Suppression of Rayleigh-scattering-induced noise in OEOs

Similar documents
Theoretical Investigation of Length-Dependent Flicker-Phase Noise in Opto-electronic Oscillators

Spurious-Mode Suppression in Optoelectronic Oscillators

Theoretical Investigation of Optical Fiber-Length-Dependent Phase Noise in Opto-Electronic Oscillators

Superlinear growth of Rayleigh scatteringinduced intensity noise in single-mode fibers

Rayleigh-Scattering-Induced RIN and Amplitude-to-Phase Conversion as a Source of Length-Dependent Phase Noise in OEOs

HIGH-PERFORMANCE microwave oscillators require a

Supplementary Information. All-fibre photonic signal generator for attosecond timing. and ultralow-noise microwave

Optoelectronic Oscillator Topologies based on Resonant Tunneling Diode Fiber Optic Links

Ultrahigh precision synchronization of optical and microwave frequency sources

Suppression of amplitude-to-phase noise conversion in balanced optical-microwave phase detectors

Phase noise performance comparison between optoelectronic oscillators based on optical delay lines and whispering gallery mode resonators

DFB laser contribution to phase noise in an optoelectronic microwave oscillator

Realization of a Phase Noise Measurement Bench Using Cross Correlation and Double Optical Delay Line

Volume 7, Number 1, February Khaldoun Saleh Guoping Lin Yanne K. Chembo, Senior Member, IEEE

Photonic Microwave Harmonic Generator driven by an Optoelectronic Ring Oscillator

Demonstration of multi-cavity optoelectronic oscillators based on multicore fibers

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

Photonic Delay-line Phase Noise Measurement System

RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE

A NOVEL SCHEME FOR OPTICAL MILLIMETER WAVE GENERATION USING MZM

The Theta Laser A Low Noise Chirped Pulse Laser. Dimitrios Mandridis

Study of the Noise Processes in Microwave Oscillators Based on Passive Optical Resonators

Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers

Differential measurement scheme for Brillouin Optical Correlation Domain Analysis

Timing Noise Measurement of High-Repetition-Rate Optical Pulses

Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode

PHASE TO AMPLITUDE MODULATION CONVERSION USING BRILLOUIN SELECTIVE SIDEBAND AMPLIFICATION. Steve Yao

Theoretical study of an actively mode-locked fiber laser stabilized by an intracavity Fabry Perot etalon: linear regime

CHARACTERIZATION OF NOISE PROPERTIES IN PHOTODETECTORS: A STEP TOWARD ULTRA-LOW PHASE NOISE MICROWAVES 1

Status on Pulsed Timing Distribution Systems and Implementations at DESY, FERMI and XFEL

All-Optical Clock Division Using Period-one Oscillation of Optically Injected Semiconductor Laser

SUPPLEMENTARY INFORMATION DOI: /NPHOTON

Dual Loop Optoelectronic Oscillator with Acousto-Optic Delay Line

Coupled optoelectronic oscillators: design and performance comparison at 10 GHz and 30 GHz

Measuring Photonic, Optoelectronic and Electro optic S parameters using an advanced photonic module

Low Phase Noise Laser Synthesizer with Simple Configuration Adopting Phase Modulator and Fiber Bragg Gratings

Jungwon Kim, Jonathan A. Cox, Jian J. Chen & Franz X. Kärtner. Department of Electrical Engineering and Computer Science and Research Laboratory

An Optoelectronic Oscillator Using A High Finesse Etalon

Optical phase-coherent link between an optical atomic clock. and 1550 nm mode-locked lasers

A n optical frequency comb (OFC), a light source whose spectrum consists of a series of discrete, equally

taccor Optional features Overview Turn-key GHz femtosecond laser

Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration

Generation of ultrastable microwaves via optical frequency division

Multi-format all-optical-3r-regeneration technology

RECENTLY, studies have begun that are designed to meet

Phase Noise Modeling of Opto-Mechanical Oscillators

SEMICONDUCTOR lasers and amplifiers are important

Estimation of the uncertainty for a phase noise optoelectronic metrology system

SUPPLEMENTARY INFORMATION

Agilent 71400C Lightwave Signal Analyzer Product Overview. Calibrated measurements of high-speed modulation, RIN, and laser linewidth

Phase-Sensitive Optical Time-Domain Reflectometry Amplified by Gated Raman Pump

EDFA TRANSIENT REDUCTION USING POWER SHAPING

InP-based waveguide photodiodes heterogeneously integrated on silicon-oninsulator for photonic microwave generation

Dynamic gain-tilt compensation using electronic variable optical attenuators and a thin film filter spectral tilt monitor

CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER

Femtosecond-stability delivery of synchronized RFsignals to the klystron gallery over 1-km optical fibers

Amplitude independent RF instantaneous frequency measurement system using photonic Hilbert transform

Broadband photonic microwave phase shifter based on controlling two RF modulation sidebands via a Fourier-domain optical processor

Guided Propagation Along the Optical Fiber

Testing with Femtosecond Pulses

4 Photonic Wireless Technologies

Suppression of Stimulated Brillouin Scattering

Wavelength-independent coupler from fiber to an on-chip cavity, demonstrated over an 850nm span

Optical Delay Line Application Note

The Effects of Crystal Oscillator Phase Noise on Radar Systems

MICROWAVE photonics is an interdisciplinary area

Optoelectronic Oscillators for Communication Systems

Radio over Fiber technology for 5G Cloud Radio Access Network Fronthaul

arxiv: v1 [physics.optics] 19 Jun 2008

Design considerations for the RF phase reference distribution system for X-ray FEL and TESLA

Optical fiber-fault surveillance for passive optical networks in S-band operation window

Table of Contents. Abbrevation Glossary... xvii

Agilent 81980/ 81940A, Agilent 81989/ 81949A, Agilent 81944A Compact Tunable Laser Sources

Frequency comb from a microresonator with engineered spectrum

Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion

Special Issue Review. 1. Introduction

Dispersion measurement in optical fibres over the entire spectral range from 1.1 mm to 1.7 mm

FI..,. HEWLETT. High-Frequency Photodiode Characterization using a Filtered Intensity Noise Technique

Reduction of Fiber Chromatic Dispersion Effects in Fiber-Wireless and Photonic Time-Stretching System Using Polymer Modulators

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 60, NO. 6, JUNE

Optical amplification and pulse interleaving for low noise photonic microwave generation

Ultra-low phase-noise microwave with optical frequency combs

Supplementary Information - Optical Frequency Comb Generation from a Monolithic Microresonator

All-optical AND gate with improved extinction ratio using signal induced nonlinearities in a bulk semiconductor optical amplifier

Heterogeneously Integrated Microwave Signal Generators with Narrow- Linewidth Lasers

ALMA Memo No NRAO, Charlottesville, VA NRAO, Tucson, AZ NRAO, Socorro, NM May 18, 2001

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

Microwave Photonics: Photonic Generation of Microwave and Millimeter-wave Signals

Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise

Stabilisation of Linear-cavity Fibre Laser Using a Saturable Absorber

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity

Abstract. Introduction

Control of the frequency comb from a modelocked Erbium-doped fiber laser

Bit error rate and cross talk performance in optical cross connect with wavelength converter

Optical Single Sideband Modulation and Optical Carrier Power Reduction and CATV Networks

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender

Controllable optical analog to electromagnetically induced transparency in coupled high-q microtoroid cavities

Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs

Multiheterodyne Detection for Spectral Compression and Downconversion of Arbitrary Periodic Optical Signals

Transcription:

Suppression of Rayleigh-scattering-induced noise in OEOs Olukayode Okusaga, 1,* James P. Cahill, 1,2 Andrew Docherty, 2 Curtis R. Menyuk, 2 Weimin Zhou, 1 and Gary M. Carter, 2 1 Sensors and Electronic Devices Directorate, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783, USA 2 Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA * olukayode.k.okusaga.civ@mail.mil Abstract: Optoelectronic oscillators (OEOs) are hybrid RF-photonic devices that promise to be environmentally robust high-frequency RF sources with very low phase noise. Previously, we showed that Rayleighscattering-induced noise in optical fibers coupled with amplitude-to-phase noise conversion in photodetectors and amplifiers leads to fiber-lengthdependent noise in OEOs. In this work, we report on two methods for the suppression of this fiber-length-dependent noise: altering the amplitudedependent phase delay of the OEO loops and suppressing the Rayleighscattering-induced noise in optical fibers. We report a 20 db reduction in the flicker phase noise of a 6 km OEO via these suppression techniques. 2013 Optical Society of America OCIS codes: (060.2320) Fiber optics amplifiers and oscillators; (230.0250) Oscillators. References and links 1. X. S. Yao and L. Maleki, Optoelectronic microwave oscillator, J. Opt. Soc. Am. B 13(8), 1725 1735 (1996). 2. X. S. Yao and L. Maleki, Optoelectronic oscillator for photonic systems, IEEE J. Quantum Electron. 32(7), 1141 1149 (1996). 3. O. Okusaga, W. Zhou, E. Levy, M. Horowitz, G. M. Carter, and C. R. Menyuk, Non-ideal loop-lengthdependence of phase noise in OEOs, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2009), paper CFB3. 4. P. A. Williams, W. C. Swann, and N. R. Newbury, High-stability transfer of an optical frequency over long fiber-optic links, J. Opt. Soc. Am. B 25(8), 1284 1293 (2008). 5. K. Volyanskiy, Y. K. Chembo, L. Larger, and E. Rubiola, Contribution of laser frequency and power fluctuations to the microwave phase noise of optoelectronic oscillators, J. Lightwave Technol. 28(18), 2730 2735 (2010). 6. O. Okusaga, J. Cahill, W. Zhou, A. Docherty, G. M. Carter, and C. R. Menyuk, Optical scattering induced noise in in RF-photonic systems, in Proceedings of IEEE Conference on Frequency Control (Institute of Electrical and Electronics Engineers, New York, 2011), pp. 1 6. 7. A. Docherty, C. R. Menyuk, J. P. Cahill, O. Okusaga, and W. Zhou, Rayleigh-scattering-induced RIN and amplitude-to-phase conversion as a source of length-dependent phase noise in OEOs, IEEE Photon. J. 5(2), 5500514 (2013). 8. R. W. Boyd, Nonlinear Optics (Elsevier, 2008), Chap. 9. 9. O. Okusaga, J. Cahill, A. Docherty, W. Zhou, and C. R. Menyuk, Guided entropy mode Rayleigh scattering in optical fibers, Opt. Lett. 37(4), 683 685 (2012). 10. A. Docherty, O. Okusaga, C. R. Menyuk, W. Zhou, and G. M. Carter, Theoretical investigation of lengthdependent noise flicker-phase noise in opto-electronic oscillators, in Conference on Lasers and Electro- Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2011), paper CFM1. 11. J. Taylor, S. Datta, A. Hati, C. Nelson, F. Quinlan, A. Joshi, and S. Diddams, Characterization of power-tophase conversion in high-speed P-I-N photodiodes, IEEE Photon. J. 3(1), 140 151 (2011). 12. O. Okusaga, W. Zhou, J. Cahill, A. Docherty, and C. R. Menyuk, Fiber-induced degradation in RF-over-fiber links, in Proceedings of IEEE Conference on Frequency Control (Institute of Electrical and Electronics Engineers, New York, 2012), pp. 1 5. (C) 2013 OSA 23 September 2013 Vol. 21, No. 19 DOI:10.1364/OE.21.022255 OPTICS EXPRESS 22255

13. F. Quinlan, C. Williams, S. Ozharar, S. Gee, and P. J. Delfyett, Self-stabilization of the optical frequencies and the pulse repetition rate in a coupled optoelectronic oscillator, J. Lightwave Technol. 26(15), 2571 2577 (2008). 14. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Carrierenvelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis, Science 288(5466), 635 639 (2000). 15. P. Del Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, Optical frequency comb generation from a monolithic microresonator, Nature 450(7173), 1214 1217 (2007). 1. Introduction Optoelectronic oscillators (OEOs) are ring resonators that utilize the low loss-per-unit-length of optical fibers to generate ultra-high Q cavities [1]. The high Q of the OEO cavity results in low phase noise RF signals. Theoretical models of the OEO predict that the phase noise of the OEO at frequencies within 100 khz of the nominal carrier frequency (hereafter referred to as the close-in phase noise) should decrease quadratically with fiber length [2]. However, this expected relationship between phase noise and fiber length has not been observed at low offset frequencies [3]. Figure 1 shows the phase noise of 10 GHz OEOs with various fiber lengths. The phase noise of the 6 km OEO is higher than what is predicted by the theory, which indicates that there is a fiber-length-dependent noise source in the OEO. Similar fiberlength-dependent noise has been observed in the duplex transfer of frequencies over optical fiber [4]. The low-offset-frequency phase noise is a critical measure of the stability of an oscillator; therefore, identifying and suppressing such flicker phase noise sources is a crucial step towards optimizing OEOs and other RF-photonic systems. Fig. 1. Phase noise plots of 10 GHz single-loop OEOs with varying fiber lengths. Sources of fiber-length-dependent phase noise in OEOs have been studied extensively [5, 6]. Volyanskiy et al. showed that in some configurations the OEO flicker phase noise is dominated by the combination of laser frequency noise and chromatic dispersion in optical fibers [5]. In our OEOs, however, the fiber-length-dependent noise is dominated instead by Rayleigh scattering in optical fibers [6]. Rayleigh scattering in the optical domain leads to intensity noise in the RF domain. We have also shown that the nonlinearities in the photodetectors and RF amplifiers convert amplitude noise in OEOs to phase noise [7]. It is #193302 - $15.00 USD Received 5 Jul 2013; revised 28 Aug 2013; accepted 4 Sep 2013; published 13 Sep 2013 (C) 2013 OSA 23 September 2013 Vol. 21, No. 19 DOI:10.1364/OE.21.022255 OPTICS EXPRESS 22256

this combination of Rayleigh scattering and amplitude-to-phase noise conversion that we will focus on in this work. In the rest of this work, we will refer to our OEOs. We do so to distinguish between OEOs like ours where Rayleigh scattering coupled with amplitude-tophase noise conversion are the dominant fiber length dependent noise mechanisms and OEOs like those of Volyanskiy et al. where laser frequency noise and chromatic dispersion dominate. For a given OEO, the dominant fiber-length-dependent noise source will depend on such parameters as: the laser frequency noise, laser power level, the OEO s oscillating frequency, and the amount of amplitude-to-phase noise conversion in the amplifiers and photodetectors. This paper is organized in the following fashion. In Section 2, we briefly review Rayleigh scattering noise in optical fibers and amplitude-to-phase noise conversion in photodetectors and amplifiers. In Section 3, we present the results of suppression experiments designed to reduce the amplitude-to-phase noise conversion and Rayleigh scattering in the OEO. Finally, in Section 4, we provide an analysis of our results and their potential applicability to other RF-photonic systems. 2. Fiber-length-dependent phase noise sources In this section, we will briefly describe the combination of phenomena that leads to lengthdependent noise in our OEOs. Together, amplitude noise induced by Rayleigh scattering in optical fibers and amplitude to phase noise conversion in nonlinear elements in particular the amplifiers and photodetectors cause length-dependent flicker phase noise in the OEO s microwave signal. In the following subsections, we will present experimental data demonstrating both phenomena. Fig. 2. Optical intensity noise plots of 1550 nm laser signals transmitted over various lengths of optical fiber. 2.1 Guided entropy mode Rayleigh scattering in optical fibers The refractive index of a dielectric material such as fused silica depends, in part, on the density or strain of the dielectric [8]. Density or strain fluctuations lead to fluctuations of the dielectric susceptibility which cause optical scattering. Density or strain fluctuations caused by pressure or stress lead to Brillouin scattering while density or strain fluctuations due to #193302 - $15.00 USD Received 5 Jul 2013; revised 28 Aug 2013; accepted 4 Sep 2013; published 13 Sep 2013 (C) 2013 OSA 23 September 2013 Vol. 21, No. 19 DOI:10.1364/OE.21.022255 OPTICS EXPRESS 22257

temperature lead to Rayleigh scattering. We have shown previously that Guided Entropy Mode Rayleigh Scattering (GEMRS) that is, scattering due to transverse temperature gradients in the fiber leads to fiber-length-dependent intensity noise at offset frequencies below 100 khz, which corresponds to the flicker noise region of the OEO [9]. We measured the GEMRS-induced intensity noise in our OEOs by employing the forward scattering measurement system used in ref. 9. Figure 2 shows plots of the forward-scattered optical intensity noise in various lengths of single-mode optical fiber. The data show that increasing the fiber length increases the intensity of the noise due to GEMRS in the relevant frequency range. 2.2 Amplitude-to-phase noise conversion The GEMRS effect is not sufficient to explain the increased phase noise of the OEO. Intensity noise due to GEMRS will lead to optical intensity noise, yet, to first order, optical intensity noise has no effect on the RF phase noise of an amplitude-modulated OEO with direct detection [10]. A second mechanism is required to convert the optical intensity noise to RF phase noise. That mechanism is intensity-dependent phase delay in the nonlinear photodetectors and RF amplifiers in the OEO. Such AM-to-PM conversion has also been reported in mode-locked laser systems used to generate and transmit RF signals [11]. In order to measure the AM-to-PM conversion factor for each component, we connected an RFphotonic link to a network analyzer and varied the optical power into the photodetector. We then recorded the phase delay experienced by the RF signals at 10 GHz passed through the link. Fig. 3. RF gain and phase shift for a 10 GHz RF signal transmitted through a photodetector. Figure 3 shows the plots of the phase delay and output intensity versus input optical power for the photodetector used in our OEOs. Our data show that the phase delay is a nonlinear function of the input optical power. Therefore, fluctuations in the optical intensity will lead to fluctuations in the RF phase of the OEO signal. The magnitude of the AM-to-PM conversion factor is proportional to the slope of the phase curve in Fig. 3 at the mean optical power level into the photodetector of the OEO. (C) 2013 OSA 23 September 2013 Vol. 21, No. 19 DOI:10.1364/OE.21.022255 OPTICS EXPRESS 22258

Fig. 4. RF gain and phase shift for a 10 GHz RF signal transmitted through an amplifier block. We used a similar experiment to measure the intensity-dependent phase delay of the amplifiers in the OEO. Figure 4 shows the resulting phase-delay and output intensity plots versus input RF power to the amplifier block. Again, we note that the magnitude of the AMto-PM conversion factor is given by the slope of the phase curve at the steady-state mean RF power level into the amplifier block of the OEO. 3. Noise suppression techniques In the following subsections, we present data from experiments designed to verify our theories about the two phenomena responsible for the fiber-length-dependent phase noise in OEOs. This verification is a necessary step towards our long-term goal of counter-acting the Rayleigh noise effect in OEOs and other RF-photonic systems. 3.1 Suppression of AM-to-PM conversion From the phase plots in Figs. 3 and 4, we can see that the magnitude of the AM-to-PM conversion terms depend on the input powers into the nonlinear components (photodiodes and RF amplifiers) of the OEO. We showed previously that by introducing a nonlinear gain element with the proper phase relationship, we could eliminate the AM-to-PM effect [7]. In lieu of using such a device, we instead attenuated the optical power into the photodetector and the RF power into the final stage of the amplifier block in the OEO to alter the magnitude of the AM-to-PM conversion in these devices. We note that we attenuated the optical power after the fiber spool so as not to change the GEMRS induced in the fiber. In addition, we placed the RF attenuator after the first stage RF amplifier so as not to change the amount of additive noise generated by the amplifiers; this additive noise is dominated by the first amplifier stage. (C) 2013 OSA 23 September 2013 Vol. 21, No. 19 DOI:10.1364/OE.21.022255 OPTICS EXPRESS 22259

Fig. 5. Phase noise plots from a 10 GHz OEO with a 6 km fiber delay with and without optical attenuation before the photodetector. Figure 5 shows the phase noise of a 6 km OEO with and without optical attenuation before the photodetector. The unattenuated optical power level into the photodetector was 11 dbm. After attenuation, the optical power was 4 dbm. The AM-to-PM conversion factor in the photodetector is proportional to the slope of the amplitude-dependent phase shift shown in Fig. 3. From Fig. 3, we see that changing the input optical power from 11 dbm to 4 dbm decreases the AM-to-PM conversion factor in the photodetector. We observe a commensurate 7 db reduction in the relative flicker noise at offset frequencies below 10 khz. Note that if the flicker noise were due to an additive noise source such as shot noise in the photodetectors, then attenuating the optical power would have increased the relative flicker noise level. Therefore, the observed reduction in flicker noise indicates that the induced noise was due to the nonlinear AM-to-PM effect shown in Fig. 3. (C) 2013 OSA 23 September 2013 Vol. 21, No. 19 DOI:10.1364/OE.21.022255 OPTICS EXPRESS 22260

Fig. 6. Phase noise plots from a 10 GHz OEO with a 6 km fiber delay with and without optical attenuation before the second stage amplifier. Figure 6 shows the phase noise of a 6 km OEO with and without RF attenuation before the second stage of the amplifier block. Without RF attenuation, the input power into the amplifier block is approximately 30 dbm. Again, the amplitude-dependent phase curve in Fig. 4 shows that by reducing the input RF power by 12 db, we reduced the AM-to-PM conversion factor in the RF amplifiers. As shown in Fig. 6, we observe a commensurate reduction in the OEO phase noise. Both attenuation methods reduced the flicker noise by approximately 7 db. Constructing a nonlinear gain element with the precise optimal phase slope may have an even greater effect on the OEO s flicker noise. 3.2 Suppression of Rayleigh scattering In this subsection, we present the effect of GEMRS suppression on the OEO phase noise. Previously, we showed that laser frequency modulation suppresses GEMRS-induced intensity noise in optical fibers [12]. The GEMRS effect has a gain bandwidth between 10 and 100 khz in single-mode optical fibers at 1550 nm. By modulating the laser frequency at frequencies between 10 and 100 khz, we demonstrated up to 30 db suppression of the GEMRS-induced intensity noise in the optical domain. We now present experimental data showing that laser frequency modulation also reduces the flicker phase noise of the OEO. Figure 7 shows the phase noise of a 6 km OEO with and without laser frequency modulation. The data show that the phase noise of the OEO was reduced by up to 20 db. In particular, the phase noise reduction was greatest at offset frequencies where the GEMRS-induced intensity noise shown in Fig. 2 was greatest. We note that the effectiveness of laser-frequencymodulation diminishes at frequencies below 100 Hz. The structure of the noise in this frequency range suggests vibrational effects are the principle noise source in this region. The noise spikes in the red curve in Fig. 7 match typical vibration frequencies of various fans in our laboratory. (C) 2013 OSA 23 September 2013 Vol. 21, No. 19 DOI:10.1364/OE.21.022255 OPTICS EXPRESS 22261

Fig. 7. Phase noise plots from a 10 GHz OEO with a 6 km fiber delay with and without GEMRS suppression via laser frequency modulation. 4. Conclusion In this work, we demonstrated that together GEMRS-induced optical intensity noise and AMto-PM conversion in photodetectors and RF amplifiers comprise the dominant source of fiberlength-dependent flicker phase noise in our OEOs. We demonstrated that suppressing either effect reduced the flicker phase noise of the OEO. Suppressing GEMRS via laser frequency modulation was the most effective means of flicker noise suppression. We observed up to 20 db reduction of the flicker phase noise at 1 khz by laser frequency modulation. We note that these noise phenomena are not unique to OEOs. We expect similar flicker noise in any RF-photonic system with high-q resonators or long waveguides with significant transverse gradients and nonlinear elements with amplitude-dependent phase such as photodetectors and amplifiers. Systems that include this combination of elements include: mode-locked laser-based RF sources such as coupled OEOs and carrier envelope phase locked lasers [13, 14]; whispering gallery mode optical resonators [15]; and time and frequency transfer systems that utilize optical fibers. For any of the above systems, the noise suppression techniques presented in this work may prove valuable. #193302 - $15.00 USD Received 5 Jul 2013; revised 28 Aug 2013; accepted 4 Sep 2013; published 13 Sep 2013 (C) 2013 OSA 23 September 2013 Vol. 21, No. 19 DOI:10.1364/OE.21.022255 OPTICS EXPRESS 22262