SPHERICAL NEAR-FIELD SELF-COMPARISON MEASUREMENTS

Similar documents
REFLECTION SUPPRESSION IN LARGE SPHERICAL NEAR-FIELD RANGE

MISSION TO MARS - IN SEARCH OF ANTENNA PATTERN CRATERS

ALIGNMENT SENSITIVITY AND CORRECTION METHODS FOR MILLIMETER- WAVE SPHERICAL NEAR-FIELD MEASUREMENTS

IMPROVING AND EXTENDING THE MARS TECHNIQUE TO REDUCE SCATTERING ERRORS

High Accuracy Spherical Near-Field Measurements On a Stationary Antenna

PROBE CORRECTION EFFECTS ON PLANAR, CYLINDRICAL AND SPHERICAL NEAR-FIELD MEASUREMENTS

Accurate Planar Near-Field Results Without Full Anechoic Chamber

SPHERICAL NEAR-FIELD MEASUREMENTS AT UHF FREQUENCIES WITH COMPLETE UNCERTAINTY ANALYSIS

ANECHOIC CHAMBER EVALUATION

PERFORMANCE CONSIDERATIONS FOR PULSED ANTENNA MEASUREMENTS

33 BY 16 NEAR-FIELD MEASUREMENT SYSTEM

A COMPOSITE NEAR-FIELD SCANNING ANTENNA RANGE FOR MILLIMETER-WAVE BANDS

RAYTHEON 23 x 22 50GHZ PULSE SYSTEM

GAIN COMPARISON MEASUREMENTS IN SPHERICAL NEAR-FIELD SCANNING

A CYLINDRICAL NEAR-FIELD VS. SPHERICAL NEAR-FIELD ANTENNA TEST COMPARISON

A LARGE COMBINATION HORIZONTAL AND VERTICAL NEAR FIELD MEASUREMENT FACILITY FOR SATELLITE ANTENNA CHARACTERIZATION

Upgraded Planar Near-Field Test Range For Large Space Flight Reflector Antennas Testing from L to Ku-Band

APPLICATIONS OF PORTABLE NEAR-FIELD ANTENNA MEASUREMENT SYSTEMS

Structural Correction of a Spherical Near-Field Scanner for mm-wave Applications

Accuracy Estimation of Microwave Holography from Planar Near-Field Measurements

A TECHNIQUE TO EVALUATE THE IMPACT OF FLEX CABLE PHASE INSTABILITY ON mm-wave PLANAR NEAR-FIELD MEASUREMENT ACCURACIES

METHODS TO ESTIMATE AND REDUCE LEAKAGE BIAS ERRORS IN PLANAR NEAR-FIELD ANTENNA MEASUREMENTS

Sub-millimeter Wave Planar Near-field Antenna Testing

ANECHOIC CHAMBER DIAGNOSTIC IMAGING

PRACTICAL GAIN MEASUREMENTS

IMPLEMENTATION OF BACK PROJECTION ON A SPHERICAL NEAR- FIELD RANGE

Near-Field Antenna Measurements using a Lithium Niobate Photonic Probe

Characterization of a Photonics E-Field Sensor as a Near-Field Probe

An introduction to Mobile Station Over-the-Air measurements

DIGITAL BEAM-FORMING ANTENNA RANGE

WIESON TECHNOLOGIES CO., LTD.

ESTIMATING THE UNCERTAINTIES DUE TO POSITION ERRORS IN SPHERICAL NEAR-FIELD MEASUREMENTS

Antenna Measurement Uncertainty Method for Measurements in Compact Antenna Test Ranges

AN AUTOMATED CYLINDRICAL NEAR-FIELD MEASUREMENT AND ANALYSIS SYSTEM FOR RADOME CHARACTERIZATION

Uncertainty Considerations In Spherical Near-field Antenna Measurements

Keywords: cylindrical near-field acquisition, mechanical and electrical errors, uncertainty, directivity.

ON THE DEVELOPMENT OF GHZ ANTENNAS FOR TOWED DECOYS AND SUITABILITY THEREOF FOR FAR-FIELD AND NEAR-FIELD MEASUREMENTS

MAKING TRANSIENT ANTENNA MEASUREMENTS

A TURNKEY NEAR-FIELD MEASUREMENT SYSTEM FOR PULSE MODE APPLICATIONS

A DUAL-PORTED PROBE FOR PLANAR NEAR-FIELD MEASUREMENTS

Millimetre Spherical Wave Antenna Pattern Measurements at NPL. Philip Miller May 2009

Using Frequency Diversity to Improve Measurement Speed Roger Dygert MI Technologies, 1125 Satellite Blvd., Suite 100 Suwanee, GA 30024

Further Refining and Validation of RF Absorber Approximation Equations for Anechoic Chamber Predictions

HOW TO CHOOSE AN ANTENNA RANGE CONFIGURATION

TRADITIONAL ANTENNA MEASUREMENTS AND CTIA OTA MEASUREMENTS MERGING THE TECHNOLOGIES

A Method for Gain over Temperature Measurements Using Two Hot Noise Sources

Antenna and RCS Measurement Configurations Using Agilent s New PNA Network Analyzers

Estimating Measurement Uncertainties in Compact Range Antenna Measurements

Numerical Calibration of Standard Gain Horns and OEWG Probes

ADVANTAGES AND DISADVANTAGES OF VARIOUS HEMISPHERICAL SCANNING TECHNIQUES

Agilent Antenna and RCS Measurement Configurations Using PNA Microwave Network Analyzers. White Paper

60 GHz antenna measurement setup using a VNA without external frequency conversion

Advanced Waveform Generator For Integrated Phased Array Testing

The CDT Ultra Wide-Band Anechoic Chamber. Félix Tercero, José Manuel Serna, Tim Finn, J.A.López Fernández INFORME TÉCNICO IT - OAN

Chapter 5. Array of Star Spirals

MEASUREMENT OF THE EARTH-OBSERVER-1 SATELLITE X-BAND PHASED ARRAY

> StarLab. Multi-purpose Antenna Measurement Multi-protocol Antenna Development Linear Array Antenna Measurement OTA Testing

HIGH ACCURACY CROSS-POLARIZATION MEASUREMENTS USING A SINGLE REFLECTOR COMPACT RANGE

System configurations. Main features I SG 64 SOLUTION FOR

System configurations. Main features. I TScan SOLUTION FOR

Narrow Pulse Measurements on Vector Network Analyzers

Dependence of Antenna Cross-polarization Performance on Waveguide-to-Coaxial Adapter Design

EHF Rotman Lens Fed Linear Array Multibeam Planar Near-Field Range Measurements CST 5 th NORTH AMERICAN USERS FORUM 4th FEBRUARY 2008 SANTA CLARA, CA

Part No. ETH-MMW-1000 (version 1A) Millimeter Measurement System Frequency Range: 18 GHz 75 GHz

Keysight Technologies PNA Receiver Reduces Antenna/RCS Measurement Test Times

Implementation of a VHF Spherical Near-Field Measurement Facility at CNES

A DUAL-RECEIVER METHOD FOR SIMULTANEOUS MEASUREMENTS OF RADOME TRANSMISSION EFFICIENCY AND BEAM DEFLECTION

Advances in Antenna Measurement Instrumentation and Systems

Millimeter Wave Measurement System

Uncertainty Analysis of Spherical Near Field Antenna Measurement System at VHF

A HILBERT TRANSFORM BASED RECEIVER POST PROCESSOR

The CReSIS Anechoic Chamber is located at: The University of Kansas. M2SEC building W 15 th St. Lawrence, KS

A BROADBAND POLARIZATION SELECTABLE FEED FOR COMPACT RANGE APPLICATIONS

A SIMPLE ANALYSIS OF NEAR-FIELD BORESIGHT ERROR REQUIREMENTS

The Importance of Polarization Purity Author: Lars J Foged, Scientific Director at MVG (Microwave Vision Group)

A Reduced Uncertainty Method for Gain over Temperature Measurements in an Anechoic Chamber

Advanced Waveform Generator For Integrated Phased Array Testing

Millimeter Spherical µ-lab System from Orbit/FR

BROADBAND GAIN STANDARDS FOR WIRELESS MEASUREMENTS

T- DualScan. StarLab

Investigation of the Repeatability of the NA FEIC Beam Scanner: Status Report prior to the start of PAI Testing on FE#8

Software. Equipment. Add-ons. Accessories. Services

On the Plane Wave Assumption in Indoor Channel Modelling

Main features. System configurations. I Compact Range SOLUTION FOR

ICO S-BAND ANTENNAS TEST PROGRAM

Antenna Measurement using Vector Network Analyzer. Jong-hwan Keum Agilent Technologies

Chapter 7 - Experimental Verification

ANTENNA INTRODUCTION / BASICS

Spherical Scanning Measurement Challenge for Future Millimeter Wave Applications

Comparison of antenna measurement results in disturbed environment using a VHF spherical near field system

The Design of an Automated, High-Accuracy Antenna Test Facility

HISTOGRAM EQUALISATION AS A METHOD FOR MAKING AN OBJECTIVE COMPARISON BETWEEN ANTENNA PATTERNS FUNCTIONS

Principles of Planar Near-Field Antenna Measurements. Stuart Gregson, John McCormick and Clive Parini. The Institution of Engineering and Technology

Non-Ideal Quiet Zone Effects on Compact Range Measurements

Amplitudes Variation of GPR Rebar Reflection Due to the Influence of Concrete Aggregate Scattering

SPHERICAL NEAR-FIELD ANTENNA MEASUREMENTS: A REVIEW OF CORRECTION TECHNIQUES

Laitinen, Tommi. Published in: IEEE Transactions on Antennas and Propagation. Link to article, DOI: /TAP Publication date: 2008

MITIGATING INTERFERENCE ON AN OUTDOOR RANGE

Project: 3.8M Series 1385 Ku-Band Rx/Tx System. General Dynamics SATCOM Technologies

THE APPLICATION OF RADAR ENVIRONMENT SIMULATION TECHNOLOGY TO TELEMETRY SYSTEMS

Transcription:

SPHERICAL NEAR-FIELD SELF-COMPARISON MEASUREMENTS Greg Hindman, Allen C. Newell Nearfield Systems Inc. 1973 Magellan Dr. Torrance, CA 952 ABSTRACT Spherical near-field measurements require an increased level of sophistication and care to achieve accurate results. This paper will demonstrate an automated set of self-comparison tests, which can be used for establishing and optimizing a spherical system's performance. An over-determined set of measurements can help to qualify positioner alignment, range reflection levels, truncation effects, and additional parameters of interest. These results will help in optimizing the test configuration to achieve accurate near-field measurement results. accuracy for a test campaign can be assured with a minimal effort. Keywords: Antenna Measurements, Near-field, Spherical, Error Analysis 1. Introduction The objective of this paper is to define a series of steps necessary to insure accurate spherical near-field measurements. Through careful combination of initial measurement setups including acquisition of redundant data and selective processing, one can almost automatically derive the expected test accuracy for many of the key parameters. One key element of the process is to use a mechanical scanner capable of full 36 rotation in theta and phi, which allows you to acquire two complete spheres of data on the antenna under test with each sphere of data constructed by a different combination of angles from the two rotators. The sequence of steps is: 1. Check the scanner system alignment 2. Mount Antenna Under Test (AUT) and check electrical alignment 3. Set up RF configuration for maximum dynamic range and SNR 4. Optimize scan speed and test parameters to achieve desired data 5. Acquire redundant data 6. Analyze redundant data to derive system errors 7. Correct any identified errors 8. Choose final test parameters for upcoming tests Through this series of tests and processing, largely automated through the NSI 2 software s scripting capability, a high confidence of the measurement Figure 1 NSI 7S Spherical Near-field Scanner shown testing a WR-159 Standard Gain Horn 2. Measurement System Configuration Figure 1 shows a WR-159 Standard Gain Horn mounted to the phi stage of NSI s medium sized 7S nearfield system. The phi stage and L-bracket is mounted to the azimuth stage, which provides the theta motion. The combination of phi and theta motion allows measuring full spherical near-field measurements in the theta-phi geometry. The probe used is a WR-159 Open-ended Waveguide Probe (OEWG), mounted to a pol rotator allowing acquisition of E-theta and E-phi components. The alignment of the spherical phi and theta rotators is critical for accurate measurements, and we used NSI s

electrical alignment procedure [1] [2], which allows a check of the rotator mechanical alignment with the AUT installed. The RF configuration is a Panther 6 receiver with a pair of 2 GHz Panther 72 RF Sources, and an external mixer system. For most of the testing, the system was set to take 44 frequencies with 2-microsecond frequency switching time. For multi-frequency spherical near-field measurements, the position error induced by taking data on the fly during bi-directional measurements is influenced by many factors: - scan speed - number of frequencies - frequency switching speed - receiver integration time For this testing, we chose to set the receiver integration time to 355 usecs (1 averages) to yield about 6 db Signal to Noise Ratio (SNR) on the near-field beam peak. We then chose to control the beam smear (total angular travel for the entire 44 beam multi-frequency beam set) to be less than ±.16. This forced the scanner to reduce from its maximum scan speed of 4 degrees per second to.32 / (.355 +.2 ) * 44 = 2 deg/sec, or about half speed. To satisfy the spherical near-field sampling criteria, we sampled 3 spacing in theta and phi, yielding 121 points in theta and phi for a full redundant data set with 2 polarizations. Total test time for this 44- frequency configuration is 5 minutes for a complete spherical data set, and 1 minutes for a fully redundant data set (cutting the number of frequencies in half or accepting a larger beam smear would cut the test time to about 25 minutes). A summary of the test configuration is as follows: AUT NSI-RF-SG159 (SGH) Probe NSI-RF-WR159 (OEWG Probe) RF subsystem Panther 6/72 (.1-2 GHz) Integration time 355 usecs (1 averages on Panther) Frequency 2 usecs (NSI Panther 72) switching time Theta/Phi 3 sampling Maximum beamset ±.16 smear Phi scan speed 2 deg /sec (Slowed from max of 4 deg/sec) Phi scan 36 Theta scan 36 Test time 1 minutes (5 min non-redund.) display shows the operator the test scenario for a single beam set and also shows live amplitude and phase readings during the fast inner loop scanning. A statistical analysis using NSI s SNR subroutine gives the Signal to Noise Ratio, and we also display the peak-to-peak amplitude of the signal. This live display is extremely valuable during measurement setup to verify system operation and adequate S/N. Figure 2 Live Multi-frequency display at 2 usec switching time 3. Redundant Data Test Scenario Using a phi over theta mechanical scanning system for spherical measurements, one can choose two different methods of acquiring the data. The first method, which we will call '18phi' involves rotating the AUT in phi from to 18, and then taking both + and - data in theta. In the second method, which we will call '36phi', the AUT is rotated the full 36 in phi, and then it is only required to take one-sided theta data - to 9 for a hemisphere of data, or to 18 for a full sphere. The second method is often preferred, since the phi axis can usually be rotated faster than the theta axis, which is moving more mass. Also since you are moving the stage a full 36, you can take advantage of running it continuously in the same direction, which can significantly reduce test time and potential bi-directional errors. Each method has a different sensitivity to chamber and alignment errors, and each can have advantages over the other [3]. Figure 2 shows a snapshot of the live Inner Loop Timing (ILT) display taken at the near-field beam peak. This Figure 3-36 phi vs. 18 phi data format

In Figure 3, we show a fully redundant dataset acquired with 36 phi rotation and +/-9 theta rotation. The figure also shows which sections out of the redundant dataset make up a normal 36phi or 18phi dataset. Taking a full dataset over 36 phi and 36 theta will take twice as long, but will allow a good estimation of the following errors: 1. repeatability 2. 36 phi vs. 18 phi geometries 3. reflections from sidewalls of the chamber 4. truncation RANDOM ERRORS Prior to far-field system comparisons, two complete redundant datasets are acquired and compared to insure the system s overall repeatability. The subtraction of the two far-field azimuth patterns shows a residual error of about 57 db (Figure 5), so this represents the random noise term in the uncertainty budget (NIST term 18). Far-field amplitude of WR159SGH217.nsi - Far-field amplitude of WR159SGH218.nsi 36 phi redundant - repeatability Plot 1 Plot 2 Plot 1 - Plot 2 4. Measurement Results REFLECTIONS During the electrical alignment tests, we are comparing a near-field azimuth cut with AUT at PHI= and another azimuth cut with PHI=18. The electrical alignment analysis focuses on the comparison of amplitude and phase errors near the peak of the beam, however if during the same test we broaden the angular span to ±18, we can compare the near-field amplitude patterns taken at PHI= and PHI=18. The differences in the near-field sidelobes will help identify reflections in the chamber. As the azimuth stage is rotated, the main beam from the horn illuminates the chamber sidewalls, reflecting into the probe and corrupting the direct measurement path. In the result in Figure 4, we can see an error level of about 4 db which can serve as a first approximation of the reflection level (NIST term 16). -5-15 -25-35 -45-55 Scattering Estimated for File WR159SGH24.nsi Comparing and 18 Phi Cuts Phi= Phi=18 SCAT. SIG -15 5 1 15 Figure 4 Near-field scattering test checking chamber sidewalls -7-15 5 1 15 Figure 5 System repeatability, comparing two redundant datasets MEASUREMENT GEOMETRY The post-processing of the double redundant data will automatically compare the results of the 36phi data versus the 18phi data, versus the average of the entire redundant dataset. Figure 6 shows a comparison between the 3 data sets. A closer look at the first and second sidelobes is shown in Figure 7. The first averaged data is seen to fall between the 36phi and 18phi curves as expected. The first sidelobe error is about ±.15 db at around 11 db, and the second sidelobe error is about ±.25 db at around 25 db. At this point, the user can choose to accept the uncertainty as estimated and continue taking only nonredundant data, or can choose to take the additional measurement time to improve accuracy by the averaging of the data from the two measurement geometries. (Note that this test also includes some component of random errors and range reflection errors as well as the effect of measurement geometry).

Far-field amplitude of WR159SGH24.nsi Ave 36 phi 18 phi will save about 1/3 of the total test time, which could be a good trade. Far-field amplitude of WR159SGH27.nsi untruncated trunc at +/-12 deg trunc at +/-135 deg -5-15 -25-7 -15 5 1 15 Figure 6 3 Processed data from redundant datasets Far-field amplitude of WR159SGH24.nsi 25 5 75 1 125 15 175 Figure 8 Truncation affect on second sidelobe. -12.5-15. -17.5. -22.5-25. Ave 36 phi 18 phi 5. Directivity Results As a final system confidence check, we can process the measured multi-frequency data on the Standard Gain Horn and compare its directivity to the calculated values based on the horn s physical parameters. Figure 9 shows the comparison of a 44-frequency data set over the full WR-159 waveguide band. The average difference from measured directivity to calculated is.3 db, which is well within the nominal ±.5 db uncertainty of the uncalibrated Standard Gain Horn. Directivity vs. Frequency of C:\i-drive\nsi97\data\NSI-RF-SG159\WR159SGH24.nsi Worst-case difference.47 db; average.3 db -27.5 21. Measured Directivity Calculated Directivity. 25 5 75 1 125 15 175 Figure 7 Magnified look at sidelobes TRUNCATION The full dataset can also be analytically truncated to determine the effect on sidelobe level of taking less than a full sphere of data. Figure 8 shows the result of truncating the dataset to both ±12 and ±135. Assuming we choose to truncate to only ±12, we will be accepting a sidelobe error of about ±.1 db in the second sidelobe at the 25 db level. This compromise Directivity(dBi) 2.5 2. 19.5 19. 18.5 18. 17.5 17. 16.5 16. 5. 5.25 5.5 5.75 6. 6.25 6.5 6.75 7. Frequency (GHz) Figure 9 Comparison of a 44-frequency data set over the full WR-159 waveguide band

6. Conclusion We have shown a number of simple tests, which can rapidly help to qualify the performance of a spherical near-field range. From the data shown above, we can summarize the following 4 terms out of the NIST 18-term uncertainty budget: NIST Term Description Signal to Error ratio (db) Error on db sidelobe (db) 7 AUT Alignment Error -51.25 9 Measurement truncation -59.1 16 Room Scattering.92 18 Random Errors.9 RSS of these 4 terms.96 The tests are easy to conduct and the results can be derived largely from automatic processing of one or two doubly redundant data sets. Analysis of the results can quickly help the antenna engineer optimize accuracy vs. test time. 7. References [1] Newell, A. C., Hindman, G., "The alignment of a spherical near-field rotator using electrical measurements" In the proceedings of the 19th annual AMTA Meeting and Symposium, Boston, MA, 1997. [2] Newell, A. C., Hindman, G., "Quantifying the effect of position errors in spherical near-field measurements", In the proceedings of the 2th annual AMTA Meeting and Symposium, pp 145-149, Montreal, Canada, 1998. [3] Newell, A.C., "The effect of measurement geometry on alignment errors in spherical near-field measurements", AMTA 21st Annual Meeting & Symposium, Monterey, California, Oct. 1999.