Voltage Dividers a learn.sparkfun.com tutorial

Similar documents
SHOP LEARN BLOG SUPPORT

Lab #1 Help Document. This lab will be completed in room 335 CTB. You will need to partner up for this lab in groups of two.

// Parts of a Multimeter

Intro to Electronics. Week 1

Using Voltage Dividers to Design a Photo-Sensitive LED Circuit. ( Doug Oliver & Jackie Kane. May be reproduced for non-profit classroom use.

THE INPUTS ON THE ARDUINO READ VOLTAGE. ALL INPUTS NEED TO BE THOUGHT OF IN TERMS OF VOLTAGE DIFFERENTIALS.

Getting started with the SparkFun Inventor's Kit for Google's Science Journal App

LogicBlocks & Digital Logic Introduction a

EM Arduino 4-20mA Shield Documentation. Version 1.5.0

So you just want to light up an LED. What resistor should you use?

DC CIRCUITS AND OHM'S LAW

Experiment #4: Voltage Division, Circuit Reduction, Ladders, and Bridges

LEDs and Sensors Part 2: Analog to Digital

University of Utah Electrical & Computer Engineering Department ECE 1250 Lab 4 Pulse Width Modulation Circuit

Lab 06: Ohm s Law and Servo Motor Control

II. Experimental Procedure

Direct Current Circuits

SCRIPT. Voltage Dividers

Sensor Comparator. Fiendish objects

Resistance and Ohm s law

Lab 4 OHM S LAW AND KIRCHHOFF S CIRCUIT RULES

electronics fundamentals

Designing Information Devices and Systems I Spring 2015 Homework 6

Quantizer step: volts Input Voltage [V]

Physics 310 Lab 6 Op Amps

2 Thermistor + Op-Amp + Relay = Sensor + Actuator

1 Introduction. 2 Embedded Electronics Primer. 2.1 The Arduino

Class #3: Experiment Signals, Instrumentation, and Basic Circuits

Lab #2 Voltage and Current Division

LABORATORY MODULE. ENT 163 Fundamental of Electrical Engineering Semester 1 (2006/2007) EXPERIMENT 4: Thevenin s and Norton s Theorem

Electronics & Control

Chapter 1: DC circuit basics

INA169 Breakout Board Hookup Guide

Voltage, Current and Resistance

Resistive Circuits. Lab 2: Resistive Circuits ELECTRICAL ENGINEERING 42/43/100 INTRODUCTION TO MICROELECTRONIC CIRCUITS

Resistive components in circuits

Lab 3 DC CIRCUITS AND OHM'S LAW

Resistors and voltage. CSE1010 Jeffrey A. Meunier

Experiment 3. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current.

Experiment 2. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current.

ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING SCIENCE C103

V (in volts) = voltage applied to the circuit, I (in amperes) = current flowing in the circuit, R (in ohms) = resistance of the circuit.

18-3 Circuit Analogies, and Kirchoff s Rules

Series and parallel resistances

Data Conversion and Lab Lab 1 Fall Operational Amplifiers

Hobby Servo Tutorial. Introduction. Sparkfun:

Workshop 9: First steps in electronics

Schematics for Breakout Examples

Data Conversion and Lab Lab 4 Fall Digital to Analog Conversions

CMSC838. Tangible Interactive Assistant Professor Computer Science

Laboratory 2 More Resistor Networks and Potentiometers.

Ohm s and Kirchhoff s Circuit Laws. Abstract. Introduction and Theory. EE 101 Spring 2006 Date: Lab Section #: Lab #2

Chapter 1: DC circuit basics

introduction to Digital Electronics Install the Arduino IDE on your laptop if you haven t already!

Lab 2: Blinkie Lab. Objectives. Materials. Theory

Real Analog Chapter 2: Circuit Reduction. 2 Introduction and Chapter Objectives. After Completing this Chapter, You Should be Able to:

EE283 Laboratory Exercise 1-Page 1

Internet of Things Student STEM Project Jackson High School. Lesson 3: Arduino Solar Tracker

Workshops Elisava Introduction to programming and electronics (Scratch & Arduino)

Semiconductor 9/21/2015

Attribution Thank you to Arduino and SparkFun for open source access to reference materials.

AP Physics - Problem Drill 14: Electric Circuits

Different Digital Method

Lecture Week 5. Voltage Divider Method Equivalent Circuits Review Lab Report Template and Rubric Workshop

BME/ISE 3511 Bioelectronics I - Laboratory Exercise #4. Variable Resistors (Potentiometers and Rheostats)

Basic Electronics Course Part 2

Measuring Voltage, Current & Resistance Building: Resistive Networks, V and I Dividers Design and Build a Resistance Indicator

CMSC838. Tangible Interactive Assistant Professor Computer Science

AN2129 APPLICATION NOTE

PH213 Chapter 26 solutions

In this lecture, we will learn about some more basic laws governing the behaviour of electronic circuits beyond that of Ohm s law.

Unit 3. Electrical Circuits

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

Electric Circuits. Have you checked out current events today?

Guide to LED and Hobby Lighting Projects Documentation

Pre-LAB 5 Assignment

1-1. Kirchoff s Laws A. Construct the circuit shown below. R 1 =1 kω. = 2.7 kω R 3 R 2 5 V

= V IN. and V CE. = the supply voltage 0.7 V, the transistor is on, V BE. = 0.7 V and V CE. until saturation is reached.

Resistors & Circuits. Module 4.0 Current & Voltage. Module. Current & Voltage in Resistor Networks

Lab assignment: Strain gauge

Series Circuits and Kirchoff s Voltage Law

Unit 8 Combination Circuits

EE 201 Lab 1. Meters, DC sources, and DC circuits with resistors

Congratulations on your purchase of the SparkFun Arduino ProtoShield Kit!

Electric Circuit I Lab Manual Session # 2

Laboration: AD-conversion and the Thevenin theorem.

Lab #1: Electrical Measurements I Resistance

Ohm's Law and DC Circuits

Project Proposal. Underwater Fish 02/16/2007 Nathan Smith,

Lecture Week 4. Homework Voltage Divider Equivalent Circuit Observation Exercise

30V 30 R1 120V R V 30 R1 120V. Analysis of a single-loop circuit using the KVL method

Chapter #5: Measuring Rotation

Arduino Workshop 01. AD32600 Physical Computing Prof. Fabian Winkler Fall 2014

University of Portland EE 271 Electrical Circuits Laboratory. Experiment: Kirchhoff's Laws and Voltage and Current Division

LAB 1 AN EXAMPLE MECHATRONIC SYSTEM: THE FURBY

Unit 3: Introduction to Op- amps and Diodes

Integration Guide. TPE-800 PadZ SERIES. 3D Single-Touch Trackpad

Experiment P-24 Circuits and Series Resistance

Experiment #5 Series and Parallel Resistor Circuits

Rotary Switch Potentiometer Hookup Guide

Transcription:

Voltage Dividers a learn.sparkfun.com tutorial Available online at: http://sfe.io/t44 Contents Introduction Ideal Voltage Divider Applications Extra Credit: Proof Resources and Going Further Introduction A voltage divider is a simple circuit which turns a large voltage into a smaller one. Using just two series resistors and an input voltage, we can create an output voltage that is a fraction of the input. Voltage dividers are one of the most fundamental circuits in electronics. If learning Ohm s law was like being introduced to the ABC s, learning about voltage dividers would be like learning how to spell cat. Covered in this Tutorial What a voltage divider circuit looks like. How the output voltage depends on the input voltage and divider resistors. How voltage dividers behave in the real-world. Real-life voltage divider applications. Suggested Reading This tutorial builds on basic electronics knowledge. If you haven t already, consider reading these tutorials: What is a circuit? Series and Parallel Circuits Voltage, Current, Resistance, and Ohm s Law Analog vs Digital How to Use a Multimeter How to Use a Breadboard Analog-to-Digital Conversion Ideal Voltage Divider There are two important parts to the voltage divider: the circuit and the equation. Page 1 of 10

The Circuit A voltage divider involves applying a voltage source across a series of two resistors. You may see it drawn a few different ways, but they should always essentially be the same circuit. Examples of voltage divider schematics. Shorthand, longhand, resistors at same/different angles, etc. We ll call the resistor closest to the input voltage (V in ) R 1, and the resistor closest to ground R 2. The voltage drop across R 2 is called V out, that s the divided voltage our circuit exists to make. That s all there is to the circuit! V out is our divided voltage. That s what ll end up being a fraction of the input voltage. The Equation The voltage divider equation assumes that you know three values of the above circuit: the input voltage (V in ), and both resistor values (R 1 and R 2 ). Given those values, we can use this equation to find the output voltage (V out ): Memorize that equation! This equation states that the output voltage is directly proportional to the input voltage and the ratio of R 1 and R 2. If you d like to find out where this comes from, check out this section where the equation is derived. But for now, just write it down and remember it! Calculator Have some fun experimenting with inputs and outputs to the voltage divider equation! Below, you Page 2 of 10

can plug in numbers for V in and both resistors and see what kind of output voltage they produce. V in = 5 V R 1 = 1700 Ω R 2 = 3300 Ω V out = 3.30 V Or, if you adjust V out, you ll see what resistance value at R 2 is required (given a V in and R 1 ). Simplifications There are a few generalizations that are good to keep in mind when using voltage dividers. These are simplifications that make evaluating a voltage dividing circuit just a little easier. First, if R2 and R1 are equal then the output voltage is half that of the input. This is true regardless of the resistors' values. If R 2 is much larger (at least an order of magnitude) than R 1, then the output voltage will be very close to the input. There will be very little voltage across R 1. Conversely, if R 2 is much smaller than R 1, the output voltage will be tiny compared to the input. Most of the input voltage will be across R 1 Applications Voltage dividers have tons of applications, they are among the most common of circuits electrical engineers use. Here are just a few of the many places you ll find voltage dividers. Potentiometers Page 3 of 10

A potentiometer is a variable resistor which can be used to create an adjustable voltage divider. A smattering of potentiometers. From top-left, clockwise: a standard 10k trimpot, 2-axis joystick, softpot, slide pot, classic right-angle, and a breadboard friendly 10k trimpot. Internal to the pot is a single resistor and a wiper, which cuts the resistor in two and moves to adjust the ratio between both halves. Externally there are usually three pins: two pins connect to each end of the resistor, while the third connects to the pot s wiper. A potentiometer schematic symbol. Pins 1 and 3 are the resistor ends. Pin 2 connects to the wiper. If the outside pins connect to a voltage source (one to ground, the other to V in ), the output (V out at the middle pin will mimic a voltage divider. Turn the pot all the way in one direction, and the voltage may be zero; turned to the other side the output voltage approaches the input; a wiper in the middle Page 4 of 10

position means the output voltage will be half of the input. Potentiometers come in a variety of packages, and have many applications of their own. They may be used to create a reference voltage, adjust radio stations, measure position on a joystick, or in tons of other applications which require a variable input voltage. Reading Resistive Sensors Many sensors in the real world are simple resistive devices. A photocell is a variable resistor, which produces a resistance proportional to the amount of light it senses. Other devices like flex sensors, force-sensitive resistors, and thermistors, are also variable resistors. It turns out voltage is really easy for microcontrollers (those with analog-to-digital converters - ADC s - at least) to measure. Resistance? Not so much. But, by adding another resistor to the resistive sensors, we can create a voltage divider. Once the output of the voltage divider is known, we can go back and calculate the resistance of the sensor. For example, the photocell s resistance varies between 1kΩ in the light and about 10kΩ in the dark. If we combine that with a static resistance somewhere in the middle - say 5.6kΩ, we can get a wide range out of the voltage divider they create. Photocell makes up half of this voltage divider. The voltage is measured to find the resistance of the light sensor. Light Level R 2 (Sensor) R 1 (Fixed) Ratio R 2 /(R 1 +R 2 ) V out Page 5 of 10

Light 1kΩ 5.6kΩ 0.15 0.76 V Dim 7kΩ 5.6kΩ 0.56 2.78 V Dark 10kΩ 5.6kΩ 0.67 3.21 V A swing of about 2.45V from light to dark. Plenty of resolution for most ADCs! Level Shifting More complicated sensors may transmit their readings using heavier serial interfaces, like a UART, SPI, or I2C. Many of those sensors operate at a relatively low voltage, in order to conserve power. Unfortunately, it s not uncommon that those low-voltage sensors are ultimately interfacing with a microcontroller operating at a higher system voltage. This leads to a problem of level shifting, which has a number of solutions including voltage dividing. For example, an ADXL345 accelerometer allows for a maximum input voltage of 3.3V, so if you try to interface it with an Arduino (assume operating at 5V), something will need to be done to step down that 5V signal to 3.3V. Voltage divider! All that s needed is a couple resistors whose ratio will divide a 5V signal to about 3.3V. Resistors in the 1kΩ-10kΩ range are usually best for such an application; let s Page 6 of 10

3.3kΩ resistors (orange, orange, red) are the R 2 s, 1.8kΩ resistors are the R 1 s. An example of voltage dividers in a breadboard, level shifting 5V signals to 3.24V. (Click to see a larger view). Keep in mind, this solution only works in one direction. A voltage divider alone will never be able to step a lower voltage up to a higher one. Application Dont s As tempting as it may be to use a voltage divider to step down, say, a 12V power supply to 5V, voltage dividers should not be used to supply power to a load. Any current that the load requires is also going to have to run through R 1. The current and voltage across R 1 produce power, which is dissipated in the form of heat. If that power exceeds the rating of the resistor (usually between ⅛W and 1W), the heat begins to become a major problem, potentially melting the poor resistor. Page 7 of 10

That doesn t even mention how inefficient a voltage-divider-power-supply would be. Basically, don t use a voltage divider as a voltage supply for anything that requires even a modest amount of power. If you need to drop down a voltage to use it as a power supply, look into voltage regulators or switching supplies. Extra Credit: Proof If you haven t yet gotten your fill of voltage dividers, in this section we ll evaluate how Ohm s law is applied to produce the voltage divider equation. This is a fun exercise, but not super-important to understanding what voltage dividers do. If you re interested, prepare for some fun times with Ohm s law and algebra. Evaluating the circuit So, what if you wanted to measure the voltage at V out? How could Ohm s law be applied to create a formula to calculate the voltage there? Let s assume that we know the values of V in, R 1, and R 2, so let s get our V out equation in terms of those values. Let s start by drawing out the currents in the circuit I 1 and I 2 which we ll call the currents across the respective resistors. Our goal is to calculate V out, what if we applied Ohm s law to that voltage? Easy enough, there s just one resistor and one current involved: Sweet! We know R 2 s value, but what about I 2? That s an unknown value, but we do know a little something about it. We can assume (and this turns out to be a big assumption) that I 1 is equivalent to I 2. Alright, but does that help us? Hold that thought. Our circuit now looks like this, where I equals Page 8 of 10

both I 1 and I 2. What do we know about V in? Well, V in is the voltage across both resistors R 1 and R 2. Those resistors are in series. Series resistors add up to one value, so we could say: And, for a moment, we can simplify the circuit to: Ohm s law at its most basic! V in = I * R. Which, if we turn that R back into R 1 + R 2, can also be written as: Page 9 of 10

And since I is equivalent to I 2, plug that into our V out equation to get: And that, my friends, is the voltage divider equation! The output voltage is a fraction of the input voltage, and that fraction is R 2 divided by the sum of R 1 and R 2. Resources and Going Further Now that you ve got the gist of one of the most common circuits in electronics, there s a world of new stuff to learn! Would you like to learn how a microcontroller, like an Arduino, could read the analog voltage produced by a voltage divider? Analog-to-Digital Converters With the power of the voltage divider and the ADC, you can accomplish a lot in the world of electronics. Check out these other great tutorials. Some varieties of accelerometers and gyroscopes have anlog outputs that must be read in on an ADC to get usable values. Pulse-width Modulation (PWM) is like an analog output, which is the opposite of analog input. The INA169 allows you to sense current using ADC. Using a voltage divider and the ADC, you can read in all sorts of sensors and variable components such as trimpots, joysticks, sliders, and force sensitive resistors amongst many, many more. The Arduino map() function Arduino Analog Pins The Uh-Oh Battery Indicator Hookup Guide uses a voltage divider to tell you if your battery is getting too low. learn.sparkfun.com CC BY-SA 3.0 SparkFun Electronics Niwot, Colorado Page 10 of 10