh b, Amandeep Singh c

Wavelength division multiplexing of chaotic secure and fiber-optic communications

Comparison of fiber-based Sagnac interferometers for self-switching of optical pulses

Analyzing the Non-Linear Effects in DWDM Optical Network Using MDRZ Modulation Format

Mechanism of intrinsic wavelength tuning and sideband asymmetry in a passively mode-locked soliton fiber ring laser

Signal Conditioning Parameters for OOFDM System

AMPLIFIED spontaneous emission (ASE) noise and interchannel

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber

Chapter 8. Wavelength-Division Multiplexing (WDM) Part II: Amplifiers

Slow, Fast, and Backwards Light: Fundamental Aspects

RECENT impressive progress in the development of optical

Self-phase-modulation induced spectral broadening in silicon waveguides

Dispersion Pre-Compensation for a Multi-wavelength Erbium Doped Fiber Laser Using Cascaded Fiber Bragg Gratings

Lecture 8 Fiber Optical Communication Lecture 8, Slide 1

Asymmetric gain-saturated spectrum in fiber optical parametric amplifiers

Performance Analysis of 4-Channel WDM System with and without EDFA

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research)

RZ BASED DISPERSION COMPENSATION TECHNIQUE IN DWDM SYSTEM FOR BROADBAND SPECTRUM

Current Trends in Unrepeatered Systems

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 37

A Technique to improve the Spectral efficiency by Phase shift keying modulation technique at 40 Gb/s in DWDM optical systems.

Optimum signal wavelength for a distributed erbium-doped fiber amplifier

10 Gb/s Multiple Wavelength, Coherent Short Pulse Source Based on Spectral Carving of Supercontinuum Generated in Fibers

Optical Fiber Technology

Emerging Subsea Networks

Notes on Optical Amplifiers

Design of Ultra High Capacity DWDM System with Different Modulation Formats

A correction method for the analytical model in Raman amplifiers systems based on energy conservation assumption

Performance Analysis of Gb/s DWDM Metropolitan Area Network using SMF-28 and MetroCor Optical Fibres

Optical spectra beyond the amplifier bandwidth limitation in dispersion-managed mode-locked fiber lasers

Optical solitons. Mr. FOURRIER Jean-christophe Mr. DUREL Cyrille. Applied Physics Year

PERFORMANCE ENHANCEMENT OF 32 CHANNEL LONG HAUL DWDM SOLITON LINK USING ELECTRONIC DISPERSION COMPENSATION

Recent Advances of Distributed Optical Fiber Raman Amplifiers in Ultra Wide Wavelength Division Multiplexing Telecommunication Networks

Joint nonlinearity and chromatic dispersion pre-compensation for coherent optical orthogonal frequency-division multiplexing systems

CROSS-PHASE modulation (XPM) has an important impact

from ocean to cloud EFFICIENCY OF ROPA AMPLIFICATION FOR DIFFERENT MODULATION FORMATS IN UNREPEATERED SUBMARINE SYSTEMS

Optimized Flattened Gain Spectrum in C Band WDM using Automatic Gain Control in Bi-Directionally Pumped EDFA

Dynamic gain-tilt compensation using electronic variable optical attenuators and a thin film filter spectral tilt monitor

Transcription:

Role of distributed amplification in designing high-capacity soliton systems Zhi M. Liao and Govind P. Agrawal The Institute of Optics, University of Rochester, Rochester, New York 1467 gpa@optics.rochester.edu Abstract: We discuss the importance of distributed amplification for high-speed soliton communication systems through numerical simulations by considering the distributed gain provided by stimulated Raman scattering or erbium dopants. Hybrid amplification schemes are also considered. At a bit rate of 4 Gb/s,the use of distributed amplification is found to improve the transmission distance (deduced from the Q parameter) by a factor of up to three for Raman amplification and > 5 for erbium dopants,compared with the case of lumped amplifiers. The increase in transmission distance is by a factor of about two for 8-Gb/s soliton systems when dense dispersion management is used. c 1 Optical Society of America OCIS codes: (6.33) Fiber optics communications; (19.553) Pulse propagation and solitons References and links 1. G. P. Agrawal, Fiber-Optic Communication Systems, nd ed. (Wiley, New York, 1997).. I. Morita, K. Tanaka, N. Edagawa, S. Yamamoto, and M. Suzuki, 4 Gbit/s single-channel soliton transmission over 86 km using periodic dispersion compensation, Electron. Lett. 34, 1863 1865 (1998). 3. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, San Diego, 1). 4. L. F. Mollenauer and K. Smith, Demonstration of soliton transmission over more than 4 km in fiber with loss periodically compensated by Raman gain, Opt. Lett. 13, 675 677 (1988). 5. D. S. Govan, W. Forysiak, and N. J. Doran, Long-distance 4 Gbit/s soliton transmission over standard fiber by use of dispersion management, Opt. Lett. 3 153 155 (1998). 6. Z. M. Liao and G. P. Agrawal, High-bit-rate soliton transmission using distributed amplification and dispersion management, IEEE Photon. Technol. Lett. 11 818 8 (1999). 7. S. K. Turitsyn, M. P. Fedoruk, W. Forysiak, and N. J. Doran, Dispersion-management in fiber communication lines using Raman amplification, Opt. Commun. 17 3 7 (1999). 8. A. H. Liang, H. Toda, and A. Hasegawa, High-speed soliton transmission in dense periodic fibers, Opt. Lett. 4 799 81 (1999). 9. K. Rottwitt, J. H. Povlsen, and A. Bajarklev, Long-distance transmission through distributed erbium-doped fibers, J. Lightwave Technol. 11 15 115 (1993). 1. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, San Diego, 1). 11. T. I. Lakoba, J. Yang, D. J. Kaup, and B. A. Malomed, Conditions for stationary pulse propagation in the strong dispersion management regime, Opt. Commun. 149, 366 375 (1998). 1. M. Nissov, K. Rottwitt, H. D. Kidorf, and M. X. Ma, Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers, Electron. Lett. 35, 997 998 (1999). 13. I. Morita, K. Tanaka, and N. Edagawa, Benefit of Raman amplification in ultra-long-distance 4 Gbit/s-based WDM transmission using dispersion-flattened fibre span, Electron. Lett. 37, 57 59 (1). 1 Introduction The three major obstacles in the design of high-capacity lightwave systems are fiber losses,chromatic dispersion,and fiber nonlinearities [1]. Thus far,the use of erbiumdoped fiber amplifiers (EDFAs) in combination with dispersion management has produced commercial WDM systems with single-channel bit rates of up to 1 Gb/s while #34317 - $15. US Received June 6, 1; Revised June 5, 1 (C) 1 OSA 16 July 1 / Vol. 9, No. / OPTICS EXPRESS 66

maintaining a practical amplifier spacing (about 8 km). However,the increasing demand is pushing the telecommunication industry toward systems with a capacity > 1 Tb/s. Keeping the single-channel bit rate fixed at 1 Gb/s would require hundreds of WDM channels in such systems. Increasing the single-channel bit rate to 4 or 8 Gb/s would reduce the number of multiplexed channels,reduce the number of components needed,and simplify the network management. Optical solitons are a natural candidate for long-haul,high-capacity lightwave transmission links [] because short pulses required at high bit rates also induce large nonlinear effects that must be dealt with. Solitons can use the nonlinear self-phase modulation (SPM) effectively to balance the group-velocity dispersion(gvd) in a dynamic fashion [3]. Most system experiments employ the technique of lumped amplification and place EDFAs periodically along the transmission line for compensating accumulated fiber losses. However,lumped amplification introduces large variations in the soliton energy (or peak power),which limit the amplifier spacing L A to a fraction of the dispersion length L D [3]. At high bit rates (> Gb/s),the dispersion length can become quite small,making the use of lumped amplification impractical. Indeed,loss/gain perturbations along the fiber link are the most serious obstacle in designing soliton communication systems. It has been known for some time that a distributed amplification scheme in which fiber losses are compensated locally all along the fiber in a distributed fashion should perform better for soliton systems [4]. While several recent studies have considered novel dispersion maps and distributed amplification schemes [5] [8],a systematic study of the system performance that includes the effect of amplifier noise and incorporates both distributed amplification and dispersion management has not yet been performed. In this paper,we report the results of such a study. The performance of single-channel lightwave systems operating at 4 and 8 Gb/s is examined using several different amplification schemes. Two-step as well as dense dispersion-management configurations are used in conjunction with a variety of lumped and distributed amplification schemes. Specifically,we compare the performance of lightwave systems realized using lumped amplifiers,hybrid amplification (backward-pumped Raman configuration with an EDFA), bidirectionally pumped distributed Raman amplification (d-raman),and distributed EDFA (d-edfa). Theory In the d-edfa scheme,the transmission fiber itself is doped lightly with erbium ions and is pumped periodically using a bidirectional pumping scheme such that just enough gain exists for compensating fiber losses [9]. In the Raman case,we consider bidirectional as well as backward pumping schemes. In both cases,the local gain g(z) varies along the fiber length because of changes in the pump power. We find the gain profile g(z) by solving the appropriate rate equations in each case [1]. To study the system performance numerically,the spatially varying gain g(z) and fiber losses are incorporated into the following generalized nonlinear Schrödinger (NLS) equation [1]: i A z β A t + γ A A = i (g α)a + T RA A, (1) t where A(z,t) is the slowly varying amplitude of the pulse train, β is the GVD parameter, γ is the nonlinear parameter responsible for SPM,and α accounts for the fiber losses. In a dispersion-managed lightwave system,all four parameters (β,γ,g,and α) vary with z. The parameter T R accounts for the Raman-induced frequency shift that #34317 - $15. US Received June 6, 1; Revised June 5, 1 (C) 1 OSA 16 July 1 / Vol. 9, No. / OPTICS EXPRESS 67

Net Gain (db) Net Gain (db) Net Gain (db) 5 1 15 1 3 4 5 6 7 8 9 1 5 5.5 1 3 4 5 6 7 8 9 1.5 1 3 4 5 6 7 8 9 1 Fig. 1. Net gain G(z) versus distance for hybrid (top), distributed Raman (middle), and d-edfa schemes (bottom). becomes important at high bit rates considered here; its numerical value is taken to be 3fs[1]. For a long-haul system,the distributed gain g(z) is a periodic function with the period L A. In the lumped case,edfas are separated by L A. In the distributed case, pumping stations are spaced apart by L A. In both cases,the pump power is chosen such that LA G(L A )= [g(z) α(z)] dz =. () Note that G(z) over the distance L A because of local gain/loss variations. As a result,the soliton energy varies along the fiber. To avoid excessive generation of dispersive waves,one should optimize the the system design (i.e. dopant density,pump power,etc.) such that G(z) deviates from zero as little as possible. It turns out that G(z) can be made quite small for the d-edfa scheme by lowering the dopant concentration as much as practical. The d-raman scheme does not have this degree of freedom since the Raman gain depends only on the pump power. Figure 1 shows how G(z) varies along the fiber over L A = 1 km using α =. db/km (total loss db) for the d-edfa, d-raman,and hybrid (1-dB Raman gain) schemes. The pump power is 8 mw for the d-edfa scheme but exceeds 5 mw in the d-raman case. The gain excursion over the 1-km span is only.5 db for an optimized d-edfa,but it increases to 5 db for the d-raman scheme and to over 15 db for the hybrid amplification scheme. In the case of lumped amplifiers, G(z) varies by db since losses accumulate to db before an EFDA is encountered. 3 Numerical Results We solve the NLS equation (1) numerically for the three configurations shown in Fig. 1 and compare their performance at a bit rate of 4 and 8 Gb/s to the case of lumped amplifiers. The comparison is made by calculating the Q parameter [1],defined as Q =(P 1 P )/(σ 1 + σ ),where P 1 and P are the average powers and σ 1 and σ are the noise levels associated with the 1 and bits. We used a 64-bit pseudorandom #34317 - $15. US Received June 6, 1; Revised June 5, 1 (C) 1 OSA 16 July 1 / Vol. 9, No. / OPTICS EXPRESS 68

4 Gb/s weak DM system Q parameter 1 1 Raman d EDFA Hybrid EDFA 1 5 1 15 5 3 35 4 45 5 Fig.. System performance of the 4-Gb/s soliton system for the four amplification schemes. Horizontal line corresponds to a. bit-error rate of 1 9 pulse train for the results shown here. A noise term is added to the NLS equation to account for the distributed noise. In the case of d-edfa,the noise strength is calculated including variations of the population densities along the fiber. We used a noise figure of 4.5 db for lumped EDFAs and 3 db for distributed Raman amplification. At a bit rate of 4 Gb/s,it was necessary to use a pulse width (full width at half maximum) of τ p = 4. ps. The dispersion map consisted of two 5-km fibers with β 1 =.3 ps /km and β =.38 ps /km,resulting in an average dispersion of.4 ps /km and a map strength S = β 1 L 1 β L /τp =1.93. The launch power and initial chirp were calculated using the results of a variational analysis for dispersionmanaged solitons [11]. Changes in the Q factor with transmission distance are shown in Fig. for the four amplification schemes (accuracy is limited by the 64-bit sample size). Figure 3 shows the eye diagrams (filtered by a 3-GHz-bandwidth filter) at a distance of km for the four amplification schemes. The eye is open considerably more when a distributed amplification (Raman or d-edfa) scheme is employed. The maximum transmission depends on the acceptable bit-error rate (BER). The Q = 6 line in Fig. corresponds to BER of 1 9 and shows clearly the advantage of distributed amplification for high-speed lightwave systems. When lumped EDFAs are used,the transmission distance is limited to <5 km but it increases to <3 km for the d-edfa scheme. Use of Raman amplification also increases the distance but not as much as d-edfa because of relatively larger gain variations (see Fig. 1). Double-Rayleigh backscattering may reduce this distance even further. Although an exact analysis of this effect is beyond the scope of this paper,we estimate from Eq. (1) of Ref. [1] that the Rayleigh crosstalk is negligible for the results shown in Fig.. For 8-Gb/s lightwave systems,it was necessary to employ the technique of dense dispersion management [8] by choosing the amplifier spacing L A to be a multiple of the map period L m.wesetl A = 4 km and use 9 map periods over this distance. Each map period consists of.3-km and.1-km sections with the GVD of ±.5 ps/(nmkm),resulting in an average dispersion of.1 ps/(nm-km) and a map strength of 1.3 #34317 - $15. US Received June 6, 1; Revised June 5, 1 (C) 1 OSA 16 July 1 / Vol. 9, No. / OPTICS EXPRESS 69

8 EDFA 8 Hybrid 6 6 4 4 1 1 1.5 1.5 Raman.5 1.5 1.5 1 1 d EDFA 1 1 1 1 Fig. 3. Eye diagrams at a distance of km for the 4-Gb/s soliton system for the four amplification schemes. for the.9-ps pulses. Figure 4 shows the performance of such a 8-Gb/s system for the four amplification schemes. The results show again that the transmission distance can be increased using distributed amplification although changes are not as dramatic as in Fig.. Note also that the Raman and d-edfa schemes are comparable in Fig. 4. These difference are due to the use of dense dispersion management for the 8-Gb/s system, which reduces the extent of pulse breathing and pulse-to-pulse interactions. Fig. 4. System performance of a 8-Gb/s system for the four amplification schemes. #34317 - $15. US Received June 6, 1; Revised June 5, 1 (C) 1 OSA 16 July 1 / Vol. 9, No. / OPTICS EXPRESS 7

4 3 1 (a) 4 3 1 (b) 195 5 1 15 (Normalized) 195 5 1 15 (Normalized) 4 3 1 (c) 4 3 1 (d) 15 13 135 14 145 (Normalized) 3 4 (Normalized) Fig. 5. Pulse-to-pulse interaction for a 8-Gb/s soliton system for (a) lumped, (b) hybrid, (c) distributed-raman, and (d) d-edfa schemes. To understand the role of soliton interaction,we show in Fig. 5 through the contour plots the evolution of a pair of solitons as it propagates through the fiber link for the four amplification schemes (for the 8-Gb/s system). The lumped-amplifier case is the worst. The use of distributed amplification reduces pulse-to-pulse interactions considerably. The best situation occurs in the d-edfa case for which soliton energy remains nearly constant. It appears that dispersive waves resulting from energy variations affect the system performance considerably. 4 Conclusions In conclusion,we have shown that the use of distributed amplification may help to increase the total transmission distance of ultra-high-bit-rate soliton systems. The extent of improvement depends not only on the amplification scheme but also on details of the dispersion map. Simulations for a 4-Gb/s system,employing the traditional two-step dispersion map and a 1-km amplifier spacing,show an increase of more than a factor of 5 in the transmission distance when d-edfas are used in place of lumped EDFAs. The use of distributed Raman amplification (complete or partial) also helps but the increase in transmission distance is more modest (up to a factor of 3). Simulation results for a 8-Gb/s soliton system employing dense dispersion management (9 map periods over 4-km amplifier spacing) show an increase of up to a factor of in the maximum distance with the use of distributed amplification. In all cases,the improvement is related to reduction in dispersive waves and pulse-to-pulse interaction when soliton energy remains nearly constant over the map period. We have also found that distributed amplification can reduce the timing jitter by a factor of or so. These results point to the necessity of using distributed amplification for future high-capacity lightwave systems. The benefits of Raman amplification have already been observed in several recent transmission experiments [13]. #34317 - $15. US Received June 6, 1; Revised June 5, 1 (C) 1 OSA 16 July 1 / Vol. 9, No. / OPTICS EXPRESS 71