Design and power optimization of CMOS RF blocks operating in the moderate inversion region

Similar documents
Quadrature GPS Receiver Front-End in 0.13μm CMOS: The QLMV cell

Fully Integrated Low Phase Noise LC VCO. Desired Characteristics of VCOs

6.776 High Speed Communication Circuits Lecture 6 MOS Transistors, Passive Components, Gain- Bandwidth Issue for Broadband Amplifiers

AVoltage Controlled Oscillator (VCO) was designed and

Quiz2: Mixer and VCO Design

A CMOS GHz UWB LNA Employing Modified Derivative Superposition Method

DESIGN OF ZIGBEE RF FRONT END IC IN 2.4 GHz ISM BAND

Low Noise Amplifier Design

An Asymmetrical Bulk CMOS Switch for 2.4 GHz Application

A 25-GHz Differential LC-VCO in 90-nm CMOS

T. Taris, H. Kraïmia, JB. Begueret, Y. Deval. Bordeaux, France. 12/15-16, 2011 Lauzanne, Switzerland

6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers

Fully-Integrated Low Phase Noise Bipolar Differential VCOs at 2.9 and 4.4 GHz

Dr.-Ing. Ulrich L. Rohde

A Multiobjective Optimization based Fast and Robust Design Methodology for Low Power and Low Phase Noise Current Starved VCO Gaurav Sharma 1

Low-Power RF Integrated Circuit Design Techniques for Short-Range Wireless Connectivity

ISSCC 2004 / SESSION 21/ 21.1

ISSCC 2002 / SESSION 17 / ADVANCED RF TECHNIQUES / 17.2

RF Integrated Circuits

CHAPTER 3 CMOS LOW NOISE AMPLIFIERS

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver

95GHz Receiver with Fundamental Frequency VCO and Static Frequency Divider in 65nm Digital CMOS

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

ETI , Good luck! Written Exam Integrated Radio Electronics. Lund University Dept. of Electroscience

Streamlined Design of SiGe Based Power Amplifiers

Long Range Passive RF-ID Tag With UWB Transmitter

EVALUATION KIT AVAILABLE 10MHz to 1050MHz Integrated RF Oscillator with Buffered Outputs. Typical Operating Circuit. 10nH 1000pF MAX2620 BIAS SUPPLY

Design of a Low Power 5GHz CMOS Radio Frequency Low Noise Amplifier Rakshith Venkatesh

Design of a Reusable Rail-to-Rail Operational Amplifier

Lecture 160 Examples of CDR Circuits in CMOS (09/04/03) Page 160-1

PART MAX2605EUT-T MAX2606EUT-T MAX2607EUT-T MAX2608EUT-T MAX2609EUT-T TOP VIEW IND GND. Maxim Integrated Products 1

A 20GHz Class-C VCO Using Noise Sensitivity Mitigation Technique

A Low Phase Noise LC VCO for 6GHz

A 10-GHz CMOS LC VCO with Wide Tuning Range Using Capacitive Degeneration

Highly linear common-gate mixer employing intrinsic second and third order distortion cancellation

A Novel Design of Low Voltage,Wilson Current Mirror based Wideband Operational Transconductance Amplifier

A HIGH FIGURE-OF-MERIT LOW PHASE NOISE 15-GHz CMOS VCO

An Optimal Design of Ring Oscillator and Differential LC using 45 nm CMOS Technology

i. At the start-up of oscillation there is an excess negative resistance (-R)

WITH advancements in submicrometer CMOS technology,

A 60GHz CMOS Power Amplifier Using Varactor Cross-Coupling Neutralization with Adaptive Bias

Low-Noise Amplifiers

Design and Simulation of Voltage-Mode and Current-Mode Class-D Power Amplifiers for 2.4 GHz Applications

10MHz to 1050MHz Integrated RF Oscillator with Buffered Outputs

MP 4.3 Monolithic CMOS Distributed Amplifier and Oscillator

1-13GHz Wideband LNA utilizing a Transformer as a Compact Inter-stage Network in 65nm CMOS

Layout Design of LC VCO with Current Mirror Using 0.18 µm Technology

A 2.4 GHz to 3.86 GHz digitally controlled oscillator with 18.5 khz frequency resolution using single PMOS varactor

A 5.5 GHz Voltage Control Oscillator (VCO) with a Differential Tunable Active and Passive Inductor

1P6M 0.18-µm Low Power CMOS Ring Oscillator for Radio Frequency Applications

THE BASIC BUILDING BLOCKS OF 1.8 GHZ PLL

FD-SOI FOR RF IC DESIGN. SITRI LETI Workshop Mercier Eric 08 september 2016

20 GHz Low Power QVCO and De-skew Techniques in 0.13µm Digital CMOS. Masum Hossain & Tony Chan Carusone University of Toronto

A 5GHz, 32mW CMOS Frequency Synthesizer with an Injection Locked Frequency Divider. Hamid Rategh, Hirad Samavati, Thomas Lee

An 8mA, 3.8dB NF, 40dB Gain CMOS Front-End for GPS Applications

Hot Topics and Cool Ideas in Scaled CMOS Analog Design

An Inductor-Based 52-GHz 0.18 µm SiGe HBT Cascode LNA with 22 db Gain

Project #3 for Electronic Circuit II

Fully integrated CMOS transmitter design considerations

Christopher J. Barnwell ECE Department U. N. Carolina at Charlotte Charlotte, NC, 28223, USA

DESIGN OF 2.4 GHZ LOW POWER CMOS TRANSMITTER FRONT END

A 3 5 GHz CMOS High Linearity Ultra Wideband Low Noise Amplifier in 0.18µ CMOS

Case Study: Osc2 Design of a C-Band VCO

CMOS analog amplier design problem: choose transistor dimensions, bias currents, component values critical part of mixed-mode (digital-analog) ICs for

Review of ASITIC (Analysis and Simulation of Inductors and Transformers for Integrated Circuits) Tool to Design Inductor on Chip

DESIGN OF 3 TO 5 GHz CMOS LOW NOISE AMPLIFIER FOR ULTRA-WIDEBAND (UWB) SYSTEM

Design of a Low Noise Amplifier using 0.18µm CMOS technology

A GSM Band Low-Power LNA 1. LNA Schematic

POSTECH Activities on CMOS based Linear Power Amplifiers

Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET

Class E broadband amplifier with C-LC shunt network

Quadrature Generation Techniques in CMOS Relaxation Oscillators. S. Aniruddhan Indian Institute of Technology Madras Chennai, India

A Pulse-Based CMOS Ultra-Wideband Transmitter for WPANs

Low Phase Noise C band HBT VCO. GaAs Monolithic Microwave IC

Sensors & Transducers Published by IFSA Publishing, S. L.,

CHAPTER 4 ULTRA WIDE BAND LOW NOISE AMPLIFIER DESIGN

CMOS Dual Band Receiver GSM 900-Mhz / DSS-GSM1800-GHz

6.976 High Speed Communication Circuits and Systems Lecture 11 Voltage Controlled Oscillators

Chapter 2 CMOS at Millimeter Wave Frequencies

A 2.4GHz Cascode CMOS Low Noise Amplifier

A 2.6GHz/5.2GHz CMOS Voltage-Controlled Oscillator*

ALow Voltage Wide-Input-Range Bulk-Input CMOS OTA

Designing a 960 MHz CMOS LNA and Mixer using ADS. EE 5390 RFIC Design Michelle Montoya Alfredo Perez. April 15, 2004

Solid State Devices & Circuits. 18. Advanced Techniques

SiNANO-NEREID Workshop:

RF Noise Simulation for Submicron MOSFET s Based on Hydrodynamic Model

Keywords Divide by-4, Direct injection, Injection locked frequency divider (ILFD), Low voltage, Locking range.

A LOW POWER CMOS TRANSCEIVER DESIGN FOR MEDICAL IMPANT COMMUNICATION SERVICE

Nonlinear Macromodeling of Amplifiers and Applications to Filter Design.

Analysis and Design of a Family of Low-Power Class AB Operational Amplifiers

A 2.4-GHz 24-dBm SOI CMOS Power Amplifier with Fully Integrated Output Balun and Switched Capacitors for Load Line Adaptation

A 3 8 GHz Broadband Low Power Mixer

DEEP-SUBMICROMETER CMOS processes are attractive

Challenges in Designing CMOS Wireless System-on-a-chip

Chapter 4 Single-stage MOS amplifiers

Low Power Low Phase Noise CMOS LC VCO A Review

Noise Reduction in Transistor Oscillators: Part 3 Noise Shifting Techniques. cross-coupled. over other topolo-

Design of 2.4 GHz Oscillators In CMOS Technology

A Wide Tuning Range Gm-C Continuous-Time Analog Filter

Measurement and Modeling of CMOS Devices in Short Millimeter Wave. Minoru Fujishima

Transcription:

Design and power optimization of CMOS RF blocks operating in the moderate inversion region Leonardo Barboni, Rafaella Fiorelli, Fernando Silveira Instituto de Ingeniería Eléctrica Facultad de Ingeniería Universidad de la República Montevideo, Uruguay F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 1

Outline I. Motivations, Objectives, Introduction II. Tool for CMOS RF Amplifier Power Optimization III. 900 MHz Amplifiers prototypes and experimental results IV. 900 MHz Voltage Controlled Oscillator Design Phase Noise Design Methodology and Trade Offs Inductor Design Experimental Results V. Conclusions F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 2

I. Motivations and Framework. Applications: Short Range (< 10m) Links for Wireless Sensors or Telemetry (WPAN: Wireless Personal Area Networks) - IEEE 802.15.4 (2003) / Zigbee - f (MHz): 868 / 915/ 2400-1 / 10 / 16 Channels - 20 / 40 / 250 kbps (*)"IEEE 802.15.4: A Developing Standard for Low Power Low Cost Wireless Personal Area Networks",IEEE Network, Oct2001 F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 3

I. Objectives Design of IEEE 802.15.4 (or ad hoc) transmitter + integrated sensor. Test possibility of translating low-frequency ultra low power analog experience to the RF domain. Tool to design and evaluate the operation of RF circuits in Weak and Moderate Inversion. (previous work Porret et al, CSEM, 0.5µm, 433MHz, JSSC 3/2001) First experiences in design of RF integrated circuits. F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 4

I. Introduction: MOST Inversion Regimes Strong Inversion (S.I.) I D (V G -V T ) 2 Moderate inversion Weak inversion: I D e VG/(n.UT) F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 5

I. Introduction: Intrinsic MOS Amplifier V DD A (db) A 0 =g m /g d vi I D vo C L f T =g m /(2.π.C L ) f(hz) OTA: Operational Transconductance Amplifier gm gm A 0 = gm.ro = =. VA gd ID f T gm = 2πC L, A0 A = s.a 1+ 2πf 0 T Consumption: I D Speed g m /C L Speed - Consumption trade-off : g m /I D F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 6

I. Introduction:Optimum of Power Consumption 30 25 Weak inversion: I D e VG/(n.UT) Moderate inversion gm/id (1/V) 20 15 10 Strong inversion (I D (V G -V T ) 2 ) 5 0 10-10 10-8 10-6 10-4 10-2 ID/(W/L) (A) Working towards WI g m /I D I D W/L C g m Usually an optimum exists in moderate inversion F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 7

Outline I. Motivations, Objectives, Introduction II. Tool for CMOS RF Amplifier Power Optimization III. 900 MHz Amplifiers prototypes and experimental results IV. 900 MHz Voltage Controlled Oscillator Design Phase Noise Design Methodology and Trade Offs Inductor Design Experimental Results V. Conclusions F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 8

II. MOS transistor modeling (I) Continuous model for W.I to S.I => ACM model Basic structures modeled as 2-port network F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 9

II. MOS transistor modeling (2) Medium frequency model: 5 capacitors, Quasi-static, No velocity saturation effect Quasi-static: g m gm ω = 1 + jωτ +... 1 ( ) gm f QSmax ft 10 = 1 10 2π Quasi-static model limit g m = ( C ) gs + Cgb + Cgd ID f g m F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 10

II. Object of study: Basic RF amplifier stages 1 Vdd Me_1 Me_0 2. Iref 4 RF 3 CL Vo. Cd M1. 5 Vin. 0 8. R1 R2 C2. F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 11

II. Design Space Exploration ISCAS 2006 In the design space (I D -gm/i D ) are calculated the curves of constant gain A. F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 12

II. Ex. (1): One Stage Amplifier One stage amplifier at 910MHz and L=0.35um with: Load capacitance CL=0.5pF Feedback resistance RF=5kΩ Rg neglected Minimum consumption @ A=2V/V calculated simulated F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 13

II. Ex. (2):Effect of gate resistance Gate resistance, non interdigitized layout 1 W R g R 3 L Original optimum not considering Rg F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 14

II. Tool user interface F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 15

II. Ex. (3): Technology comparison One stage amplifier with G=2V/V, C L =0.1pF and no R F. L min = 0.8µm L min = 0.35µm 900MHz is not high frequency for 0.35µm technology Ultra low power consumption techniques (MOS transistor in MI and WI) can be used increase efficiency It is possible to work optimally in MI and in QS region F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 16

II. Other Recent Results:IMEC, 2004, 90nm g m /I ds (V -1 ) and g m /g ds 30 25 20 15 10 5 moderate inversion g m /g ds g m /I ds strong inversion f max 0 0 10 0 10 1 10 2 10 3 10 4 Drain current, I (µa/µm) ds f T 250 200 150 100 50 f T and f max (GHz) Design specification: f max and f T > 5-10 times f application Moderate inversion Up to 5GHz applications. Low power consumption. Strong inversion Up to 20GHz applications. Higher power consumption. * W. Jeamsaksiri et al. Symposium on VLSI Technology, June, 2004 ** J. Ramos et al. ESSDERC, September 2004 F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 17

Outline I. Motivations, Objectives, Introduction II. Tool for CMOS RF Amplifier Power Optimization III. 900 MHz Amplifiers prototypes and experimental results IV. 900 MHz Voltage Controlled Oscillator Design Phase Noise Design Methodology and Trade Offs Inductor Design Experimental Results V. Conclusions F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 18

1- PA of a Low Power Short Range Tx 2- Optimum Amplifier Stage III. Experimental Prototypes 3- Three Stages Preamplifier (2) Me_1 Me_2 Me_3 Vdd Ld Me_0 Iref. (3) Ce GND (A). (12) (11) M1 5K (10) M2 15K (9) M3. 13p (13) CL L A1 Cb. Vo. RL Vbias2 (1) Mp A2 Vin GND... 50K (3) 50K. C2.. F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 19

III. Measurement: Optimal Stage F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 20

III. Measurement: Optimal Stage F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 21

III. Measurement: Optimal Stage ID= 0.50mA estimated, 0.53mA simulated, 0.54mA measured. With Input Power estimated from simulations Pout Gp (Power Gain) Simulated -21.78dBm 10.93 db Measured Estimated -22.08dBm -16.10dBm 10.6 db 11 db F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 22

Outline I. Motivations, Objectives, Introduction II. Tool for CMOS RF Amplifier Power Optimization III. 900 MHz Amplifiers prototypes and experimental results IV. 900 MHz Voltage Controlled Oscillator Design Phase Noise Design Methodology and Trade Offs Inductor Design Experimental Results V. Conclusions F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 23

IV. Phase Noise in LC VCOs V0 (t) = Acos(ω0t + φ) V0 (t) = A(t)cos(ω 0t + φ(t)) Origin Upconversion of the 1/f noise and white noise due to a nonlinear system F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 24

IV. Phase Noise in LC VCOs Phase noise definition L( ω) = [ L( ω )] = dbc/hz P (ω 10log sideband 0 + P carrier ω,1hz) 1/f 3 1/f 2 F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 25

IV. Gm LC Complementary VCO Circuit Margin g f m 0 = g αg = 2π tank tank /2 /2 1 LC tank F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 26

IV. VCO Design Methodology Ind L C Mi C var f 0 gl,par W Mi Q L I D g m = αg L,par /2 α g m /I D L f 0 = 2π 1 LC tank If L >L max C var <C min F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 27

IV. VCO Design Trade-offs Q L g m /I D ( ID ) L but... L 2 x2 then P d (-6dB) F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 28

IV. VCO Final Design Design parameter Value L 5nH g m /I D 11 C var W n 0.7pF 336µm W p 782µm F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 29

IV. Phase Noise Phase noise models: Linear time invariant model (LTI) (by Leeson, Proc. IEEE, 1966), Adjustment parameter F. Linear time variant model (LTV) (by Hajimiri and Lee, JSSC 2000) F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 30

IV. Phase Noise Phase noise obtained from simulation With a Matlab routine: LTI model -108dBc/Hz @600kHz LTV model -120dBc/Hz @600kHz Differences probably due to factor F With Cadence: -119dBc/Hz @600kHz F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 31

IV. Inductors Design Characteristics Inductance value Quality factor Self resonance frequency Area, number of turns and width. Dependent on the technology characteristics:» Number of metal layers» Inductor metal thicknesss» Resistivity of the substrate F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 32

IV. Inductors Design Modelling Lumped inductor model:» Mohan s inductance expressions» Yue s model Q = L ω 0 R L s s π net F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 33

IV. Inductors Design Inductor losses Metal losses» Skin effect» Eddy currents in the winding Substrate losses» Eddy currents in the substrate F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 34

IV. Inductors Design Final inductor design Geometry Metal Number of turns W s Square Top metal 14µm d out 1.5 µm 4 260 µm L(nH)Characteristics 5.1 Rs(Ω) calculated with 9 3 tools: Cs(fF) Cox(fF) Q Matlab ASITIC Cadence 27 122 3.1 F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 35

IV. Varactor Inversion Mode MOS F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 36

IV. VCO Layout Final design F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 37

IV. VCO Measurements Measurement setup F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 38

IV. VCO Measurements VCO oscillation frequency versus V bias K VCO =-169MHz/V tuning range=11% K VCO =-214MHz/V tuning range=15% F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 39

IV. VCO Measurements PSD and phase noise @ IDD = 3mA, VDD=3V L @100kHz =-87dBc/Hz L @600kHz =-102dBc/Hz L @1MHz =-107dBc/Hz F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 40

V. Conclusions Inversion level that gives an optimum consumption for a given gain. Matlab tool which helps in the design of low power RF blocks. Feasibility of working in moderate inversion at 910MHz in 0.35µm technology. Experience in ultra low power analog design may be reused here. VCO: Moderate inversion provides a good compromise between phase noise and consumption. Layout wiring parasitics and package parasitics strongly affect performance F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 41

Thank you! F. Silveira Univ. de la República, Montevideo, Uruguay EAMTA 2006 42