DATASHEET. Features. Applications. Related Literature ISL6208C. High Voltage Synchronous Rectified Buck MOSFET Drivers. FN8395 Rev 1.

Similar documents
DATASHEET. Features. Applications. Related Literature ISL High Voltage Synchronous Rectified Buck MOSFET Driver. FN8689 Rev 2.

DATASHEET. Features. Applications. Related Literature ISL6208, ISL6208B. High Voltage Synchronous Rectified Buck MOSFET Drivers

DATASHEET ISL6209. Features. Applications. Ordering Information. Related Literature. High Voltage Synchronous Rectified Buck MOSFET Driver

DATASHEET ISL6208. Features. Applications. Related Literature. Ordering Information. Pinout. High Voltage Synchronous Rectified Buck MOSFET Driver

NOT RECOMMENDED FOR NEW DESIGNS

DATASHEET ISL6207. Features. Applications. Related Literature. Pinouts. High Voltage Synchronous Rectified Buck MOSFET Driver

HIP6601B, HIP6603B, HIP6604B

DATASHEET HIP6602B. Features. Ordering Information. Applications. Dual Channel Synchronous Rectified Buck MOSFET Driver. FN9076 Rev 6.

DATASHEET ISL6611A. Features. Applications. Related Literature. Phase Doubler with Integrated Drivers and Phase Shedding Function

DATASHEET ISL9021A. Features. Pinouts. Applications. 250mA Single LDO with Low I Q, Low Noise and High PSRR LDO. FN6867 Rev 2.

DATASHEET ISL6700. Features. Ordering Information. Applications. Pinouts. 80V/1.25A Peak, Medium Frequency, Low Cost, Half-Bridge Driver

DATASHEET ISL6609, ISL6609A. Features. Applications. Related Literature. Synchronous Rectified MOSFET Driver. FN9221 Rev 2.

NOT RECOMMENDED FOR NEW DESIGNS

DATASHEET. Features. Applications. Related Literature ISL6625A. Synchronous Rectified Buck MOSFET Drivers. FN7978 Rev 0.

DATASHEET ISL6612, ISL6613. Features. Applications. Related Literature. Advanced Synchronous Rectified Buck MOSFET Drivers with Protection Features

DATASHEET ISL6614B. Features. Applications. Related Literature. Dual Advanced Synchronous Rectified Buck MOSFET Drivers with Pre-POR OVP

DATASHEET. Features. Related Literature. Applications ISL9021A. 250mA Single LDO with Low I Q, Low Noise and High PSRR LDO

DATASHEET. Features. Applications. Related Literature ISL V, Low Quiescent Current, 50mA Linear Regulator. FN7970 Rev 2.

Features V OUT = 12V IN TEMPERATURE ( C) FIGURE 3. QUIESCENT CURRENT vs LOAD CURRENT (ADJ VERSION AT UNITY GAIN) V IN = 14V

RT9610A/B. High Voltage Synchronous Rectified Buck MOSFET Driver for Notebook Computer. General Description. Features.

ISL6610, ISL6610A. Features. Dual Synchronous Rectified MOSFET Drivers. Related Literature. Ordering Information. Applications

RT9610C High Voltage Synchronous Rectified Buck MOSFET Driver for Notebook Computer General Description Features Drives Two N-MOSFETs

DATASHEET HIP1020. Features. Applications. Ordering Information. Pinout. Single, Double or Triple-Output Hot Plug Controller

DATASHEET HI-200, HI-201. Features. Applications. Ordering Information. Functional Diagram. Dual/Quad SPST, CMOS Analog Switches

DATASHEET EL7104. Features. Ordering Information. Applications. Pinout. High Speed, Single Channel, Power MOSFET Driver. FN7113 Rev 2.

SALLEN-KEY LOW PASS FILTER

DATASHEET ISL9005A. Features. Pinout. Applications. Ordering Information. LDO with Low ISUPPLY, High PSRR. FN6452 Rev 2.

High Voltage Synchronous Rectified Dual-Channel Buck MOSFET Driver for Notebook Computer. Features BOOT1 PHASE1 Q LG1 UGATE2 C15 BOOT2 PHASE2 Q LG2

DATASHEET. Features. Applications. Related Literature ISL6615A. High-Frequency 6A Sink Synchronous MOSFET Drivers with Protection Features

DATASHEET. Features. Applications ISL mA Dual LDO with Low Noise, High PSRR, and Low I Q. FN6832 Rev 1.00 Page 1 of 11.

Features TEMP. RANGE ( C)

PART NUMBER PACKAGE REEL PKG. DWG. # 4 EN SS

DATASHEET ISL Features. Applications. Simplified Block Diagram. Pinout. Ordering Information. Pin Descriptions

DATASHEET. Features. Applications. Related Literature ISL High Performance 500mA LDO. FN8770 Rev 1.00 Page 1 of 13.

RT9610B High Voltage Synchronous Rectified Buck MOSFET Driver for Notebook Computer General Description Features Drives Two N-MOSFETs

DATASHEET ISL6840, ISL6841, ISL6842, ISL6843, ISL6844, ISL6845. Features. Applications. Pinouts

DATASHEET CA3054. Features. Applications. Ordering Information. Pinout. Dual Independent Differential Amp for Low Power Applications from DC to 120MHz

EL2142. Features. Differential Line Receiver. Applications. Ordering Information. Pinout. Data Sheet February 11, 2005 FN7049.1

DATASHEET ISL Features. Applications. Related Literature. Single Port, PLC Differential Line Driver

Nano Power, Push/Pull Output Comparator

DATASHEET HC5503T. Features. Applications. Ordering Information. Block Diagram. Balanced PBX/Key System SLIC, Subscriber Line Interface Circuit

DATASHEET. Features. Related Literature. Applications ISL9113A. Low Input Voltage and High Efficiency, Synchronous Boost Converter with 1.

DATASHEET EL8108. Features. Applications. Pinouts. Video Distribution Amplifier. FN7417 Rev 2.00 Page 1 of 14. January 29, FN7417 Rev 2.

HIP V, 300mA Three Phase High Side Driver. Features. Applications. Ordering Information. Pinout. July 2004

DATASHEET. Features. Applications. Related Literature ISL1550. Single Port, VDSL2 Differential Line Driver. FN6795 Rev 0.

DATASHEET EL5462. Features. Pinout. Applications. Ordering Information. 500MHz Low Power Current Feedback Amplifier. FN7492 Rev 0.

DATASHEET ISL54409, ISL Features. Applications*(see page 11) Related Literature* (see page 11)

DATASHEET ISL9105. Features. Applications. Ordering Information. Pinout. 600mA Low Quiescent Current 1.6MHz High Efficiency Synchronous Buck Regulator

600kHz/1.2MHz PWM Step-Up Regulator

ISL Features. Multi-Channel Buffers Plus V COM Driver. Ordering Information. Applications. Pinout FN Data Sheet December 7, 2005

RT9624B. Single Phase Synchronous Rectified Buck MOSFET Driver. Features. General Description. Applications. Simplified Application Circuit

DATASHEET EL1848. Features. Ordering Information. Applications. Typical Connection. White LED Step-Up Regulator. FN7427 Rev 0.

RT9603. Synchronous-Rectified Buck MOSFET Drivers. General Description. Features. Applications. Ordering Information. Pin Configurations

DATASHEET ISL9103, ISL9103A. Features. Applications. Pinout. 500mA 2.4MHz Low IQ High Efficiency Synchronous Buck Converter

Features MHz 5V IN AT +25 C OUTPUT LOAD (A) FIGURE 1. CHARACTERISTIC CURVE

Features. TEMP. RANGE ( C) PACKAGE PKG. DWG. # HIP4020IB (No longer available, recommended replacement: HIP4020IBZ)

HI-200, HI-201. Dual/Quad SPST, CMOS Analog Switches. Features. Applications. Ordering Information. Functional Diagram FN3121.8

RT9607/A Dual Channel Synchronous-Rectified Buck MOSFET Driver General Description Features Drives Four N-MOSFETs Adaptive Shoot-Through Protection

DATASHEET EL7202, EL7212, EL7222. Features. Pinouts. Applications. High Speed, Dual Channel Power MOSFET Drivers. FN7282 Rev 2.

DATASHEET ISL Features. Applications. Ordering Information. Typical Application Circuit. MMIC Silicon Bipolar Broadband Amplifier.

HI-201HS. Features. High Speed, Quad SPST, CMOS Analog Switch. Applications. Ordering Information. Pinout (Switches Shown For Logic 1 Input) FN3123.

DATASHEET. Features. Applications. Related Literature ISL6627. VR11.1, VR12 Compatible Synchronous Rectified Buck MOSFET Driver

Features OUTA OUTB OUTA OUTA OUTB OUTB

DATASHEET HA Features. Applications. Ordering Information. Pinouts. 250MHz Video Buffer. FN2924 Rev 8.00 Page 1 of 12.

DATASHEET HA-2520, HA-2522, HA Features. Applications. Ordering Information

EL5129, EL5329. Multi-Channel Buffers. Features. Applications. Ordering Information FN Data Sheet May 13, 2005

DATASHEET. Features. Applications ISL High Performance 1A LDO. FN8767 Rev 0.00 Page 1 of 13. July 28, FN8767 Rev 0.00.

IR3537 CHL8510 FEATURES DESCRIPTION APPLICATIONS BASIC APPLICATION PIN DIAGRAM. 12V High Performance Gate Driver

DATASHEET HA Features. Applications. Ordering Information. 110MHz, High Slew Rate, High Output Current Buffer. FN2921 Rev 12.

DATASHEET HIP2101. Features. Ordering Information. Applications. 100V/2A Peak, Low Cost, High Frequency Half Bridge Driver

DATASHEET ISL6617. Features. Related Literature. Applications. Pin Configuration

DATASHEET CA3127. Features. Applications. Ordering Information. Pinout. High Frequency NPN Transistor Array. FN662 Rev.5.00 Page 1 of 9.

DATASHEET ISL Features. Applications. Ordering Information. Pinout. 8MHz Rail-to-Rail Composite Video Driver. FN6104 Rev 5.

HA-2520, HA MHz, High Slew Rate, Uncompensated, High Input Impedance, Operational Amplifiers. Features. Applications. Ordering Information

DATASHEET X9511. Single Push Button Controlled Potentiometer (XDCP ) Linear, 32 Taps, Push Button Controlled, Terminal Voltage ±5V

DATASHEET. Features. Applications ISL78113A. Low Input Voltage and High Efficiency Synchronous Boost Converter with 1.3A Switch

DATASHEET ISL9209B. Features. Applications. Ordering Information. Related Literature. Typical Application Circuit. Pinout

DATASHEET. Features. Applications EL6204. Laser Driver Oscillator. FN7219 Rev 3.00 Page 1 of 12. October 28, FN7219 Rev 3.00.

DATASHEET ISL9106. Features. Ordering Information. Applications. Pinout. 1.2A 1.6MHz Low Quiescent Current High Efficiency Synchronous Buck Regulator

RT9612A/B. Synchronous-Rectified Buck MOSFET Driver. Features. General Description. Applications. Ordering Information RT9612A/B

DATASHEET. Features. Applications. Related Literature ISL Wide V IN 150mA Synchronous Buck Regulator. FN8378 Rev 1.

EUP V/12V Synchronous Buck PWM Controller DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit. 1

RT9624A. Single Phase Synchronous Rectified Buck MOSFET Driver. General Description. Features. Applications. Simplified Application Circuit

ISL6536A. Four Channel Supervisory IC. Features. Applications. Typical Application Schematic. Ordering Information. Data Sheet May 2004 FN9136.

DATASHEET. Features. Applications. Related Literature ISL80030, ISL80030A, ISL80031, ISL80031A. 3A Synchronous Buck Converter in 2x2 DFN Package

Features TEMP. RANGE ( C)

Enpirion Power Datasheet EY V, Low Quiescent Current, 50mA Linear Regulator

RT9611A/B. Synchronous Rectified Buck MOSFET Drivers. Features. General Description. Applications. Ordering Information

DATASHEET ICL8069. Features. Pinouts. Ordering Information. Low Voltage Reference. FN3172 Rev.3.00 Page 1 of 6. Jan FN3172 Rev.3.00.

DATASHEET ISL Features. Applications. Filterless High Efficiency 1.5W Class D Mono Amplifier

DATASHEET ISL9209C. Features. Applications. Ordering Information. Related Literature. Pinout. Typical Application Circuit

DATASHEET ISL Features. Applications Ordering Information. Pinouts. 5MHz, Single Precision Rail-to-Rail Input-Output (RRIO) Op Amp

Features. BAAA -40 to Ld TSOT Tape and Reel (Pb-Free) BAAA -40 to Ld TSOT Tape and Reel (Pb-Free)

Features. Related Literature. Applications ISL A Standard Buck PWM Regulator. FN6769 Rev.3.00 Page 1 of 16. Apr 14, FN6769 Rev.3.

RT A, 2MHz, Synchronous Step-Down Converter. General Description. Features. Applications. Ordering Information. Pin Configurations

DATASHEET. Features. Applications. Ordering Information. Related Literature ISL MHz, Dual Precision Rail-to-Rail Input-Output (RRIO) Op Amps

ISL6298. Li-ion/Li-Polymer Battery Charger. Features. Applications. Related Literature. Ordering Information. Pinouts. Data Sheet.

AAT4910 PRODUCT DATASHEET. 28V Half-Bridge Dual N-Channel MOSFET Driver. General Description. Features. Applications. Typical Application

MARKING RANGE ( C) PACKAGE DWG. # HA-2600 (METAL CAN)

ISL8010. Features. Monolithic 600mA Step-Down Regulator with Low Quiescent Current. Applications. Ordering Information. Typical Application Diagram

Transcription:

DATASHEET ISL6208C High Voltage Synchronous Rectified Buck MOSFET Drivers FN8395 Rev 1.00 The ISL6208C is a high frequency, dual MOSFET driver, optimized to drive two N-channel power MOSFETs in a synchronous-rectified buck converter topology. It is especially suited for mobile computing applications that require high efficiency and excellent thermal performance. The driver, combined with an Intersil multiphase buck PWM controller, forms a complete single-stage core-voltage regulator solution for advanced mobile microprocessors. The ISL6208C features 4A typical sinking current for the lower gate driver. This current is capable of holding the lower MOSFET gate off during the rising edge of the phase node. This prevents shoot-through power loss caused by the high dv/dt of phase voltages. The operating voltage matches the 30V breakdown voltage of the MOSFETs commonly used in mobile computer power supplies. The ISL6208C also features a three-state PWM input that, working together with Intersil s multiphase PWM controllers, will prevent negative voltage output during CPU shutdown. This feature eliminates a protective Schottky diode usually seen in microprocessor power systems. MOSFET gates can be efficiently switched up to 2MHz using the ISL6208C. Each driver is capable of driving a 3000pF load with propagation delays of 8ns and transition times under 10ns. Bootstrapping is implemented with an internal Schottky diode. This reduces system cost and complexity, while allowing the use of higher performance MOSFETs. Adaptive shoot-through protection is integrated to prevent both MOSFETs from conducting simultaneously. A diode emulation feature is integrated in the ISL6208C to enhance converter efficiency at light load conditions. This feature also allows for monotonic start-up into prebiased outputs. When diode emulation is enabled, the driver will allow discontinuous conduction mode by detecting when the inductor current reaches zero and subsequently turning off the low-side MOSFET gate. Features Dual MOSFET drives for synchronous rectified bridge Adaptive shoot-through protection 0.5Ω ON-resistance and 4A sink current capability Supports high switching frequency up to 2MHz - Fast output rise and fall time - Low propagation delay Three-state PWM input for power stage shutdown Internal bootstrap Schottky diode Low bias supply current (5V, 80µA) Diode emulation for enhanced light load efficiency and prebiased start-up applications POR (Power-On-Reset) feature integrated Low three-state shutdown holdoff time (typical 160ns) Pin-to-pin compatible with ISL6207 DFN package Pb-free (RoHS compliant) Applications Core voltage supplies for Intel and AMD mobile microprocessors High frequency low profile DC/DC converters High current low output voltage DC/DC converters High input voltage DC/DC converters Related Literature Technical Brief TB363 Guidelines for Handling and Processing Moisture Sensitive Surface Mount Devices (SMDs) Technical Brief TB389 PCB Land Pattern Design and Surface Mount Guidelines for MLFP Packages Technical Brief TB447 Guidelines for Preventing Boot-to-Phase Stress on Half-Bridge MOSFET Driver ICs FN8395 Rev 1.00 Page 1 of 12

Table of Contents Block Diagram.............................................................................................. 3 Typical Application with 2-Phase Converter..................................................................... 3 Ordering Information........................................................................................ 4 Pin Configuration............................................................................................ 4 Pin Description.............................................................................................. 4 Absolute Maximum Ratings................................................................................... 5 Thermal Information......................................................................................... 5 Recommended Operating Conditions.......................................................................... 5 Electrical Specifications..................................................................................... 5 Timing Diagram............................................................................................. 6 Functional Pin Description.................................................................................... 7 Theory of Operation.......................................................................................... 7 Typical Performance Waveforms............................................................................... 8 Diode Emulation............................................................................................. 9 Three-State PWM Input....................................................................................... 9 Adaptive Shoot-Through Protection............................................................................ 9 Power Dissipation........................................................................................... 9 Layout Considerations...................................................................................... 10 Reducing Phase Ring............................................................................................ 10 Thermal Management............................................................................................ 10 Revision History............................................................................................ 11 About Intersil.............................................................................................. 11 Package Outline Drawing.................................................................................... 12 FN8395 Rev 1.00 Page 2 of 12

Block Diagram BOOT FCCM UGATE PWM 10kΩ CONTROL LOGIC SHOOT- THROUGH PROTECTION PHASE LGATE GND THERMAL PAD FIGURE 1. BLOCK DIAGRAM Typical Application with 2-Phase Converter +5V +5V V BAT PGOOD +5V FB COMP VSEN PWM1 PWM2 FCCM MAIN CONTROL FCCM PWM DRIVE ISL6208C THERMAL PAD BOOT UGATE PHASE LGATE +V CORE VID ISEN1 ISEN2 +5V V BAT FS DACOUT GND FCCM BOOT UGATE PWM DRIVE ISL6208C THERMAL PAD PHASE LGATE FIGURE 2. TYPICAL APPLICATION WITH 2-PHASE CONVERTER FN8395 Rev 1.00 Page 3 of 12

Ordering Information PART NUMBER (Notes 1, 2, 3) PART MARKING TEMP. RANGE ( C) TAPE AND REEL (UNITS) PACKAGE (RoHS Compliant) PKG. DWG. # ISL6208CHRZ-T 8CH -10 to +100 6k 8 Ld 2x2 DFN L8.2x2D ISL6208CIRZ-T 8CI -40 to +100 6k 8 Ld 2x2 DFN L8.2x2D NOTES: 1. Please refer to TB347 for details on reel specifications. 2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. 3. For Moisture Sensitivity Level (MSL), please see device information page for ISL6208C. For more information on MSL please see techbrief TB363. Pin Configuration ISL6208C (8 LD 2x2 DFN) TOP VIEW UGATE 1 86 PHASE BOOT 2 7 FCCM PWM 3 6 GND 4 5 LGATE Pin Description PIN SYMBOL DESCRIPTION 1 UGATE The UGATE pin is the upper gate drive output. Connect to gate of the high-side power N-channel MOSFET. 2 BOOT BOOT is the floating bootstrap supply pin for the upper gate drive. Connect the bootstrap capacitor between this pin and the PHASE pin. The bootstrap capacitor provides the charge to turn on the upper MOSFET. See Internal Bootstrap Diode on page 9 for guidance in choosing the appropriate capacitor value. 3 PWM The PWM signal is the control input for the driver. The PWM signal can enter three distinct states during operation. See Three-State PWM Input on page 9 for further details. Connect this pin to the PWM output of the controller. 4 GND GND is the ground pin for the IC. 5 LGATE LGATE is the lower gate drive output. Connect to gate of the low-side power N-Channel MOSFET. 6 Connect the pin to a +5V bias supply. Place a high quality bypass capacitor from this pin to GND. The pin of the driver(s) and related or +5V bias supply pin of the Intersil controller must share a common +5V supply. 7 FCCM The FCCM pin enables or disables Diode Emulation. When FCCM is LOW, diode emulation is allowed. Otherwise, continuous conduction mode is forced. See Diode Emulation on page 9 for more detail. 8 PHASE Connect the PHASE pin to the source of the upper MOSFET and the drain of the lower MOSFET. This pin provides a return path for the upper gate driver. FN8395 Rev 1.00 Page 4 of 12

Absolute Maximum Ratings Supply Voltage ()................................... -0.3V to 7V Input Voltage (V FCCM, V PWM ).................... -0.3V to + 0.3V BOOT Voltage (V BOOT-GND )........... -0.3V to 33V (DC) or 36V (<20ns) BOOT To PHASE Voltage (V BOOT-PHASE )................ -0.3V to 7V (DC) -0.3V to 9V (<10ns) PHASE Voltage (Note 4).......................... (GND - 0.3V) to 30V GND - 8V (<20ns Pulse Width, 10µJ) UGATE Voltage.......................... V PHASE - 0.3V (DC) to V BOOT V PHASE - 5V (<20ns Pulse Width, 10µJ) to V BOOT LGATE Voltage.........................GND - 0.3V (DC) to + 0.3V GND - 2.5V (<20ns Pulse Width, 5µJ) to + 0.3V Thermal Information Thermal Resistance (Typical) JA ( C/W) JC ( C/W) 8 Ld 2x2 DFN Package (Notes 5, 6)...... 89 24 Maximum Storage Temperature Range..............-65 C to +150 C Pb-Free Reflow Profile.................................. see TB493 Recommended Operating Conditions Ambient Temperature Range Industrial......................................-40 C to +100 C Hi-Temp Commercial............................-10 C to +100 C Maximum Operating Junction Temperature.................. +125 C Supply Voltage,..................................... 5V ±10% CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty. NOTES: 4. The Phase Voltage is capable of withstanding -7V when the BOOT pin is at GND. 5. JA is measured in free air with the component mounted on a high effective thermal conductivity test board with direct attach features. See Tech Brief TB379. 6. For JC, the case temp location is the center of the exposed metal pad on the package underside. Electrical Specifications Recommended operating conditions, unless otherwise noted. Boldface limits apply across the operating temperature range, -40 C to +100 C (Industrial), -10 C to +100 C (Hi-Temp Commercial). SYMBOL PARAMETER TEST CONDITIONS MIN (Note 7) TYP MAX (Note 7) UNIT V CC SUPPLY CURRENT I Bias Supply Current PWM pin floating, V FCCM = 5V - 80 - µa POR V CC Rising - 3.40 3.90 V V CC Falling 2.40 2.90 - V Hysteresis - 500 - mv BOOTSTRAP DIODE V F Forward Voltage V = 5V, forward bias current = 2mA 0.50 0.55 0.65 V PWM INPUT I PWM Input Current V PWM = 5V - 250 - µa V PWM = 0V - -250 - µa PWM Three-State Rising Threshold V = 5V 0.70 1.00 1.30 V PWM Three-State Falling Threshold V = 5V 3.5 3.8 4.1 V t TSSHD Three-State Shutdown Hold-Off Time V = 5V, temperature = +25 C 100 175 250 ns FCCM INPUT FCCM LOW Threshold 0.50 - - V FCCM HIGH Threshold - - 2.0 V SWITCHING TIME t RU UGATE Rise Time V = 5V, 3nF load - 8.0 - ns t RL LGATE Rise Time V = 5V, 3nF load - 8.0 - ns t FU UGATE Fall Time V = 5V, 3nF load - 8.0 - ns t FL LGATE Fall Time V = 5V, 3nF load - 4.0 - ns t PDLU UGATE Turn-Off Propagation Delay V = 5V, outputs unloaded - 18 - ns FN8395 Rev 1.00 Page 5 of 12

Electrical Specifications Recommended operating conditions, unless otherwise noted. Boldface limits apply across the operating temperature range, -40 C to +100 C (Industrial), -10 C to +100 C (Hi-Temp Commercial). (Continued) SYMBOL PARAMETER TEST CONDITIONS MIN (Note 7) TYP MAX (Note 7) UNIT t PDLL LGATE Turn-Off Propagation Delay V = 5V, outputs unloaded - 25 - ns t PDHU UGATE Turn-On Propagation Delay V = 5V, outputs unloaded 10 20 30 ns t PDHL LGATE Turn-On Propagation Delay V = 5V, outputs unloaded 10 20 30 ns t PTS UG/LG Three-State Propagation Delay V = 5V, outputs unloaded - 35 - ns t LGMIN Minimum LG ON-TIME in DCM - 400 - ns OUTPUT R U Upper Drive Source Resistance 500mA source current - 1 2.5 Ω I U Upper Driver Source Current V UGATE-PHASE = 2.5V - 2.00 - A R U Upper Drive Sink Resistance 500mA sink current - 1 2.5 Ω I U Upper Driver Sink Current V UGATE-PHASE = 2.5V - 2.00 - A R L Lower Drive Source Resistance 500mA source current - 1 2.5 Ω I L Lower Driver Source Current V LGATE = 2.5V - 2.00 - A R L Lower Drive Sink Resistance 500mA sink current - 0.5 1.0 Ω I L Lower Driver Sink Current V LGATE = 2.5V - 4.00 - A NOTE: 7. Parameters with MIN and/or MAX limits are 100% tested at +25 C, unless otherwise specified. Temperature limits established by characterization and are not production tested. Timing Diagram PWM t PDHU 2.5V t PDLU t TSSHD t RU t FU t RU t FU t PTS UGATE 1V LGATE 1V t PTS t FL t RL t TSSHD t PDLL t PDHL t FL FIGURE 3. TIMING DIAGRAM FN8395 Rev 1.00 Page 6 of 12

Functional Pin Description UGATE The UGATE pin is the upper gate drive output. Connect to gate of the high-side power N-channel MOSFET. BOOT BOOT is the floating bootstrap supply pin for the upper gate drive. Connect the bootstrap capacitor between this pin and the PHASE pin. The bootstrap capacitor provides the charge to turn on the upper MOSFET. See Internal Bootstrap Diode on page 9 for guidance in choosing the appropriate capacitor value. PWM The PWM signal is the control input for the driver. The PWM signal can enter three distinct states during operation. See Three-State PWM Input on page 9 for further details. Connect this pin to the PWM output of the controller. GND GND is the ground pin for the IC. LGATE LGATE is the lower gate drive output. Connect to gate of the low-side power N-channel MOSFET. Connect the pin to a +5V bias supply. Place a high quality bypass capacitor from this pin to GND. FCCM The FCCM pin enables or disables Diode Emulation. When FCCM is LOW, diode emulation is allowed. Otherwise, continuous conduction mode is forced. See Diode Emulation on page 9 for more detail. PHASE Connect the PHASE pin to the source of the upper MOSFET and the drain of the lower MOSFET. This pin provides a return path for the upper gate driver. Theory of Operation Designed for speed, the ISL6208C dual MOSFET driver controls both high-side and low-side N-channel FETs from one externally provided PWM signal. A rising edge on PWM initiates the turn-off of the lower MOSFET (see Timing Diagram ). After a short propagation delay [t PDLL ], the lower gate begins to fall. Typical fall times [t FL ] are provided in the Electrical Specifications on page 5. Adaptive shoot-through circuitry monitors the LGATE voltage. When LGATE has fallen below 1V, UGATE is allowed to turn ON. This prevents both the lower and upper MOSFETs from conducting simultaneously, or shoot-through. A falling transition on PWM indicates the turn-off of the upper MOSFET and the turn-on of the lower MOSFET. A short propagation delay (t PDLU ) is encountered before the upper gate begins to fall (t FU ). The upper MOSFET gate-to-source voltage is monitored, and the lower gate is allowed to rise after the upper MOSFET gate-to-source voltage drops below 1V. The lower gate then rises (t RL ), turning on the lower MOSFET. This driver is optimized for converters with large step-down compared to the upper MOSFET because the lower MOSFET conducts for a much longer time in a switching period. The lower gate driver is therefore sized much larger to meet this application requirement. The 0.5Ω ON-resistance and 4A sink current capability enables the lower gate driver to absorb the current injected to the lower gate through the drain-to-gate capacitor of the lower MOSFET and prevents a shoot-through caused by the high dv/dt of the phase node. FN8395 Rev 1.00 Page 7 of 12

Typical Performance Waveforms FIGURE 4. LOAD TRANSIENT (0A TO 30A, 3-PHASE) FIGURE 5. LOAD TRANSIENT (30A TO 0A, 3-PHASE) FIGURE 6. DCM TO CCM TRANSITION AT NO LOAD FIGURE 7. CCM TO DCM TRANSITION AT NO LOAD FIGURE 8. PREBIASED START-UP IN CCM MODE FIGURE 9. PREBIASED START-UP IN DCM MODE FN8395 Rev 1.00 Page 8 of 12

Diode Emulation Diode emulation allows for higher converter efficiency under light load situations. With diode emulation active, the ISL6208C will detect the zero current crossing of the output inductor and turn off LGATE. This ensures that discontinuous conduction mode (DCM) is achieved. Diode emulation is asynchronous to the PWM signal. Therefore, the ISL6208C will respond to the FCCM input immediately after it changes state. Refer to Typical Performance Waveforms on page 8. Note: Intersil does not recommend Diode Emulation use with r DS(ON) current sensing topologies. The turn-off of the low-side MOSFET can cause gross current measurement inaccuracies. Three-State PWM Input A unique feature of the ISL6208C and other Intersil drivers is the addition of a shutdown window to the PWM input. If the PWM signal enters and remains within the shutdown window for a set holdoff time, the output drivers are disabled and both MOSFET gates are pulled and held low. The shutdown state is removed when the PWM signal moves outside the shutdown window. Otherwise, the PWM rising and falling thresholds outlined in the Electrical Specifications table on page 5 determine when the lower and upper gates are enabled. The pin of the driver(s) and related or +5V bias supply pin of the Intersil controller must share a common +5V supply. Adaptive Shoot-Through Protection Both drivers incorporate adaptive shoot-through protection to prevent upper and lower MOSFETs from conducting simultaneously and shorting the input supply. This is accomplished by ensuring the falling gate has turned off one MOSFET before the other is allowed to turn on. During turn-off of the lower MOSFET, the LGATE voltage is monitored until it reaches a 1V threshold, at which time the UGATE is released to rise. Adaptive shoot-through circuitry monitors the upper MOSFET gate-to-source voltage during UGATE turn-off. Once the upper MOSFET gate-to-source voltage has dropped below a threshold of 1V, the LGATE is allowed to rise. Internal Bootstrap Diode This driver features an internal bootstrap Schottky diode. Simply adding an external capacitor across the BOOT and PHASE pins completes the bootstrap circuit. The bootstrap capacitor must have a maximum voltage rating above the maximum battery voltage plus 5V. The bootstrap capacitor can be chosen from Equation 1: voltage over a PWM cycle is 200mV. One will find that a bootstrap capacitance of at least 0.125µF is required. The next larger standard value capacitance is 0.15µF. A good quality ceramic capacitor is recommended. C BOOT_CAP (µf) 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 50nC Q GATE = 100nC 0.2 20nC 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 V BOOT_CAP (V) FIGURE 10. BOOTSTRAP CAPACITANCE vs BOOT RIPPLE VOLTAGE Power Dissipation Package power dissipation is mainly a function of the switching frequency and total gate charge of the selected MOSFETs. Calculating the power dissipation in the driver for a desired application is critical to ensuring safe operation. Exceeding the maximum allowable power dissipation level will push the IC beyond the maximum recommended operating junction temperature of +125 C. The maximum allowable IC power dissipation is approximately 800mW. When designing the driver into an application, it is recommended that the following calculation be performed to ensure safe operation at the desired frequency for the selected MOSFETs. The power dissipated by the driver is approximated, as shown in Equation 2: P = f sw 1.5V U Q + V U L Q + I L V CC (EQ. 2) Where f sw is the switching frequency of the PWM signal. V U and V L represent the upper and lower gate rail voltage. Q U and Q L is the upper and lower gate charge determined by MOSFET selection and any external capacitance added to the gate pins. The lv CC V CC product is the quiescent power of the driver and is typically negligible. Q GATE C BOOT ----------------------- (EQ. 1) V BOOT Where Q GATE is the amount of gate charge required to fully charge the gate of the upper MOSFET. The V BOOT term is defined as the allowable droop in the rail of the upper drive. As an example, suppose an upper MOSFET has a gate charge, Q GATE, of 25nC at 5V and also assume the droop in the drive FN8395 Rev 1.00 Page 9 of 12

POWER (mw) 1000 900 800 700 600 500 400 Q U =100nC Q L = 200nC Q U = 50nC Q L = 100nC Q U = 50nC Q L = 50nC Q U = 20nC Q L =50nC Thermal Management For maximum thermal performance in high current, high switching frequency applications, connecting the thermal pad of the DFN to the power ground with multiple vias is recommended. This heat spreading allows the part to achieve its full thermal potential. 300 200 100 0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 FREQUENCY (khz) FIGURE 11. POWER DISSIPATION vs FREQUENCY Layout Considerations Reducing Phase Ring The parasitic inductances of the PCB and power devices (both upper and lower FETs) could cause increased PHASE ringing, which may lead to voltages that exceed the absolute maximum rating of the devices. When PHASE rings below ground, the negative voltage could add charge to the bootstrap capacitor through the internal bootstrap diode. Under worst-case conditions, the added charge could overstress the BOOT and/or PHASE pins. To prevent this from happening, the user should perform a careful layout inspection to reduce trace inductances, and select low lead inductance MOSFETs and drivers. D 2 PAK and DPAK packaged MOSFETs have high parasitic lead inductances, as opposed to SOIC-8. If higher inductance MOSFETs must be used, a Schottky diode is recommended across the lower MOSFET to clamp negative PHASE ring. A good layout would help reduce the ringing on the phase and gate nodes significantly: Avoid using vias for decoupling components where possible, especially in the BOOT-to-PHASE path. Little or no use of vias for and GND is also recommended. Decoupling loops should be short. All power traces (UGATE, PHASE, LGATE, GND, ) should be short and wide, and avoid using vias. If vias must be used, two or more vias per layer transition is recommended. Keep the SOURCE of the upper FET as close as thermally possible to the DRAIN of the lower FET. Keep the connection in between the SOURCE of lower FET and power ground wide and short. Input capacitors should be placed as close to the DRAIN of the upper FET and the SOURCE of the lower FET as thermally possible. Note: Refer to Intersil Tech Brief TB447 for more information. FN8395 Rev 1.00 Page 10 of 12

Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest revision. DATE REVISION CHANGE June 1, 2016 FN8395.1 Added note to pin description on page 4 and to Three-State PWM Input on page 9 that +5V supply should be common with Intersil controller. November 29, 2012 FN8395.0 Initial Release Added AC specification to BOOT-GND Absolute Maximum Rating on page 5. On page 12 - Updated L8.2x2D POD from rev 0 to rev 1. Updates since rev 0: Tiebar Note 5 updated From: "Tiebar shown (if present) is a non-functional feature." To: "Tiebar shown (if present) is a non-functional feature and may be located on any of the 4 sides (or ends)." About Intersil Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets. For the most updated datasheet, application notes, related documentation and related parts, please see the respective product information page found at www.intersil.com. You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask. Reliability reports are also available from our website at www.intersil.com/support. Copyright Intersil Americas LLC 2012-2016. All Rights Reserved. All trademarks and registered trademarks are the property of their respective owners. For additional products, see www.intersil.com/en/products.html Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com FN8395 Rev 1.00 Page 11 of 12

Package Outline Drawing L8.2x2D 8 LEAD DUAL FLAT NO-LEAD PLASTIC PACKAGE (DFN) WITH EXPOSED PAD Rev 1, 3/15 6 PIN 1 INDEX AREA 2.00 A B 8 1 6 PIN #1 INDEX AREA 6x 0.50 2.00 1.55±0.10 (4X) 0.15 TOP VIEW 0.10M C A B 0.22 4 0.90±0.10 ( 8x0.30 ) BOTTOM VIEW SEE DETAIL "X" 0.90±0.10 SIDE VIEW 0.10 C C BASE PLANE SEATING PLANE 0.08 C C 0. 2 REF 0. 00 MIN. 0. 05 MAX. DETAIL "X" PACKAGE OUTLINE ( 8x0.20 ) ( 8x0.30 ) NOTES: ( 6x0.50 ) 1.55 2.00 1. 2. 3. Dimensions are in millimeters. Dimensions in ( ) for Reference Only. Dimensioning and tolerancing conform to AMSE Y14.5m-1994. Unless otherwise specified, tolerance: Decimal ± 0.05 4. Dimension applies to the metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip. ( 8x0.22 ) 0.90 2.00 TYPICAL RECOMMENDED LAND PATTERN 5. 6. Tiebar shown (if present) is a non-functional feature and may be located on any of the 4 sides (or ends). The configuration of the pin #1 identifier is optional, but must be located within the zone indicated. The pin #1 identifier may be either a mold or mark feature. FN8395 Rev 1.00 Page 12 of 12