Lab 5 Second Order Transient Response of Circuits

Similar documents
Lab 6 Black Box. Lab Performed on November 19, 2008 by Nicole Kato, Ryan Carmichael, and Ti Wu Report by Ryan Carmichael and Nicole Kato

STUDY OF RC AND RL CIRCUITS Venue: Microelectronics Laboratory in E2 L2

LABORATORY 3: Transient circuits, RC, RL step responses, 2 nd Order Circuits

University of Portland EE 271 Electrical Circuits Laboratory. Experiment: Inductors

ECE212H1F University of Toronto 2017 EXPERIMENT #4 FIRST AND SECOND ORDER CIRCUITS ECE212H1F

Experiment 2: Transients and Oscillations in RLC Circuits

Experiment 1 LRC Transients

Lab E5: Filters and Complex Impedance

Electric Circuit Fall 2017 Lab10. LABORATORY 10 RLC Circuits. Guide. Figure 1: Voltage and current in an AC circuit.

EECS40 RLC Lab guide

INTRODUCTION TO AC FILTERS AND RESONANCE

Theory: The idea of this oscillator comes from the idea of positive feedback, which is described by Figure 6.1. Figure 6.1: Positive Feedback

Integrators, differentiators, and simple filters

ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I

Lab 1: Basic RL and RC DC Circuits

Class #7: Experiment L & C Circuits: Filters and Energy Revisited

EE 42/100: Lecture 8. 1 st -Order RC Transient Example, Introduction to 2 nd -Order Transients. EE 42/100 Summer 2012, UC Berkeley T.

Experiment VI: The LRC Circuit and Resonance

#8A RLC Circuits: Free Oscillations

10: AMPLIFIERS. Circuit Connections in the Laboratory. Op-Amp. I. Introduction

Comparison of Signal Attenuation of Multiple Frequencies Between Passive and Active High-Pass Filters

Lab 3 Transient Response of RC & RL Circuits

Exp. #2-6 : Measurement of the Characteristics of,, and Circuits by Using an Oscilloscope

RLC-circuits TEP. f res. = 1 2 π L C.

Welcome to your second Electronics Laboratory Session. In this session you will learn about how to use resistors, capacitors and inductors to make

EXPERIMENT 8: LRC CIRCUITS

ET1210: Module 5 Inductance and Resonance

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab

Mechatronics. Analog and Digital Electronics: Studio Exercises 1 & 2

Physics 310 Lab 2 Circuit Transients and Oscilloscopes

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab

The RLC Series Circuit with an AC Source

EE2210 Laboratory Project 1 Fall 2013 Function Generator and Oscilloscope

Numerical Oscillations in EMTP-Like Programs

Nonlinear Damping of the LC Circuit using Anti-parallel Diodes. Department of Physics and Astronomy, University of North Carolina at Greensboro,

Study of Inductive and Capacitive Reactance and RLC Resonance

Step Response of RC Circuits

FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY

Uncovering a Hidden RCL Series Circuit

Department of Electrical & Computer Engineering Technology. EET 3086C Circuit Analysis Laboratory Experiments. Masood Ejaz

Chapter 8. Natural and Step Responses of RLC Circuits

Lab #2: Electrical Measurements II AC Circuits and Capacitors, Inductors, Oscillators and Filters

CHAPTER 6: ALTERNATING CURRENT

Filters And Waveform Shaping

UNIVERSITY OF TECHNOLOGY, JAMAICA School of Engineering -

Experiment Number 2. Revised: Summer 2013 PLECS RC, RL, and RLC Simulations

Physics 481 Experiment 1

RC and RL Circuits Prelab

BME 3512 Bioelectronics Laboratory Two - Passive Filters

Experiment 8: An AC Circuit

Experiment Number 2. Revised: Fall 2018 PLECS RC, RL, and RLC Simulations

Name Date: Course number: MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START EXPERIMENT 10. Electronic Circuits

ELECTRICAL CIRCUITS LABORATORY MANUAL (II SEMESTER)

Worksheet for Exploration 31.1: Amplitude, Frequency and Phase Shift

Electric Circuit Fall 2016 Pingqiang Zhou LABORATORY 7. RC Oscillator. Guide. The Waveform Generator Lab Guide

ME 365 EXPERIMENT 7 SIGNAL CONDITIONING AND LOADING

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2005 Experiment 10: LR and Undriven LRC Circuits

PHYSICS 221 LAB #6: CAPACITORS AND AC CIRCUITS

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2)

I. Introduction to Simple Circuits of Resistors

Lab #2: Electrical Measurements II AC Circuits and Capacitors, Inductors, Oscillators and Filters

RLC-circuits with Cobra4 Xpert-Link TEP. 1 2 π L C. f res=

UNIVERSITY OF TECHNOLOGY, JAMAICA SCHOOL OF ENGENEERING. Electrical Engineering Science. Laboratory Manual

EK307 Passive Filters and Steady State Frequency Response

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17

Resonance in Circuits

ENGR4300 Fall 2005 Test 4A. Name. Section. Question 1 (25 points) Question 2 (25 points) Question 3 (25 points) Question 4 (25 points)

ENGR4300 Fall 2005 Test 4A. Name solutions. Section. Question 1 (25 points) Question 2 (25 points) Question 3 (25 points) Question 4 (25 points)

PHY203: General Physics III Lab page 1 of 5 PCC-Cascade. Lab: AC Circuits

AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE

EE233 Autumn 2016 Electrical Engineering University of Washington. EE233 HW7 Solution. Nov. 16 th. Due Date: Nov. 23 rd

The Tuned Circuit. Aim of the experiment. Circuit. Equipment and components. Display of a decaying oscillation. Dependence of L, C and R.

Non-ideal Behavior of Electronic Components at High Frequencies and Associated Measurement Problems

The Series RLC Circuit and Resonance

Lab 10 - INTRODUCTION TO AC FILTERS AND RESONANCE

RC and RL Circuits. Figure 1: Capacitor charging circuit.

EC-3: Capacitors and RC-Decay

DIGITAL COMMUNICATIONS (INTRODUCTION TO MULTISIM SOFTWARE)

EE Laboratory 4 - First Order Circuits *** Due in recitation on the week of June 2-6, 2008 ***

Lab E5: Filters and Complex Impedance

Laboratory Exercise 6 THE OSCILLOSCOPE

11. AC-resistances of capacitor and inductors: Reactances.

Experiment No. 2 Pre-Lab Signal Mixing and Amplitude Modulation

Goals. Introduction. To understand the use of root mean square (rms) voltages and currents.

RLC Frequency Response

Laboratory Project 4: Frequency Response and Filters

RC Circuit Activity. Retrieve a power cord and a voltage sensor from the wire rack hanging on the wall in the lab room.

ENGR4300 Test 3A Fall 2002

EE 3305 Lab I Revised July 18, 2003

EE 221 L CIRCUIT II. by Ming Zhu

Lab 9 - AC Filters and Resonance

ENGR-4300 Electronic Instrumentation Quiz 2 Fall 2011 Name Section

PHYS 235: Homework Problems

LEP RLC Circuit

Sirindhorn International Institute of Technology Thammasat University

RLC-circuits with Cobra4 Xpert-Link

AC Circuits INTRODUCTION DISCUSSION OF PRINCIPLES. Resistance in an AC Circuit

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

LABORATORY #3 QUARTZ CRYSTAL OSCILLATOR DESIGN

Lecture 17 Date: Parallel Resonance Active and Passive Filters

Transcription:

Lab 5 Second Order Transient Response of Circuits Lab Performed on November 5, 2008 by Nicole Kato, Ryan Carmichael, and Ti Wu Report by Ryan Carmichael and Nicole Kato E11 Laboratory Report Submitted November 24, 2008 Department of Engineering, Swarthmore College 1

Abstract: In this lab, a voltage source, capacitor, inductor, and resistor were connected in series to form an RLC second-order circuit. By measuring the capacitor voltage (V o ), values were obtained for the frequency of oscillation (ω d ), the time constant of the decay envelope (α), the damping ratio (ζ), and the resonant frequency (ω o ) for various resistances. An op amp circuit was also created to achieve an output similar to the 1000Ω RLC circuit, without using inductors, which are the least ideal element in the RCL circuit. With the exceptions of α and ζ for the 100Ω RLC circuit, the experimental results closely followed the theory, with the op amp circuit having less error than its equivalent 1000Ω RLC circuit. Introduction: Capacitors and inductors are two of the three passive elements used in circuit design. These two passive elements are not able to dissipate or generate energy, but can return stored energy into a circuit. In the previous lab, it was seen that if one of these passive elements were in a circuit it would form a first order circuit because a first order differential equation would be required to solve for a voltage or current. If we have a capacitor, inductor, and resistor placed in series or parallel with either a voltage or current source we will form a RLC or second-order circuit. It is called a second-order circuit because of the second-order differential required to solve for the voltage or current. One of the most common uses for a second order circuit is tuning a radio frequency, such as an AM/FM radio. Ideal capacitors do not have inductance or resistance, and cannot dissipate energy, and ideal inductors do not have capacitance or resistance, and cannot dissipate energy, even though in reality this is rarely the case. Theory: In circuit 1, shown right, we can solve for the output voltage (V o ) using a loop to get formula 1 Vo(t) = Vi(t) RI(t) -L(di(t)/dt) [formula 1] Figure 1: Circuit 1 2

We can also solve for the current through the circuit using formula 2 below, which was derived in lab 4. I(t) = C (dvo(t)/dt) [formula 2] If we plug formula 2 into formula 1 we get: LC (d 2 tvo(t)/dt 2 ) + RC (dtvo(t)/dt) + Vo(t) = Vi(t) [formula 3] With formula 3, we can now solve for the homogeneous and particular solutions. To solve for the homogeneous solution, we first set Vi(t) equal to zero and Vo equal to Voh, getting formula 4. Then we substitute formula 5 into formula 4 to get formula 6, which simplifies to formula 7 as shown below. LC (d 2 tvoh(t)/dt 2 ) + RC (dtvoh(t)/dt) + Voh(t) = 0 [formula 4] Voh(t) = Ae st [formula 5] LCS 2 Ae st + RCSAe st + Ae st = 0 [formula 6] S 2 + (R/L)S + (1/LC) = 0 [formula 7] We can rewrite formula 7 substituting in the damping ratio, ζ, which equals (R/2L) * (LC) (1/2) and the resonant frequency, ω o, which equals (1/LC) (1/2) to get formula 8 below. S^2 + 2ζ,ωo s + ωo 2 = 0 [formula 8] We can solve this equation using the quadratic formula of to get formula 9. S = -ζ,ωo ± ωo(ζ, 2-1) (1/2) [formula 9] We can see from formula 7 that the sign of the root, or more specifically ζ, determines the oscillation form of the circuit s output voltage. If ζ is larger than 1, then there will be two real values of S. This is called the overdamped solution. If ζ is less than 1, then the two values of S will both have imaginary and real components. This is called the underdamped solution. If ζ is equal to 1, then S will only have one unique value. This is called the critically damped solution. However, because there is not a distinct difference in the voltage vs. time graph when S is approximately equal to 1, we shall overlook this case. Table 1 below summarizes the output voltage response if the input voltage is equal to one for both the under and overdamped cases. 3

Table 1: Summary of Solutions for Overdamped and Underdamped RLC circuits From Table 1, we note that, to find the complete output voltage response, we must add the homogeneous and particular solutions and apply initial conditions (usually Vo and dvo/dt at time equals 0+) of the circuit to find the unknown constants. We also note that the underdamped and overdamped case have different forms to their solution, i.e., ζ determines the form of the solution. To further examine ζ, we graph the complete responses above with respect to time in Figure 2 keeping ω o constant. This shows how ζ effects oscillation. Figure 2: Demonstration of ζ Effect on Oscillation 4

From Figure 2, we see that as ζ increases the damping effect also increases. The damping effect occurs when the amplitude decreases over time. If there is a large damping effect then the amplitude decreases faster over time, and if there is no damping effect then the amplitude remains Figure 3: Demonstration of ω o Effect on Oscillation constant over time. Now we graph the complete responses again in Figure 3 with respect to the time, keeping ζ constant, to see how ω o effects the oscillation. We note that, in Figure 3, the damping effect remains constant, but the speed increases as ω o increases. For the op-amp circuit in Figure 4 we can find Vi(t) in relation to Vo(t) using Kierchoff s current law or KCL about node o and node a, resulting in formulas 10 and 11. Figure 4: Circuit 2 I = -C2 * (dvo/dt) - (Vo-Va)/R2 = 0 [formula 10] (at node o) I = C1 ((dvo/dt) - (dva/dt)) - (Va-Vi)/R1 + (Vo - Va)/R2 = 0 [formula 11] (at node a) Here we have two equations and two unknowns. Solving for V i (t), we get formula 12. [formula 12] The following page contains a more extensive derivation for this op-amp circuit. 5

Space for added formulas 6

Procedure: 1. We connected a Wavetek signal generator to the oscilloscope and had the signal generator create a square voltage oscillation that went from 0 to 1 Volts. 2. We created Circuit 1 as seen in the introduction with R equaling 100 Ohms, C equaling 0.01µF and L equaling 112 mh. We had Vi come from the signal generator and Vout going to the oscilloscope. We also set the frequency to be 100 Hz. 3. We set the triggering to the rising edge and centered it at the origin of our axis on the oscilloscope. a. We measure and recorded the input and output of our circuit. We also downloaded the output voltage and a screenshot of our voltage from the oscilloscope. 4. By finding the period and decay of Vout s oscillation, we recorded estimated α and ω d. 5. We predicted what would happened if R increased. 6. We observed what happened when we increased R and then decreased it back to its original value. 7. We also observed what happened when we increased the charged of C and then discharged it back to its original. 8. We set R to 300 Ohms, 1000 Ohms, 3000 Ohms, and 10,000 Ohms. a. We measure and recorded the input and output of our circuit. We also downloaded the output voltage and a screenshot of our voltage from the oscilloscope. b. By finding the period and decay of Vout s oscillation when R equaled 1000 Ohms, we recorded estimated α and ω d and then returned R to its original value. 9. We found what happened when the input frequency was set to 4.6 khz and found the frequency where the maximum output amplitude would occur. 10. We created circuit 1 in Multisim where R equals 100 Ohms and 1000 Ohms, C equals 0.01µF and L equals 112 mh. 11. We created the circuit below using a breadbox where R1 equals 1.2 kohm, R2 equals 9.1 kohms, C1 equals 0.1 µf, and C2 equals 0.001 µf. We also set the op-amp to a voltage high enough where so it would not become saturated. 12. We repeated steps 3 and 4. 13. We also recreated this circuit in Multisim. 7

Results: 100Ω RLC Circuit 300Ω RLC Circuit 1000Ω RLC Circuit Op Amp Circuit a theoretical 446.4 ---- 4464 4714 a experimental 868 1760 4810 4590 a % error -94.44 ---- -7.75 2.63 w d theoretical 29876.7 ---- 29544.7 29891 w d experimental 29500 29300 29100 29700 w d % error 1.26 ---- 1.51 0.64 ζ theoretical 0.01494 ---- 0.1494 0.1558 ζ experimental 0.0294 0.0599 0.1628 0.1545 ζ %error -96.79 ---- -8.97 0.83 ω o theoretical 29880 ---- 29880 30261 ω o experimental 29500 29300 29400 29800 ω o %error 1.27 ---- 1.61 1.52 τ theoretical 0.00224 ---- 0.000224 0.000212 τ experimental 0.0011521 0.0005682 0.0002079 0.0002179 τ %error 48.57 ---- 7.19-2.76 T theoretical 0.00021 ---- 0.000213 0.00021 T experimental 0.0002130 0.0002144 0.0002159 0.0002116 T %error -1.42 ---- -1.37-0.74 Table 2: Experimental and Theoretical Results *Percent Error: (( theo-exp /theo)*100%))* 8

Screenshot of Circuit 1 Response: [R=100Ω, C = 0.01µF, L = 112 mh, and input frequency = 100 Hz] Input - dark line Output -light line Figure 5: Screenshot of Circuit 1 with the 100Ω Resistor Multisim Simulation of Circuit 1 (100Ω Resistor) Timebase Scale (horizontal) = 500 µs/div: Channel A Scale (vertical) = 2 V/Div Figure 6: Multisim Simulation of Circuit 1 with the 100Ω Resistor 9

Curve Fit for Circuit 1 (100Ω) Voltage General model: f(x) = a+b*exp(c*x)*cos(d*x) Coefficients (with 95% confidence bounds): a = 0.9166 (0.9161, 0.917) b = -0.9182 (-0.9201, -0.9164) c = -867.9 (-870.9, -865) d = 2.946e+004 (2.946e+004, 2.947e+004) Goodness of fit: SSE: 1.32; R-square: 0.9978 Adjusted R-square: 0.9978; RMSE: 0.01629 Time(s) Figure 7: Curve Fit for the Output of Circuit 1 with the 100Ω Resistor Screenshot of Circuit 1 Response: [R=300Ω, C = 0.01µF, L = 112 mh, and input frequency = 100 Hz] Input - dark line Output -light line Figure 8: Screenshot of Circuit 1 with the 300Ω Resistor 10

Curve Fit for Circuit 1 (300Ω) Voltage General model: f(x) = a*exp(b*x)*cos(c*x)+d Coefficients (with 95% confidence bounds): a = -0.9123 (-0.9143, -0.9103) b = -1758 (-1765, -1752) c = 2.932e+004 (2.932e+004, 2.933e+004) d = 0.9058 (0.9053, 0.9063) Goodness of fit: SSE: 1.61; R-square: 0.9972 Adjusted R-square: 0.9972; RMSE: 0.01799 Time(s) Figure 9: Curve Fit for the Output of Circuit 1 with the 300Ω Resistor Screenshot of Circuit 1 Response: [R=1000Ω, C = 0.01µF, L = 112 mh, and input frequency = 100 Hz] Input - dark line Output -light line Figure 10: Screenshot of Circuit 1 with the 1000Ω Resistor 11

Multisim Simulation of Circuit 1 (1000Ω Resistor) Timebase Scale (horizontal) = 100 µs/div: Channel A Scale (vertical) = 2 V/Div Figure 11: Multisim Simulation of Circuit 1 with the 1000Ω Resistor Curve Fit for Circuit 1 (1000Ω) Voltage General model: f(x) = a+b*exp(c*x)*cos(d*x+e) Coefficients (with 95% confidence bounds): a = 0.9104 (0.9099, 0.9108) b = -0.9184 (-0.9201, -0.9166) c = -4806 (-4820, -4792) d = 2.911e+004 (2.909e+004, 2.913e+004) e = -0.1563 (-0.1588, -0.1539) Goodness of fit: SSE: 1.07; R-square: 0.9977 Adjusted R-square: 0.9977; RMSE: 0.01467 RMSE: 0.01799 Time(s) Figure 12: Curve Fit for the Output of Circuit 1 with the 1000Ω Resistor 12

Screenshot of Circuit 1 Response: [R=3000Ω, C = 0.01µF, L = 112 mh, and input frequency = 100 Hz] Input - dark line Output -light line Figure 13: Screenshot of Circuit 1 with the 3000Ω Resistor Screenshot of Circuit 1 Response: [R=10000Ω, C = 0.01µF, L = 112 mh, and input frequency = 100 Hz] Input - dark line Output -light line Figure 14: Screenshot of Circuit 1 with the 10000Ω Resistor 13

Screenshot of Circuit 1 Response: [R=100Ω, C = 0.01µF, L = 112 mh, and input frequency = 4.6 khz] Input - dark line Output -light line Figure 15: Screenshot of Circuit 1 with the 100Ω Resistor, 4.6 khz Input Frequency Screenshot of Op Amp Circuit Response: [R1 = 1.2 kω, R2 = 9.1 kω, C1 = 0.1 µf, C2 = 0.001 µf] Input - dark line Output -light line Figure 16: Screenshot of Op Amp Circuit 14

Multisim Simulation of Op Amp Circuit Timebase Scale (horizontal) = 100 µs/div: Channel A Scale (vertical) = 2 V/Div Figure 17: Multisim Simulation of Op Amp Circuit Curve Fit for Op Amp Circuit Voltage General model: f(x) = a*exp(b*x)*cos(c*x+offset)+d Coefficients (with 95% confidence bounds): a = -0.9259 (-0.9282, -0.9236) b = -4585 (-4602, -4569) c = 2.967e+004 (2.965e+004, 2.969e+004) d = 0.9098 (0.9094, 0.9102) offset = -0.1239 (-0.1269, -0.121) Goodness of fit: SSE: 0.9925; R-square: 0.996 Adjusted R-square: 0.996; RMSE: 0.01412 Adjusted R-square: 0.9977; RMSE: 0.01467 RMSE: 0.01799 Time(s) Figure 18: Curve Fit for the Output of the Op Amp Circuit 15

Discussion: Taking a qualitative look at the RLC circuit, we note that if the resistance of the circuit is increased, the natural response decays at a faster rate. This is logical because of the following relation: α = R / 2L. As R increases, α also increases, causing faster decay. Also, as capacitance is increased, the frequency of oscillation decreases. This is again logical, as the frequency of 2 oscillation equals the following: ' R $ 1 ( = % "!. Here, when C is increased, ω clearly & 2L # LC decreases. Quantitatively, the 100Ω RLC circuit had the largest errors of all the evaluated circuits with a 94.44% error for α, a 96.79% error for ζ, and a 48.57% error for τ. Note that τ = α -1 and, thus, will have the same sources of error. Recalling again that α = R / 2L, one major source of error becomes clear: the resistance used to calculate the theoretical value of α was 100Ω. In reality, the function generator should be modeled as an ideal source in series with a 50Ω resistor. Taking this resistance into account, cuts the error by about half to 22.85%. The remainder of this error is likely due to non-ideal circuit elements, especially the inductor, which we know is the least ideal element. Non-ideal elements like the inductor and resistance built into the oscilloscope add resistance to the circuit, which increases α, as seen in the experimental result. Because the resistor is only 100Ω, relatively small resistances like resistance in the wire, for instance, will have a noticeable effect on the overall circuit resistance, where as these small resistances will not play nearly so large a role in the 1000Ω resistor RLC circuit. R Similar to α, # = 2 2 L " o $! 2 is largely affected by the error in resistance to the circuit. It should be noted that the major error comes from the numerator. The denominator will provide a small error, which causes ζ to have slightly more error than α as seen. This error is minimal because ζ is governed by ω d, which is not affected by resistance and has a very small 2 error. ω d governs the denominator because " = " +! o 2. While α has some error associated with it, ω or ω d is much larger than α, which causes ω 0 to have a small error. This was confirmed in our experimental results. ω 0 is also much larger than α, and L can be assumed to have little error, so the denominator retains minimal error. 16

For the 1000Ω RLC circuit, our error was very small as expected for the ω values (~1.5%) and a reasonable error for α (7.75%) and ζ (8.97%). This error is due to the same sources as the error for the 100Ω circuit; only here the overall effect of the added resistances is less significant because of the large resistor value. As expected, ζ has slightly more error than α just as in the 100Ω circuit. By comparing the errors from the 1000Ω circuit with that of the op amp circuit, it becomes apparent that the inductor has a significant resistance as the error for the op amp circuit is much smaller than that of the 1000Ω RLC circuit, which has similar theoretical values. Recall here that the op amp circuit was created to achieve a similar output to the 1000Ω RLC circuit, while eliminating the inductor, the least ideal element. Conclusions and Future Work: In conclusion, with the exception of an error due to resistance in the function generator, inductor, capacitor, oscilloscope, and wires, which is magnified for RLC circuits with small resistors, the RLC circuit created closely follows theoretical results. Some of this error, specifically resistance due to the inductor, was successfully eliminated by creating an op amp circuit with similar theoretical results as the 1000Ω RLC circuit. As a result, this op amp circuit followed most closely to the theory. Acknoledgements: Cheever, Erik. "E11 Lab 5 (2nd order time domain response) - Procedure." Swarthmore College. 23 Nov. 2008 <http://www.swarthmore.edu/natsci/echeeve1/class/e11/e11l5/lab5(procedure).html>. Cheever, Erik. "E11 Lab 5 (2nd order time domain response) -Background." Swarthmore College. 23 Nov. 2008 <http://www.swarthmore.edu/natsci/echeeve1/class/e11/e11l5/lab5(background).html>. Cheever, Erik. "E11 Lab 5 (2nd order time domain response) - Report." Swarthmore College. 23 Nov. 2008 <http://www.swarthmore.edu/natsci/echeeve1/class/e11/e11l5/lab5(report).html>. 17