TLE4961-3M. Data Sheet. Sense & Control. High Precision Automotive Hall Effect Latch. Revision 1.0,

Similar documents
Tire Pressure Monitoring Sensor

High Precision Automotive Hall Effect Switch for 5V Applications

High Precision Hall Effect Switch for Consumer Applications

LED Drivers for Low Power LEDs BCR205W. Data Sheet. Industrial and Multimarket. Ultra low dropout LED controller. Revision 2.

Power Management & Multimarket

Power Management & Multimarket

LED Drivers for High Power LEDs

Power Management & Multimarket

Power Management & Multimarket

Power Management & Multimarket

Power Management & Multimarket

Power Management & Multimarket

BGA729N6. Data Sheet. RF & Protection Devices. Broadband Low Noise Amplifier for Portable and Mobile TV Applications. Revision 3.

BGA7L1BN6. Data Sheet. RF & Protection Devices. Silicon Germanium Low Noise Amplifier for LTE. Revision 3.1,

Power Management & Multimarket

Power Management & Multimarket

January 2009 TLE4906K / TLE4906L. High Precision Hall Effect Switch. Data Sheet V 2.0. Sensors

BGB719N7ESD. Data Sheet. RF & Protection Devices. Low Noise Amplifier MMIC for FM Radio Applications. Revision 1.1,

BGS22W2L10. Data Sheet. Power Management & Multimarket. DPDT (Dual-Pole / Double-Throw) Differential RF Switch. Revision October 12, 2012

BFN18. Data Sheet. RF & Protection Devices. NPN Silicon High-Voltage Transistors. Revision 1.0,

Power Management & Multimarket

BGM1034N7. Data Sheet. RF & Protection Devices. GPS and GLONASS Front-End Module. Revision 3.0,

TVS Diodes ESD5V0L1B-02V. Data Sheet. Industrial and Multi-Market. Transient Voltage Suppressor Diodes. Bi-directional Low Capacitance TVS Diode

Power Management & Multimarket

Power Management & Multimarket

BGM1143N9. Data Sheet. RF & Protection Devices. Front-End Module for Global Navigation Satellite Systems (GNSS) Revision 2.0, Preliminary

BGM1043N7. Data Sheet. RF & Protection Devices. GPS and GLONASS Front-End Module. Revision 3.0,

TLV4946K, TLV4946-2K. Datasheet. Sense and Control. Value Optimized Hall Effect Latches for Industrial and Consumer Applications. Rev1.

Power Management & Multimarket

BFP450. Datasheet. RF & Protection Devices. Linear Low Noise Silicon Bipolar RF Transistor. Revision 1.2,

BGA924N6. Data Sheet. RF & Protection Devices. Silicon Germanium Low Noise Amplifier for Global Navigation Satellite Systems (GNSS)

BGB717L7ESD. Data Sheet. RF & Protection Devices. SiGe:C Low Noise Amplifier MMIC for FM Radio Applications. Revision 3.

BGS12SN6. Data Sheet. Power Management & Multimarket. Wideband RF SPDT Switch in ultra small package with 0.77mm 2 footprint. Revision 1.

Power Management & Multimarket

Power Management & Multimarket

BFP650. Data Sheet. RF & Protection Devices. High Linearity Silicon Germanium Bipolar RF Transistor. Revision 1.1,

LED Drivers for High Power LEDs

Revision: Rev

BGS12SN6. Data Sheet. Power Management & Multimarket. Wideband RF SPDT Switch in small package with 0.77mm 2 footprint. Revision 2.

Power Management & Multimarket

Revision: Rev

Data Sheet, V 1.1, Oct TLE4906H TLE4906L. High Precision Hall-Effect Switch. Sensors

Power Management & Multimarket

TLV4946-2L. Datasheet. Sense and Control. Value Optimized Hall Effect Latch for Industrial and Consumer Applications. Rev1.

TLE4997A8D Grade1. Technical Product Description. Sense & Control. Programmable Linear Dual Hall Sensor. Revision 1.0,

BGA7L1N6. Data Sheet. RF & Protection Devices. Silicon Germanium Low Noise Amplifier for LTE. Revision 3.1 (Min/Max),

TLE4976-1K / TLE4976L

Power Management & Multimarket

Revision: Rev

BGSF110GN26. Preliminary Datasheet. RF & Protection Devices

BFP840ESD. Data Sheet. RF & Protection Devices. Robust Low Noise Silicon Germanium Bipolar RF Transistor. Revision 1.2,

BFP843. Data Sheet. RF & Protection Devices. Robust Low Noise Broadband Pre-Matched Bipolar RF Transistor. Revision 1.

BFP720F. Data Sheet. RF & Protection Devices. Low Noise Silicon Germanium Bipolar RF Transistor. Revision 1.1,

BFP760. Data Sheet. RF & Protection Devices. Low Noise Silicon Germanium Bipolar RF Transistor. Revision 1.1,

Power Management & Multimarket

Power Management & Multimarket

BFP740. Data Sheet. RF & Protection Devices. Low Noise Silicon Germanium Bipolar RF Transistor. Revision 1.1,

BFP450. Data Sheet. RF & Protection Devices. High Linearity Low Noise Si NPN RF Transistor. Revision 1.0,

TLE4922-XIN-F. 1 Product Description

BFP740F. Data Sheet. RF & Protection Devices. Low Noise Silicon Germanium Bipolar RF Transistor. Revision 2.0,

Power Management & Multimarket

BGA751N7. Data Sheet. RF & Protection Devices. SiGe Bipolar 3G/3.5G/4G Single-Band LNA. Revision 3.1,

BGA748L16. Data Sheet. RF & Protection Devices. High Linearity Quad-Band UMTS LNA (2100, 1900, 900, 800 MHz) Revision 3.

BFP640. Data Sheet. RF & Protection Devices. Low Noise Silicon Germanium Bipolar RF Transistor. Revision 2.0,

BGB741L7ESD. Data Sheet. RF & Protection Devices. Robust Low Noise Broadband RF Amplifier MMIC. Revision 2.0,

BFP650. Data Sheet. RF & Protection Devices. High Linearity Low Noise SiGe:C NPN RF Transistor. Revision 1.0,

LED Driver for High Power LEDs ILD4001. Data Sheet. Industrial and Multimarket. Step down LED Controller for high power LEDs. Revision 2.

Revision: Rev

Analog Manifold Air Pressure Sensor IC. Analog Absolute Pressure Sensor. Revision 1.0,

Revision: Rev

TVS Diodes. ESD0P2RF Series. Data Sheet. Industrial and Multi-Market. Transient Voltage Suppressor Diodes

BGA713L7. Data Sheet. RF & Protection Devices. Single-Band UMTS LNA (700, 800 MHz) Revision 3.0,

BFP842ESD. Data Sheet. RF & Protection Devices. Robust Low Noise Silicon Germanium Bipolar RF Transistor. Revision 1.1,

TLE4916-1K. Datasheet. Sense & Control. Low Power Automotive Hall Switch. Rev.1.0,

BFR720L3RH. Data Sheet. RF & Protection Devices. Low Noise Silicon Germanium Bipolar RF Transistor. Revision 2.0,

BFR740L3RH. Data Sheet. RF & Protection Devices. Low Noise Silicon Germanium Bipolar RF Transistor. Revision 2.0,

BFP640ESD. Data Sheet. RF & Protection Devices. Robust Low Noise Silicon Germanium Bipolar RF Transistor. Revision 1.1,

BFR840L3RHESD. Data Sheet. RF & Protection Devices. Robust Low Noise Silicon Germanium Bipolar RF Transistor. Revision 1.

Power Management and Multimarket

EiceDRIVER. High voltage gate drive IC. Application Note. AN Revision 1.3,

Ultra Low Quiescent Current Linear Voltage Regulator

Power Management and Multimarket

Power Management & Multimarket

TVS Diodes. ESD18VU1B Series. Data Sheet. Industrial and Multi-Market. Transient Voltage Suppressor Diodes

Angle Sensor TLE5012BD. Data Sheet. Sense & Control. GMR-Based Dual Die Angle Sensor. Rev. 1.2,

Low Dropout Linear Voltage Regulator

Edition Published by Infineon Technologies AG Munich, Germany 2017 Infineon Technologies AG All Rights Reserved.

Revision: Rev

BFP720FESD. Data Sheet. RF & Protection Devices. Robust Low Noise Silicon Germanium Bipolar RF Transistor. Revision 1.

BGS12PN10. Data Sheet. Power Management & Multimarket. SPDT high linearity, high power RF Switch. Revision

BFP720ESD. Data Sheet. RF & Protection Devices. Robust High Performance Low Noise Bipolar RF Transistor. Revision 1.0,

Revision: Rev

Overvoltage at the Buck Converter Output

BGSA14GN10. Data Sheet. Power Management & Multimarket. Single-Pole Quad Throw Antenna Tuning Switch. Revision

Revision: Rev

BGA734L16. Data Sheet. RF & Protection Devices. Low Power Tri-Band UMTS LNA (2100, 1900, 800 MHz) Revision 1.1,

Dual channel 5 A, high-speed, low-side gate driver with high negative input voltage capability and advanced reverse current robustness

AN523. About this document. Scope and purpose

Revision: Rev

SPDT RF CMOS Switch. Revision: Rev

Transcription:

High Precision Automotive Hall Effect Latch Data Sheet Revision 1.0, 2012-07-20 Sense & Control

Edition 2012-07-20 Published by Infineon Technologies AG 81726 Munich, Germany 2012 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Revision History Page or Item Subjects (major changes since previous revision) Revision 1.0, 2012-07-20 Trademarks of Infineon Technologies AG AURIX, C166, CanPAK, CIPOS, CIPURSE, EconoPACK, CoolMOS, CoolSET, CORECONTROL, CROSSAVE, DAVE, EasyPIM, EconoBRIDGE, EconoDUAL, EconoPIM, EiceDRIVER, eupec, FCOS, HITFET, HybridPACK, I²RF, ISOFACE, IsoPACK, MIPAQ, ModSTACK, my-d, NovalithIC, OptiMOS, ORIGA, PRIMARION, PrimePACK, PrimeSTACK, PRO-SIL, PROFET, RASIC, ReverSave, SatRIC, SIEGET, SINDRION, SIPMOS, SmartLEWIS, SOLID FLASH, TEMPFET, thinq!, TRENCHSTOP, TriCore. Other Trademarks Advance Design System (ADS) of Agilent Technologies, AMBA, ARM, MULTI-ICE, KEIL, PRIMECELL, REALVIEW, THUMB, µvision of ARM Limited, UK. AUTOSAR is licensed by AUTOSAR development partnership. Bluetooth of Bluetooth SIG Inc. CAT-iq of DECT Forum. COLOSSUS, FirstGPS of Trimble Navigation Ltd. EMV of EMVCo, LLC (Visa Holdings Inc.). EPCOS of Epcos AG. FLEXGO of Microsoft Corporation. FlexRay is licensed by FlexRay Consortium. HYPERTERMINAL of Hilgraeve Incorporated. IEC of Commission Electrotechnique Internationale. IrDA of Infrared Data Association Corporation. ISO of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB of MathWorks, Inc. MAXIM of Maxim Integrated Products, Inc. MICROTEC, NUCLEUS of Mentor Graphics Corporation. Mifare of NXP. MIPI of MIPI Alliance, Inc. MIPS of MIPS Technologies, Inc., USA. murata of MURATA MANUFACTURING CO., MICROWAVE OFFICE (MWO) of Applied Wave Research Inc., OmniVision of OmniVision Technologies, Inc. Openwave Openwave Systems Inc. RED HAT Red Hat, Inc. RFMD RF Micro Devices, Inc. SIRIUS of Sirius Satellite Radio Inc. SOLARIS of Sun Microsystems, Inc. SPANSION of Spansion LLC Ltd. Symbian of Symbian Software Limited. TAIYO YUDEN of Taiyo Yuden Co. TEAKLITE of CEVA, Inc. TEKTRONIX of Tektronix Inc. TOKO of TOKO KABUSHIKI KAISHA TA. UNIX of X/Open Company Limited. VERILOG, PALLADIUM of Cadence Design Systems, Inc. VLYNQ of Texas Instruments Incorporated. VXWORKS, WIND RIVER of WIND RIVER SYSTEMS, INC. ZETEX of Diodes Zetex Limited. Last Trademarks Update 2011-02-24 Data Sheet 3 Revision 1.0, 2012-07-20

Table of Contents Table of Contents Table of Contents................................................................ 4 List of Figures................................................................... 5 List of Tables.................................................................... 6 1 Product Description.............................................................. 7 1.1 Overview........................................................................ 7 1.2 Features........................................................................ 7 1.3 Target Applications................................................................ 7 2 Functional Description............................................................ 8 2.1 General......................................................................... 8 2.2 Pin Configuration (top view)......................................................... 8 2.3 Pin Description................................................................... 8 2.4 Block Diagram................................................................... 9 2.5 Functional Block Description........................................................ 9 2.6 Default Start-up Behavior.......................................................... 11 3 Specification................................................................... 12 3.1 Application Circuit................................................................ 12 3.2 Absolute Maximum Ratings........................................................ 13 3.3 Operating Range................................................................ 14 3.4 Electrical and Magnetic Characteristics............................................... 14 3.5 Electro Magnetic Compatibility...................................................... 16 4 Package Information............................................................ 17 4.1 Package Outline PG-SOT23-3-15................................................... 17 4.2 Packing Information PG-SOT23-3-15................................................. 17 4.3 Footprint PG-SC59-3-5 and PG-SOT23-3-15........................................... 18 4.4 PG-SOT23-3-15 Distance between Chip and Package................................... 18 4.5 Package Marking................................................................ 18 5 Graphs of the Magnetic Parameters................................................ 19 6 Graphs of the Electrical Parameters................................................ 20 Data Sheet 4 Revision 1.0, 2012-07-20

List of Figures List of Figures Figure 1-1 Image of TLE4961-3M in the PG-SOT23-3-15 Package................................. 7 Figure 2-1 Pin Configuration and Center of Sensitive Area........................................ 8 Figure 2-2 Functional Block Diagram TLE4961-3M.............................................. 9 Figure 2-3 Timing Diagram TLE4961-3M..................................................... 10 Figure 2-4 Output Signal TLE4961-3M...................................................... 10 Figure 2-5 Illustration of the Start-up Behavior of the TLE4961-3M................................. 11 Figure 3-1 Application Circuit 1: With External Resistor......................................... 12 Figure 3-2 Application Circuit 2: Without External Resistor....................................... 12 Figure 3-3 Definition of Magnetic Field Direction PG-SOT23-3-15................................. 15 Figure 3-4 EMC Test Circuit............................................................... 16 Figure 4-1 PG-SOT23-3-15 Package Outline (All Dimensions in mm).............................. 17 Figure 4-2 Packing of the PG-SOT23-3-15 in a Tape........................................... 17 Figure 4-3 Footprint PG-SC59-3-5 and PG-SOT23-3-15......................................... 18 Figure 4-4 Distance between Chip and Package............................................... 18 Figure 4-5 Marking of TLE4961-3M......................................................... 18 Figure 5-1 Operating Point (B OP ) of the TLE4961-3M over Temperature............................ 19 Figure 5-2 Release Point (B RP ) of the TLE4961-3M over Temperature.............................. 19 Figure 5-3 Hysteresis (B Hys ) of the TLE4961-3M over Temperature................................ 19 Figure 6-1 Power On Time t PON of the TLE4961-3M over Temperature............................. 20 Figure 6-2 Signal Delay Time of the TLE4961-3M over Temperature............................... 20 Figure 6-3 Supply Current of the TLE4961-3M over Temperature................................. 21 Figure 6-4 Supply Current of the TLE4961-3M over Supply Voltage................................ 21 Figure 6-5 Output Current Limit of the TLE4961-3M over Temperature............................. 22 Figure 6-6 Output Current Limit of the TLE4961-3M over applied Pull-up Voltage..................... 22 Figure 6-7 Output Fall Time of the TLE4961-3M over Temperature................................ 22 Figure 6-8 Output Fall Time of the TLE4961-3M over applied Pull-up Voltage........................ 23 Figure 6-9 Output Rise Time of the TLE4961-3M over Temperature............................... 23 Figure 6-10 Output Rise Time of the TLE4961-3M over applied Pull-up Voltage....................... 23 Figure 6-11 Output Leakage Current of the TLE4961-3M over Temperature.......................... 24 Figure 6-12 Saturation Voltage of the TLE4961-3M over Temperature............................... 24 Figure 6-13 Saturation Voltage of the TLE4961-3M over Output Current............................. 24 Figure 6-14 Effective Noise of the TLE4961-3M Thresholds over Temperature........................ 25 Figure 6-15 Output Signal Jitter of the TLE4961-3M over Temperature.............................. 25 Data Sheet 5 Revision 1.0, 2012-07-20

List of Tables List of Tables Table 1-1 Ordering Information............................................................ 7 Table 2-1 Pin Description PG-SOT23-3-15................................................... 8 Table 3-1 Absolute Maximum Rating Parameters............................................. 13 Table 3-2 ESD Protection (TA = 25 C)..................................................... 13 Table 3-3 Operating Conditions Parameters................................................. 14 Table 3-4 General Electrical Characteristics................................................. 14 Table 3-5 Magnetic Characteristics........................................................ 15 Table 3-6 Magnetic Compatibility......................................................... 16 Table 3-7 Electro Magnetic Compatibility................................................... 16 Data Sheet 6 Revision 1.0, 2012-07-20

Product Description 1 Product Description 1.1 Overview Characteristic Supply Voltage Supply Current Sensitivity Interface Temperature Bipolar Hall Effect Latch 3.0~32 V 1.6 ma High B OP :7.5 mt B RP :-7.5 mt Open Drain Output -40 C to 170 C Figure 1-1 Image of TLE4961-3M in the PG-SOT23-3-15 Package 1.2 Features 3.0 V to 32 V operating supply voltage Operation from unregulated power supply Reverse polarity protection (-18 V) Overvoltage capability up to 42 V without external resistor Output overcurrent & overtemperature protection Active error compensation High stability of magnetic thresholds Low jitter (typ. 0.35 μs) High ESD performance Small SMD package PG-SOT23-3-15 (TLE4961-3M) 1.3 Target Applications Target applications for the TLE496x Hall switch family are all applications which require a high precision Hall switch with an operating temperature range from -40 C to 170 C. Its superior supply voltage range from 3.0 V to 32 V with overvoltage capability (e.g. load-dump) up to 42 V without external resistor makes it ideally suited for automotive and industrial applications. The magnetic behavior as a latch and switching thresholds of typical ±7.5 mt make the device especially suited for the use with a pole wheel for index counting applications as e.g. power closing and window lifter. Table 1-1 Ordering Information Product Name Product Type Ordering Code Package TLE4961-3M Hall Latch SP000909960 PG-SOT23-3-15 Data Sheet 7 Revision 1.0, 2012-07-20

Functional Description 2 Functional Description 2.1 General The TLE4961-3M is an integrated Hall effect latch designed specifically for highly accurate applications with superior supply voltage capability, operating temperature range and temperature stability of the magnetic thresholds. 2.2 Pin Configuration (top view) 3 Center of Sensitive Area 0.65 ± 0.1 1 2 1.45 ± 0.1 SOT23 Figure 2-1 Pin Configuration and Center of Sensitive Area 2.3 Pin Description Table 2-1 Pin Description PG-SOT23-3-15 Pin No. Symbol Function 1 VDD Supply voltage 2 Q Output 3 GND Ground Data Sheet 8 Revision 1.0, 2012-07-20

Functional Description 2.4 Block Diagram V DD Voltage Regulator To All Subcircuits Bias and Compensation Circuits Oscillator and Sequencer Reference Q Spinning Hall Probe Chopper Multiplexer Amplifier Demodulator Low Pass Filter Comparator with Hysteresis Control Overtemperature & overcurrent protection GND Figure 2-2 Functional Block Diagram TLE4961-3M 2.5 Functional Block Description The chopped Hall IC switch comprises a Hall probe, bias generator, compensation circuits, oscillator and output transistor. The bias generator provides currents for the Hall probe and the active circuits. Compensation circuits stabilize the temperature behavior and reduce influence of technology variations. The active error compensation (chopping technique) rejects offsets in the signal path and the influence of mechanical stress to the Hall probe caused by molding and soldering processes and other thermal stress in the package. The chopped measurement principle together with the threshold generator and the comparator ensures highly accurate and temperature stable magnetic thresholds. The output transistor has an integrated overcurrent and overtemperature protection. Data Sheet 9 Revision 1.0, 2012-07-20

Functional Description B OP Applied Magnetic Field B RP t d t f t d t r V Q 90% 10% Figure 2-3 Timing Diagram TLE4961-3M V Q B RP 0 B OP B Figure 2-4 Output Signal TLE4961-3M Data Sheet 10 Revision 1.0, 2012-07-20

Functional Description 2.6 Default Start-up Behavior The magnetic thresholds exhibit a hysteresis B HYS =B OP -B RP. In case of a power-on with a magnetic field B within hysteresis (B OP >B>B RP ) the output of the sensor is set to the pull up voltage level (V Q ) per default. After the first crossing of B OP or B RP of the magnetic field the internal decision logic is set to the corresponding magnetic input value. V DDA is the internal supply voltage which is following the external supply voltage V DD. This means for B > B OP the output is switching, for B < B RP and B OP >B>B RP the output stays at V Q. VDDA tpon 3V Power on ramp Magnetic field above threshold V Q The device always applies V Q level at start -up independent from the applied magnetic field! t B > B OP Magnetic field below threshold VQ t B < B RP t Magnetic field in hysteresis V Q B OP > B > B RP Figure 2-5 Illustration of the Start-up Behavior of the TLE4961-3M t Data Sheet 11 Revision 1.0, 2012-07-20

Specification 3 Specification 3.1 Application Circuit The following Figure 3-1 shows one option of an application circuit. As explained above the resistor R S can be left out (see Figure 3-2). The resistor R Q has to be in a dimension to match the applied V S to keep I Q limited to the operating range of maximum 25 ma. e.g.: V S = 12 V I Q = 12 V/1200 Ω = 10 ma Vs R S = 100Ω V DD R Q = 1.2kΩ C DD = 47nF TLE496x Q TVS diode e.g. ESD24VS2U GND Figure 3-1 Application Circuit 1: With External Resistor Vs V DD R Q = 1.2kΩ C DD = 47nF TLE496x Q TVS diode e.g. ESD24VS2U GND Figure 3-2 Application Circuit 2: Without External Resistor Data Sheet 12 Revision 1.0, 2012-07-20

Specification 3.2 Absolute Maximum Ratings Table 3-1 Absolute Maximum Rating Parameters Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. Supply voltage 1) V DD -18 32 V 42 10h, no external resistor required Output voltage V Q -0.5 32 V Reverse output current I Q -70 ma Junction temperature 1) T J -40 155 165 175 195 C for 2000h (not additive) for 1000h (not additive) for 168h (not additive) for 3 x 1h (additive) Storage temperature T S -40 150 C Thermal resistance R thja 300 K/W for PG-SOT23-3-15 (2s2p) Junction ambient Thermal resistance R thjl 100 K/W for PG-SOT23-3-15 Junction lead 1) This lifetime statement is an anticipation based on an extrapolation of Infineon s qualification test results. The actual lifetime of a component depends on its form of application and type of use etc. and may deviate from such statement. The lifetime statement shall in no event extend the agreed warranty period. Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Calculation of the dissipated power P DIS and junction temperature T J of the chip (SOT23 example): e.g for: V DD = 12 V, I S = 2.5 ma, V QSAT = 0.5 V, I Q = 20 ma Power dissipation: P DIS = 12 V x 2.5 ma + 0.5 V x 20 ma = 30 mw + 10 mw = 40 mw Temperature T = R thja x P DIS = 300 K/W x 40 mw = 12 K For T A = 150 C: T J = T A + T = 150 C + 12 K = 162 C Table 3-2 ESD Protection 1) (TA = 25 C) Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. ESD voltage (HBM) 2) V ESD -7 7 kv R = 1.5 kω, C = 100 pf ESD voltage (SDM) 3) -1 1 ESD voltage (system level) 4) -15 15 with circuit shown in Figure 3-1 & Figure 3-2 1) Characterization of ESD is carried out on a sample basis, not subject to production test. 2) Human Body Model (HBM) tests according to EIA/JESD22-A114. 3) Socket device model (SDM) tests according to EOS/ESD-DS5.3-1993. 4) Gun test (2kΩ / 330pF or 330Ω / 150pF) according to ISO 10605-2008. Data Sheet 13 Revision 1.0, 2012-07-20

Specification 3.3 Operating Range The following operating conditions must not be exceeded in order to ensure correct operation of the TLE4961-3M. All parameters specified in the following sections refer to these operating conditions unless otherwise mentioned. Table 3-3 Operating Conditions Parameters Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. Supply voltage V DD 3.0 32 1) V Output voltage V Q -0.3 32 V Junction temperature T j -40 170 C Output current I Q 0 25 ma Magnetic signal input frequency 2) f SW 0 10 khz 1) Latch-up test with factor 1.5 is not covered. Please see max ratings also. 2) For operation at the maximum switching frequency the magnetic input signal must be 1.4 times higher than for static fields. This is due to the -3dB corner frequency of the internal low-pass filter in the signal path. 3.4 Electrical and Magnetic Characteristics Product characteristics involve the spread of values guaranteed within the specified voltage and ambient temperature range. Typical characteristics are the median of the production and correspond to V DD = 12 V and TA = 25 C. The below listed specification is valid in combination with the application circuit shown in Figure 3-1 and Figure 3-2 Table 3-4 General Electrical Characteristics Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. Supply current I S 1.1 1.6 2.5 ma Reverse current I SR 0.05 1 ma for V DD = -18 V Output saturation V QSAT 0.2 0.5 V I Q = 20 ma voltage 0.24 0.6 V I Q = 25 ma Output leakage current I QLEAK 10 μa Output current limitation Output fall time 1) I QLIMIT 30 56 70 ma internally limited & thermal shutdown t f 0.17 0.4 1 μs 1.2 kω / 50 pf, see Figure 2-3 Output rise time 1) t r 0.4 0.5 1 μs 1.2 kω / 50 pf, see Figure 2-3 Output jitter 1)2) t QJ 0.35 1 μs For square wave signal with 1 khz Delay time 1)3) t d 12 15 30 μs see Figure 2-3 Power-on time 1)4) t PON 80 150 μs V DD =3V,B B RP -0.5mTor B B OP +0.5mT Chopper frequency 1) f OSC 350 khz 1) Not subject to production test, verified by design/characterization. 2) Output jitter is the 1σ value of the output switching distribution. 3) Systematic delay between magnetic threshold reached and output switching. 4) Time from applying V DD = 3.0 V to the sensor until the output is valid. Data Sheet 14 Revision 1.0, 2012-07-20

Specification Table 3-5 Magnetic Characteristics Parameter Symbol T ( C) Values Unit Note / Test Min. Typ. Max. Condition Operating point B OP -40 5.0 8.1 11.1 mt 25 4.6 7.5 10.4 170 3.6 6.2 8.8 Release point B RP -40-11.1-8.1-5.0 mt 25-10.4-7.5-4.6 170-8.8-6.2-3.6 Hysteresis B HYS -40 12.0 16.2 22.2 mt 25 11.2 15.0 20.8 170 9.3 12.4 17.6 Effective noise value of the magnetic switching points 1) B Neff 25 62 μt Temperature compensation of T C -1200 ppm/k magnetic thresholds 2) 1) The magnetic noise is normal distributed and can be assumed as nearly independent to frequency without sampling noise or digital noise effects. The typical value represents a the rms-value and corresponds therefore to a 1 σ probability of normal distribution. Consequently a 3 σ value corresponds to 99.7% probability of appearance. 2) Not subject to production test, verified by design/characterization. Field Direction Definition Positive magnetic fields are defined with the south pole of the magnet to the branded side of package. N S Branded Side Figure 3-3 Definition of Magnetic Field Direction PG-SOT23-3-15 Data Sheet 15 Revision 1.0, 2012-07-20

Specification 3.5 Electro Magnetic Compatibility Characterization of Electro Magnetic Compatibility is carried out on a sample basis from one qualification lot. Not all specification parameters have been monitored during EMC exposure. Vs +5V Rs RQ = 1.2kΩ V DD C DD = 10nF TLE496x Q CQ = 10nF GND Figure 3-4 EMC Test Circuit Ref: ISO 7637-2 (Version 2004), test circuit Figure 3.4 (with external resistor, R S = 100 Ω) Table 3-6 Magnetic Compatibility Parameter Symbol Level / Type Status Testpulse 1 Testpulse 2a 1) Testpulse 2b Testpulse 3a Testpulse 3b Testpulse 4 2) Testpulse 5b 3) V EMC -100 V 60 V/110 V 10 V -150 V 100 V -7 V / -5.5 V U S = 86.5 V / U S * = 28.5 V 1) ISO 7637-2 (2004) describes internal resistance = 2 Ω (former 10 Ω). 2) According to 7637-2 for test pulse 4 the test voltage shall be 12 V +/- 0.2 V. 3) A central load dump protection of 42 V is used. Us* = 42 V-13.5 V. C A/C C A A A A Ref: ISO 7637-2 (Version 2004), test circuit Figure 3.4 (without external resistor, R S = 0Ω) Table 3-7 Electro Magnetic Compatibility Parameter Symbol Level / Type Status Testpulse 1 Testpulse 2a 1) Testpulse 2b Testpulse 3a Testpulse 3b Testpulse 4 2) Testpulse 5b 3) V EMC -50 V 50 V 10 V -150 V 100 V -7 V / 5.5 V U S = 86.5 V / U S * = 28.5 V 1) ISO 7637-2 (2004) describes internal resistance = 2 Ω (former 10 Ω). 2) According to 7637-2 for test pulse 4 the test voltage shall be 12 V +/- 0.2 V. 3) A central load dump protection of 42 V is used. Us* = 42 V-13.5 V. C A C A A A A Data Sheet 16 Revision 1.0, 2012-07-20

Package Information 4 Package Information The TLE4961-3M is available in the small halogen free SMD package PG-SOT23-3-15. 4.1 Package Outline PG-SOT23-3-15 2.9 ±0.1 B 0.15 MIN. 1±0.1 0.1 MAX. +0.1 0.4-0.05 1) 1.9 3 1 2 C 0.95 2.4 ±0.15 10 MAX. 0...8 10 MAX. 0.08...0.15 1.3 ±0.1 A 0.25 M BC 0.2 M A Figure 4-1 1) Lead width can be 0.6 max. in dambar area PG-SOT23-3-15 Package Outline (All Dimensions in mm) 4.2 Packing Information PG-SOT23-3-15 4 0.9 0.2 8 2.13 2.65 Pin 1 3.15 1.15 SOT23-TP V02 Figure 4-2 Packing of the PG-SOT23-3-15 in a Tape Data Sheet 17 Revision 1.0, 2012-07-20

Package Information 4.3 Footprint PG-SC59-3-5 and PG-SOT23-3-15 0.8 0.8 0.8 1.2 0.9 1.3 0.9 1.2 1.4 min 1.6 1.4 min 0.8 Reflow Soldering Wave Soldering Figure 4-3 Footprint PG-SC59-3-5 and PG-SOT23-3-15 4.4 PG-SOT23-3-15 Distance between Chip and Package Figure 4-4 Distance between Chip and Package 4.5 Package Marking M13 y m Year (y) = 0...9 Month (m) = 1...9, o-october n-november d-december Figure 4-5 Marking of TLE4961-3M Data Sheet 18 Revision 1.0, 2012-07-20

Graphs of the Magnetic Parameters 5 Graphs of the Magnetic Parameters 12 10 8 B OP [mt] 6 4 2 Typ Min Max Figure 5-1 0 50,00 0,00 50,00 100,00 150,00 T A [ C] Operating Point (B OP ) of the TLE4961-3M over Temperature B RP [mt] 0 2 4 6 8 10 Typ Min Max Figure 5-2 12 50,00 0,00 50,00 100,00 150,00 T A [ C] Release Point (B RP ) of the TLE4961-3M over Temperature 25 20 B Hys [mt] 15 10 5 Typ Min Max Figure 5-3 0 50,00 0,00 50,00 100,00 150,00 T A [ C] Hysteresis (B Hys ) of the TLE4961-3M over Temperature Data Sheet 19 Revision 1.0, 2012-07-20

Graphs of the Electrical Parameters 6 Graphs of the Electrical Parameters 80 75 70 t PON _max [μs] 65 60 3V 55 50 50 30 10 10 30 50 70 90 110 130 150 T [ C] Figure 6-1 Power On Time t PON of the TLE4961-3M over Temperature 15,5 15 14,5 t D [µs] 14 3V 12V 13,5 13 12,5-50 -30-10 10 30 50 70 90 110 130 150 Figure 6-2 T [ C] Signal Delay Time of the TLE4961-3M over Temperature Data Sheet 20 Revision 1.0, 2012-07-20

Graphs of the Electrical Parameters 2 1,9 1,8 I S [ma] Figure 6-3 1,7 1,6 1,5 1,4 1,3 1,2 1,1 1-50 -30-10 10 30 50 70 90 110 130 150 T [ C] Supply Current of the TLE4961-3M over Temperature Vs=3V Vs=12V Vs=32V Vs=42V I S [ma] 2 1,9 1,8 1,7 1,6 1,5 1,4 1,3 1,2 1,1-40 C 25 C 150 C 1 0 5 10 15 20 25 30 35 40 45 V S [V] Figure 6-4 Supply Current of the TLE4961-3M over Supply Voltage Data Sheet 21 Revision 1.0, 2012-07-20

Graphs of the Electrical Parameters 63,0 62,0 61,0 I QLIMIT [ma] 60,0 59,0 58,0 57,0 5V 12V 32V 56,0 55,0 54,0 50 30 10 10 30 50 70 90 110 130 150 T[ C] Figure 6-5 Output Current Limit of the TLE4961-3M over Temperature 63,0 62,0 61,0 I QLIMIT [ma] 60,0 59,0 58,0 57,0 40 C 25 C 150 C 56,0 55,0 54,0 0 5 10 15 20 25 30 35 V Q [V] Figure 6-6 Output Current Limit of the TLE4961-3M over applied Pull-up Voltage 700 600 t f [ns] 500 400 300 3V 12V 32V 200 100-50 -30-10 10 30 50 70 90 110 130 150 T [ C] Figure 6-7 Output Fall Time of the TLE4961-3M over Temperature Data Sheet 22 Revision 1.0, 2012-07-20

Graphs of the Electrical Parameters 700 600 t f [ns] 500 400 300-40 C 25 C 150 C 200 100 0 5 10 15 20 25 30 35 V Q [V] Figure 6-8 Output Fall Time of the TLE4961-3M over applied Pull-up Voltage 700 600 t r [ns] 500 3V 12V 32V 400 300-50 -30-10 10 30 50 70 90 110 130 150 T [ C] Figure 6-9 Output Rise Time of the TLE4961-3M over Temperature 700 600 t f [ns] 500 400 300-40 C 25 C 150 C 200 100 0 5 10 15 20 25 30 35 V Q [V] Figure 6-10 Output Rise Time of the TLE4961-3M over applied Pull-up Voltage Data Sheet 23 Revision 1.0, 2012-07-20

Graphs of the Electrical Parameters 10 1 I QLEAK [µa] I 0,1 32V 0,01 0,001 80 90 100 110 120 130 140 150 160 170 180 T [ C] Figure 6-11 Output Leakage Current of the TLE4961-3M over Temperature 400 350 V QSAT [mv] 300 250 200 150 100 50 10mA 15mA 20mA 25mA 0-50 -30-10 10 30 50 70 90 110 130 150 T [ C] Figure 6-12 Saturation Voltage of the TLE4961-3M over Temperature 400 350 300 V QSAT [mv] 250 200 150 100-40 C 25 C 150 C 50 0 8 10 12 14 16 18 20 22 24 26 I Q [ma] Figure 6-13 Saturation Voltage of the TLE4961-3M over Output Current Data Sheet 24 Revision 1.0, 2012-07-20

Graphs of the Electrical Parameters Neff [µt(rms)] B N 120 110 100 90 80 70 60 50 40 30 20-50 -30-10 10 30 50 70 90 110 130 150 T [ C] 12V Figure 6-14 Effective Noise of the TLE4961-3M Thresholds over Temperature 0,8 0,7 t QJ [µs(rms)] t 0,6 0,5 0,4 03 0,3 0,2 12V 0,1 0-50 -30-10 10 30 50 70 90 110 130 150 T [ C] Figure 6-15 Output Signal Jitter of the TLE4961-3M over Temperature Data Sheet 25 Revision 1.0, 2012-07-20

www.infineon.com Published by Infineon Technologies AG