NZQA registered unit standard version 1 Page 1 of 6

Similar documents
NZQA unit standard version 2 Page 1 of 6. Demonstrate and apply fundamental knowledge of digital and analogue electronics for IMC technicians

NZQA registered unit standard version 7 Page 1 of 5. Demonstrate knowledge of basic electronic components

NZQA registered unit standard version 3 Page 1 of 5. Demonstrate and apply fundamental knowledge of electrical circuit engineering principles

NZQA registered unit standard version 2 Page 1 of 8. Demonstrate knowledge of theory for registration of electrical installers

NZQA registered unit standard version 1 Page 1 of 8

NZQA registered unit standard version 4 Page 1 of 5. Plan, construct, modify, and report on an electronic prototype

NZQA registered unit standard version 2 Page 1 of 5. Demonstrate and apply knowledge of single-phase and three-phase transformers

Demonstrate knowledge of electronic components and their application in the automotive industry

ELECTRONICS ADVANCED SUPPLEMENTARY LEVEL

NZQA registered unit standard version 5 Page 1 of 5. Apply electromagnetic theory to a range of problems

PESIT BANGALORE SOUTH CAMPUS BASIC ELECTRONICS

BASIC ELECTRONICS CERTIFICATION COMPETENCIES

multivibrator; Introduction to silicon-controlled rectifiers (SCRs).

Analogue Electronic Systems

NZQA registered unit standard version 6 Page 1 of 5. Grind finger jointer cutterhead in solid wood manufacturing

NZQA registered unit standard version 4 Page 1 of 6. Demonstrate knowledge of alternating current (a.c.) theory

Preface... iii. Chapter 1: Diodes and Circuits... 1

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. ELECTRONIC PRINCIPLES AND APPLICATIONS

PESIT - BANGALORE SOUTH CAMPUS PART A

Chapter 8. Chapter 9. Chapter 6. Chapter 10. Chapter 11. Chapter 7

Contents. Acknowledgments. About the Author

Veer Narmad South Gujarat University, Surat

V-LAB COMPUTER INTERFACED TRAINING SET

Unit/Standard Number. LEA Task # Alignment

Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Department of Mechanical Engineering

Electronics I Circuit Drawings. Robert R. Krchnavek Rowan University Spring, 2018

S-[F] NPW-02 June All Syllabus B.Sc. [Electronics] Ist Year Semester-I & II.doc - 1 -

Analytical Chemistry II

R & D Electronics DIGITAL IC TRAINER. Model : DE-150. Feature: Object: Specification:

NZQA unit standard version 2 Page 1 of 5. Demonstrate and apply intermediate knowledge of instrumentation and control system engineering

SUMMER 13 EXAMINATION Subject Code: Model Answer Page No: / N

Revised April Unit/Standard Number. Proficiency Level Achieved: (X) Indicates Competency Achieved to Industry Proficiency Level

Semiconductor analyser AS4002P User Manual

Electronic Component Applications

NZQA registered unit standard 4546 version 8 Page 1 of 6

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

Other Electronic Devices

Electrical, Electronic and Communications Engineering Technology/Technician CIP Task Grid

NZQA registered unit standard version 3 Page 1 of 6

Solid State. Prerequisit. cies. Minimum. interviews. In research, the. A. Safety 3. PPE

TRANSISTOR TRANSISTOR

Revised April Unit/Standard Number. High School Graduation Years 2016, 2017 and 2018

Roll No. B.Tech. SEM I (CS-11, 12; ME-11, 12, 13, & 14) MID SEMESTER EXAMINATION, ELECTRONICS ENGINEERING (EEC-101)

Scheme & Syllabus. New. B.Sc. Electronics. (Pass /Maintenance) Course. I st to IV th Semester. w.e.f. July Devi Ahilya Vishwavidyalaya,

UNIVERSITY QUESTIONS. Unit-1 Introduction to Power Electronics

Syllabus for: Electronics for F Y B Sc (Electronics) Semester- 1 (With effect from June 2014) PAPER I: Basic Electrical Circuits

Gujarat University B. Sc. Electronics Semester I: ELE (Effective from: )

Microelectronic Circuits

Field Effect Transistors

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC6202 ELECTRONIC DEVICES AND CIRCUITS

SUMMER 13 EXAMINATION Subject Code: Model Answer Page No: / N

SEMESTER SYSTEM, A. PROPOSED SCHEME FOR B.Sc. ELECTRONICS (PASS) COURSE. B.Sc. (ELECTRONICS MAINTENANCE) COURSE

6. HARDWARE PROTOTYPE AND EXPERIMENTAL RESULTS

LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers

Devices and Op-Amps p. 1 Introduction to Diodes p. 3 Introduction to Diodes p. 4 Inside the Diode p. 6 Three Diode Models p. 10 Computer Circuit

Basic Electronics SYLLABUS BASIC ELECTRONICS. Subject Code : 15ELN15/25 IA Marks : 20. Hrs/Week : 04 Exam Hrs. : 03. Total Hrs. : 50 Exam Marks : 80

Lecture 9 Transistors

Lab 1 - Revisited. Oscilloscope demo IAP Lecture 2 1

Index. Small-Signal Models, 14 saturation current, 3, 5 Transistor Cutoff Frequency, 18 transconductance, 16, 22 transit time, 10

6.111 Lecture # 15. Operational Amplifiers. Uses of Op Amps

Perkins Statewide Articulation Agreement. Documentation item: Secondary Competency Task List Coversheet

UNIT I PN JUNCTION DEVICES

GATE SOLVED PAPER - IN

Power Semiconductor Devices

LM3046 Transistor Array

4. Forward bias of a silicon P-N junction will produce a barrier voltage of approximately how many volts? A. 0.2 B. 0.3 C. 0.7 D. 0.

Power Electronics Power semiconductor devices. Dr. Firas Obeidat

ELT 215 Operational Amplifiers (LECTURE) Chapter 5

CRN: MET-487 Instrumentation and Automatic Control June 28, 2010 August 5, 2010 Professor Paul Lin

-SQA-SCOTTISH QUALIFICATIONS AUTHORITY HIGHER NATIONAL UNIT SPECIFICATION GENERAL INFORMATION INTRODUCTION TO ANALOGUE AND DIGITAL CIRCUITS

Analog to digital and digital to analog converters

Analog Electronics. Electronic Devices, 9th edition Thomas L. Floyd Pearson Education. Upper Saddle River, NJ, All rights reserved.


Government of Karnataka Department of Technical Education Board of Technical Examinations, Bengaluru

Final Exam: Electronics 323 December 14, 2010

NZQA Expiring unit standard version 2 Page 1 of 5. Describe roof shingle preparation and installation procedures

visit website regularly for updates and announcements

Carleton University. Faculty of Engineering and Design, Department of Electronics. ELEC 2507 Electronic - I Summer Term 2017

Lecture Note on Switches Marc T. Thompson, 2003 Revised Use with gratefulness for ECE 3503 B term 2018 WPI Tan Zhang

BASIC ELECTRONICS/ ELECTRONICS

INTEGRATED CIRCUITS. AN109 Microprocessor-compatible DACs Dec

REV. B. NOTES 1 At Pin 1. 2 Calculated as average over the operating temperature range. 3 H = Hermetic Metal Can; N = Plastic DIP.

55:041 Electronic Circuits

LESSON PLAN. SUBJECT: LINEAR IC S AND APPLICATION NO OF HOURS: 52 FACULTY NAME: Mr. Lokesh.L, Hema. B DEPT: ECE. Portions to be covered

MTLE-6120: Advanced Electronic Properties of Materials. Semiconductor transistors for logic and memory. Reading: Kasap

POS Perkins Statewide Articulation Agreement Documentation Coversheet

THE METAL-SEMICONDUCTOR CONTACT

Interfacing the isppac-powr1208 with Modular DC-to-DC Converters

Semiconductors, ICs and Digital Fundamentals

Analog I/O. ECE 153B Sensor & Peripheral Interface Design Winter 2016

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS

55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point.

Careers in Electronics Using a Calculator Safety Precautions Dc Circuits p. 1 Fundamentals of Electricity p. 3 Matter, Elements, and Compounds p.

NZQA registered unit standard version 5 Page 1 of 5. Demonstrate knowledge of electrical cables and accessories

CLD Application Notes Connection Options

CALEDONIAN COLLEGE OF ENGINEERING, MODULE HANDBOOK. Department of Electrical & Computer Engineering SULTANATE OF OMAN M1H Electronic Devices

Dhanalakshmi College of Engineering Manimangalam, Tambaram, Chennai

SAMPLE FINAL EXAMINATION FALL TERM

WINTER 14 EXAMINATION

Dhanalakshmi College of Engineering Manimangalam, Tambaram, Chennai

Transcription:

Page 1 of 6 Title Demonstrate and apply fundamental knowledge of digital and analogue electronics for IMC technicians Level 3 Credits 12 Purpose This unit standard covers an introduction to digital and analogue electronic devices and circuits for IMC technicians. People credited with this unit standard are able to demonstrate: knowledge of number systems used in digital electronics; knowledge of simple logic circuits; and apply knowledge of A/D and D/A conversion; fundamental knowledge of semiconductor switching devices and their applications; fundamental knowledge of operational amplifiers and their applications; and fundamental knowledge of d.c. power supplies and electronic regulators. Classification Industrial Measurement and Control > Industrial Measurement and Control - Theory Available grade Achieved Explanatory notes 1 References Health and Safety in Employment Act 1992 and associated regulations; and all subsequent amendments and replacements. 2 Definitions A/D analogue to digital. ASCII American Standard Code for Information Interchange BCD binary coded decimal D/A digital to analogue. BJT bipolar junction transistor. d.c. direct current. db decibels. Fundamental knowledge for the purposes of this unit standard means having some relevant theoretical knowledge of the subject matter with the ability to use that knowledge to interpret available information. g FS forward transconductance. h FE (SAT) d.c. forward current gain at saturation. Industry practice those practices that competent practitioners within the industry recognise as current industry best practice. I Cmax maximum collector current.

Page 2 of 6 I Dmax maximum drain current. LED light emitting diode. MOSFET metal oxide semiconductor field effect transistor. P Cmax maximum collector power dissipation. R DS (ON) static drain to source on-state resistance. SCR silicon controlled rectifier V CEO collector-emitter voltage with base open. V CEsat collector emitter voltage at saturation. V DSS drain-source saturation voltage. 4 a Electrical, radiation, and workshop or laboratory safety practices are to be observed at all times. b All measurements are to be expressed in Système Internationale (SI) units and multipliers. c Use of non-programmable calculators is permitted during assessments. d All activities and evidence presented for all outcomes and evidence requirements in this unit standard must be in accordance with legislation, policies, procedures, ethical codes, Standards, applicable site and industry practice; and, where appropriate, manufacturers instructions, specifications, and data sheets. Outcomes and evidence requirements Outcome 1 Demonstrate knowledge of number systems used in digital electronics. 1.1 Convert signed and unsigned numbers to and from the decimal number system to signed binary, two s-complement binary, octal, hexadecimal, and binary coded decimal. maximum of 8 bit binary, 4 digit octal, and 4 digit hexadecimal numbers. 1.2 Add and subtract binary numbers. evidence of three different additions and three different subtractions is required. 1.3 Add and subtract hexadecimal numbers. evidence of three different additions and three different subtractions is required. 1.4 Describe special binary code formats. may include but is not limited to 8421, ASCII, BCD to seven segment, Gray code; evidence of two codes is required.

Page 3 of 6 Outcome 2 Demonstrate knowledge of simple logic circuits. 2.1 Obtain Boolean expressions from given logic diagrams and truth tables. maximum of ten terms and limited to three variables. 2.2 Develop logic diagrams from Boolean expressions. maximum of three variables. 2.3 Describe common logic parameters. switching voltage thresholds, power supply requirements, sink and source capabilities. 2.4 Explain handling precautions when using logic components. 2.5 Describe uses of simple logic devices. latch, counter, shift register. Outcome 3 Demonstrate and apply knowledge of A/D and D/A conversion. 3.1 Explain terms associated with A/D and D/A converters. may include but are not limited to D/A conversion, A/D conversion, flash, successive approximation, dual slope, resolution, quantisation error, conversion time, clock pulse, linearity, delay, sampling, zero cross error, oversampling, filter coefficient, multiplier; evidence of twelve is required. 3.2 Identify A/D and D/A converter types from schematic diagrams. evidence of four A/D and two D/A converters required. 3.3 Describe one A/D application and one D/A converter application. 3.4 Explain A/D conversion with the aid of diagrams. may include but is not limited to characteristics, sample and hold, conversion time, clock, sampling, cut-off frequency, multiplier, accumulator; evidence of six required.

Page 4 of 6 3.5 Explain D/A conversion with the aid of diagrams. may include but is not limited to converter characteristics, conversion time, clock, sampling, cut-off frequency, multiplier; evidence of five required. 3.6 Apply one A/D converter and one D/A converter to a given specification in accordance with industry practice. Outcome 4 Demonstrate fundamental knowledge of semiconductor switching devices and their applications. 4.1 Describe three types of two terminal semiconductor devices in terms of their basic operation, characteristics, and application. may include but is not limited to rectifier diodes, Schottky diodes, Zener diodes, LEDs. 4.2 Describe typical configurations, operating parameters, and applications of optocouplers and opto-isolators. may include but is not limited to photo diode, phototransistor, photo-darlington, triac optocouplers; evidence of two devices and two applications for each device is required. 4.3 Compare bipolar and enhancement-mode field effect transistors in terms of construction, operating characteristics, and applications in switching circuits. devices pnp and npn transistors, n-channel and p-channel MOSFETs. Operating characteristics: BJT h FE (SAT), V CEO, I Cmax, P Cmax, V CEsat ; MOSFET g FS, I Dmax, V DSS, R DS (ON). Applications evidence of two designs each for both BJTs and MOSFETs is required. 4.4 State advantages and disadvantages of solid state switches. 4.5 Describe power semiconductor devices in terms of their basic operation, characteristics, and application. devices SCRs, triacs, MOSFET, IGBT; evidence of three is required; applications controlled rectifiers, inverters. Outcome 5

Page 5 of 6 Demonstrate fundamental knowledge of operational amplifiers and their applications. 5.1 Describe the function of operational amplifiers in terms of electronic building blocks with examples of typical applications. typical applications audio pre-amplifier, transducer signal amplifier, buffer. 5.2 Compare parameters for an idealised and a typical practical operational amplifier. parameters differential gain, input impedance, output impedance, maximum output amplitude in relation to supply voltage, slew rate, bandwidth (3dB and unity gain), offset, common mode rejection. 5.3 Sketch typical operational amplifier configurations and explain their practical operation and features. configurations may include but are not limited to voltage follower (unity gain buffer), inverting, non-inverting, inverting summing, differential, differentiator, integrator, comparator, voltage to current converter, current to voltage converter; evidence of four configurations is required. 5.4 Explain the operation and application of an instrumentation amplifier as a transducer signal amplifier. Outcome 6 Demonstrate fundamental knowledge of d.c. power supplies and electronic regulators. 6.1 Explain the operation of half-wave and full-wave rectification for d.c. power supplies. single and bridge, simple capacitor filter. 6.2 Explain three-terminal series regulators, and analyse and experimentally evaluate typical circuits based on manufacturers' data sheets. 6.3 Explain the concepts, operation, and application of switch-mode power supplies. Planned review date 31 December 2017

Page 6 of 6 Status information and last date for assessment for superseded versions Process Version Date Last Date for Assessment Registration 1 28 November 2013 N/A Consent and Moderation Requirements (CMR) reference 0003 This CMR can be accessed at http://www.nzqa.govt.nz/framework/search/index.do. Please note Providers must be granted consent to assess against standards (accredited) by NZQA, before they can report credits from assessment against unit standards or deliver courses of study leading to that assessment. Industry Training Organisations must be granted consent to assess against standards by NZQA before they can register credits from assessment against unit standards. Providers and Industry Training Organisations, which have been granted consent and which are assessing against unit standards must engage with the moderation system that applies to those standards. Requirements for consent to assess and an outline of the moderation system that applies to this standard are outlined in the Consent and Moderation Requirements (CMR). The CMR also includes useful information about special requirements for organisations wishing to develop education and training programmes, such as minimum qualifications for tutors and assessors, and special resource requirements. Comments on this unit standard Please contact reviewcomments@skills.org.nz if you wish to suggest changes to the content of this unit standard.