ESTIMATION OF NOISE FIGURE USING GFF WITH HYBRID QUAD PUMPING

Similar documents
EDFA WDM Optical Network using GFF

Diminution of ASE Noise in Erbium Doped Fiber Amplifiers with Fabry Perot CW Laser Source in Single Pumping Technique

Research Article Output Signal Power Analysis in Erbium-Doped Fiber Amplifier with Pump Power and Length Variation Using Various Pumping Techniques

IJEETC. InternationalJournalof. ElectricalandElectronicEngineering& Telecommunications.

Gain Flattened L-Band EDFA -Raman Hybrid Amplifier by Bidirectional Pumping technique

Advanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research)

Optical Fibre Amplifiers Continued

Gain-clamping techniques in two-stage double-pass L-band EDFA

AN EFFICIENT L-BAND ERBIUM-DOPED FIBER AMPLIFIER WITH ZIRCONIA-YTTRIA-ALUMINUM CO-DOPED SILICA FIBER

Erbium-Doper Fiber Amplifiers

Performance Analysis of 4-Channel WDM System with and without EDFA

Optical fiber-fault surveillance for passive optical networks in S-band operation window

EDFA-WDM Optical Network Analysis

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

Introduction Fundamental of optical amplifiers Types of optical amplifiers

EDFA-WDM Optical Network Design System

Performance Analysis of EDFA for Different Pumping Configurations at High Data Rate

Progress In Electromagnetics Research C, Vol. 15, 37 48, 2010 TEMPERATURE INSENSITIVE BROAD AND FLAT GAIN C-BAND EDFA BASED ON MACRO-BENDING

Gain Flattening Improvements With Two Cascade Erbium Doped Fiber Amplifier In WDM Systems

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

Chapter 8. Wavelength-Division Multiplexing (WDM) Part II: Amplifiers

Transient Control in Dynamically Reconfigured Networks with Cascaded Erbium Doped Fiber Amplifiers

Optical Fiber Amplifiers. Scott Freese. Physics May 2008

DESIGN TEMPLATE ISSUES ANALYSIS FOR ROBUST DESIGN OUTPUT. performance, yield, reliability

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs)

Effect of ASE on Performance of EDFA for 1479nm-1555nm Wavelength Range

Fiberoptic Communication Systems By Dr. M H Zaidi. Optical Amplifiers

Analysis of Augmented Gain EDFA Systems using Single and Multi-wavelength Sources

Linear cavity erbium-doped fiber laser with over 100 nm tuning range

Wideband Rare-earth-doped Fiber Amplification Technologies Gain Bandwidth Expansion in the C and L bands

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender

International Journal of Computational Intelligence and Informatics, Vol. 2: No. 4, January - March Bandwidth of 13GHz

Performance analysis of Erbium Doped Fiber Amplifier at different pumping configurations

New pumping scheme for high gain and low noise figure in an erbium-doped fiber amplifier

Power Transients in Hybrid Optical Amplifier (EDFA + DFRA) Cascades

DESIGN AND CHARACTERIZATION OF HIGH PERFORMANCE C AND L BAND ERBIUM DOPED FIBER AMPLIFIERS (C,L-EDFAs)

Emerging Subsea Networks

Optical Communications and Networking 朱祖勍. Oct. 9, 2017

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber

Performance Evaluation of Hybrid (Raman+EDFA) Optical Amplifiers in Dense Wavelength Division Multiplexed Optical Transmission System

HIGH POWER LASERS FOR 3 RD GENERATION GRAVITATIONAL WAVE DETECTORS

The Report of Gain Performance Characteristics of the Erbium Doped Fiber Amplifier (EDFA)

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University

Performance Comparison of Pre-, Post-, and Symmetrical Dispersion Compensation for 96 x 40 Gb/s DWDM System using DCF

International Journal of Advanced Research in Computer Science and Software Engineering

OBSERVATION AND MITIGATION OF POWER TRANSIENTS IN 160Gbps OPTICAL BACKHAUL NETWORKS

A novel 3-stage structure for a low-noise, high-gain and gain-flattened L-band erbium doped fiber amplifier *

PERFORMANCE ANALYSIS OF 4 CHANNEL WDM_EDFA SYSTEM WITH GAIN EQUALISATION

Investigation of Performance Analysis of EDFA Amplifier. Using Different Pump Wavelengths and Powers

EDFA SIMULINK MODEL FOR ANALYZING GAIN SPECTRUM AND ASE. Stephen Z. Pinter

Practical Aspects of Raman Amplifier

Comparative Analysis of Various Optimization Methodologies for WDM System using OptiSystem

Performance Analysis of WDM Network Based On EDFA Amplifier with Different Pumping Techniques

PERFORMANCE ANALYSIS OF WDM AND EDFA IN C-BAND FOR OPTICAL COMMUNICATION SYSTEM

Optimized Flattened Gain Spectrum in C Band WDM using Automatic Gain Control in Bi-Directionally Pumped EDFA

Balanced hybrid and Raman and EDFA Configuration for Reduction in Span Length

Performance Analysis of Designing a Hybrid Optical Amplifier (HOA) for 32 DWDM Channels in L-band by using EDFA and Raman Amplifier

Kuldeep Kaur #1, Gurpreet Bharti *2

Analysis of Gain and NF using Raman and hybrid RFA-EDFA

TRANSMISSION OF NG-PON FOR LONG HAUL NETWORKS USING HYBRID AMPLIFIER

Loop Mirror Multi-wavelength Brillouin Fiber Laser Utilizing Semiconductor Optical Amplifier and Fiber Bragg Grating

Review of EDFA Gain Performance in C and L Band

Current Trends in Unrepeatered Systems

Dr. Monir Hossen ECE, KUET

Improvisation of Gain and Bit-Error Rate for an EDFA-WDM System using Different Filters

Optical Amplifiers (Chapter 6)

Channel wavelength selectable singleõdualwavelength erbium-doped fiber ring laser

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 37

Gain Inhomogeneity in L-band Phosphosilicate-based Erbium-Doped Fiber Amplifiers

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Optical Fiber Amplifiers

PERFORMANCE ANALYSIS OF OPTICAL TRANSMISSION SYSTEM USING FBG AND BESSEL FILTERS

CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER

InP-based Waveguide Photodetector with Integrated Photon Multiplication

An EDFA based Optical Communication System Compensating the Effects of Jitter and Transients with maximum Gain flattening

Comparative Analysis Of Different Dispersion Compensation Techniques On 40 Gbps Dwdm System

Progress on High Power Single Frequency Fiber Amplifiers at 1mm, 1.5mm and 2mm

ANALYSIS OF THE CROSSTALK IN OPTICAL AMPLIFIERS

EDFA Applications in Test & Measurement

Design and fabrication of an asymmetric twin-core fiber directional coupler for gain-flattened EDFA

DEVELOPMENT OF A NEW INJECTION LOCKING RING LASER AMPLIFIER USING A COUNTER INJECTION: MULTIWAVELENGTH AMPLIFICATION

A broadband fiber ring laser technique with stable and tunable signal-frequency operation

Performance Analysis Of An Ultra High Capacity 1 Tbps DWDM-RoF System For Very Narrow Channel Spacing

Inherent Enhancement of Gain Flatness and Achievement of Broad Gain Bandwidth in Erbium-Doped Silica Fiber Amplifiers

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity

O. Mahran 1,2 and A.A.Samir 1

Elements of Optical Networking

Analysis and Review of EDFA

AMACH Zehnder interferometer (MZI) based on the

Burst-mode EDFA based on a mid-position gain flattening filter with an overpumping configuration for variable traffic conditions in a WDM environment

Multiwavelength optical fibre source

Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode

Rogério Nogueira Instituto de Telecomunicações Pólo de Aveiro Departamento de Física Universidade de Aveiro

from ocean to cloud ELECTRICAL POWER, A POTENTIAL LIMIT TO CABLE CAPACITY

LABORATORY INSTRUCTION NOTES ERBIUM-DOPED FIBER AMPLIFIER

Development of Etalon-Type Gain-Flattening Filter

Erbium-Doped Fiber Amplifier Review

Investigation on Multi-Beam Hybrid WDM for Free Space Optical Communication System

Transcription:

IJCRR Vol 05 issue 13 Section: Technology Category: Research Received on: 19/12/12 Revised on: 16/01/13 Accepted on: 09/02/13 ESTIMATION OF NOISE FIGURE USING GFF WITH HYBRID QUAD PUMPING V.R. Prakash, Himanshu Shekhar, Kumara Guru Diderot P. ECE Department, Hindustan University, Chennai, India E-mail of Corresponding Author: vrprakash@hindustanuniv.ac.in ABSTRACT This Paper describes the models and simulation of (Erbium Doped Fiber Amplifier) with optimized Gain and that has been flattened using GFF(Gain flattening Filter) with reduced noise figure using Hybrid Quad with the wavelengths 980nm and 1480nm oppositely cascaded (Co directional pumping and counter directional pumping) architectures a nd compares the results with with dual pumping techniques. In DWDM networks S are an imperative element and are regarded as a cost effective replacement of classical optoelectronic regenerative repeaters plays an important role in improvement of performance of optical fiber transmission systems. The proposed model consists of Input source, pumping sources with the wavelengths 980nm, 1480nm connected cascade in opposite sides and Isolator. The Erbium doped fibre amplifier s gain which appears in the signal to noise ratio expression is computed from the simulation. The resulting models accurately represent flattened gain dynamics and reduced noise figure. Simulation results with Hybrid quad pumping model1 with first stage of the wavelengths 980nm twice times and in the second stage 1480nm twice a times show a flattened maximum gain of 5.4DB and noise figure of 7.6 db and with Hybrid quad pumping model2 with first stage of the wavelengths 980nm and 1480nm and in the second stage 1480nm and 980nm show a flattened maximum gain of 5.3 DB and noise figure of 8.4db. This is applicable in Network reconfiguration and Multi -vendor networks and also addition new services and wavelengths. Keywords:, Quad, Isolator, WDM, Gain, Optical communications and Optical fiber Amplifiers, Gain flattening filter Page 146

INTRODUCTION Now days, Internet services require large bandwidth, so s are used in WDM Technology which increases the optical network capacity without affecting the cost [1]. finds its applications in optical networks and are used as pre-, line- and power amplifiers giving multi channel amplification with insignificant cross talks. In the ordinary the optimum Gain efficiency is always accompanied by a compromise in noise figure to a value well above the quantum limit [2]. Hence in our work we are providing s with wide and Flat Gain spectrums as well as reducing the Noise figure nearly by half. A wavelength far from the emission peak around 1530nm has to improve the amplification characteristics of the L- band and C-band. An important issue is the selection of a proper pump wavelength or a suitable pumping configuration. The pump wavelength dependence of the amplification characteristics of the has been reported mainly in 800-, 980-, and 1480-nm bands and now the 980- and 1480-nm bands, are mostly used for the L- band and C- band s. A typical Fixed Gain contains a length of Erbium Doped Fiber (EDF), followed by a Gain Flattening Filter (GFF). The amplifier is operated such that the EDF provides a fixed amount of Gain, while the GFF is designed to have a spectral attenuation profile that exactly compensates for the spectral gain profile of the EDF. In this way the spectrum at the output of the is flattened [3]. If the amplifier is operated at another gain, the GFF will not exactly compensate the gain profile of the EDF, and the output of the amplifier will no longer remain flattened. However, for a given length of EDF the gain profile can change drastically as a function of gain, to compensate for such a high gain tilt the GFF would need to attenuate the higher gain wavelengths by a very large amount, thus making the amplifier very inefficient. A relatively high-powered beam of light is mixed with the input signal using a wavelength selective coupler. The input signal and the excitation light must of course be at significantly different wavelengths. The mixed light is guided into a section of fiber with erbium ions included in the core. This high-powered light beam excites the erbium ions to their higher-energy state. When the photons belonging to the signal at a different wavelength from the pump light meet the excited erbium atoms, the erbium atoms give up some of their energy to the signal and return to their lower-energy state. A significant point is that the erbium gives up its energy in the form of additional photons which are exactly in the same phase and direction as the signal being amplified. So the signal is amplified along its direction of travel only. This is not unusual - when an atom lases it always gives up its energy in the same direction and phase as the incoming light. That is just the way lasers work. Thus all of the additional signal power is guided in the same fiber mode as the incoming signal. There is usually an isolator placed at the output to prevent reflections returning from the attached fiber. Such reflections disrupt amplifier operation and in the extreme case can cause the amplifier to become a laser. Figure 1. Shows the with dual pumping using the wavelengths 980-nm in both sides of as a first model and 1480-nm in both the sides of as a second model and 980- nm in one side of and 1480-nm in other side as third model like three models has been computed and simulated and analyzed the performance with the parameters of Gain and Noise figure of Dual and also compared with the results of Proposed Hybrid Quad models. The block diagram consists of input Source, Isolator,, WDM, sources and Isolator allows only forward propagation for that there is no reflected signal. In the Proposed Hybrid Quad pumping technique gives optimized gain has been flattened with reduced noise figure and is compared to Dual, the gain Page 147

has been flattened with the same value of noise figure. Source Isolator WDM WDM Figure 1: Block diagram of with dual pumping Filter The paper is organized into six sections. In section II Background of this work, while section III presents the methodology and the proposed work Section IV demonstrates the model Simulation details. Section V presents the results and discussions. Finally, the paper is concluded in section VI. BACKGROUND In the late 80 s Erbium Doped Fiber Amplifiers () have been a target of several improvements. In optical Networks, using s it is possible to extend transmission distances and the capacity. The paper [1] proposed a highly reliable approach to gain and output power control and a power monitoring scheme for fault detection in WDM Networks. These techniques employ a power stabilized control channel, the gain and output power are controlled by monitoring it. This paper [2] demonstrated and tested a new configuration of, which enables to efficiently amplify high and low power level signals. The small signal gain is improved by more than 5 db with the double pass configuration. This paper [3] presents a composite configuration which incorporates an optical isolator and investigated highly efficient amplifier configurations with high total gain and narrow ASE spectrum. This paper [4] proposed an pumped in the 660nm and 820nm bands wavelength and increased the signal power and gain. This paper [5] presents amplifier s gain and power noise which appear in the signal to noise ratio expression, are computed in terms of the internal parameters from simulations and are shown to contribute to its improvement. This paper discusses [6] a new approach for a hybrid gain controlled based on a complementary actuation of the optical and electronic gain control technique with suppressed transients. The result shows a maximum of 0.6 db deviation from the set gain value. This paper [7] without noise figure degradation of L-Band with 1480 nm discusses power conversion efficiency and improvement without noise figure degradation. METHODOLOGY In this work, we proposed the two models of with Hybrid Quad using different wavelengths, simulated the models and also compared the results with Dual pumping model and Hybrid quad pumping models using and WDM blocks and a high performance approach is presented that has not been used in this manner before for such design. Erbium doped fiber amplifiers () employed in Wavelength Division Multiplexing (WDM) systems have been shown to incur system impairment due to transient flattened gain Page 148

with reduced noise. Applied Methodology The applied methodology is based on an Opposite Cascade approach. Each block in the architecture was added in t h e model a nd tested a n d l a t e r t h os e b l o c k s w e r e assembled and were added to compose the complete system and then simulated and tabulated the parameter values. Proposed Work Figure 2 shows the General block diagram of Hybrid Quad. It consists of Input Source, Isolator, Each of length 10m, WDM (Wavelength division Multiplexer) and Filter. 1 st Proposed model is similar to the General Block diagram except the using Hybrid Quad with the wavelengths 980-nm twice a times (in Co directional) and 1480-nm twice a times (in Counter directional). Similar to 1 st model, in the 2 nd Proposed model the is also using Hybrid Quad with the wavelengths 980-nm and 1480-nm (in Co directional) and 1480-nm and 980-nm (in Counter directional). A wavelength-division-multiplexing (WDM) technique combined with erbium-doped fiber amplifier () is essential for realizing high capacity light wave transmission and flexible optical networks. Compared with Unidirectional transmission, bidirectional transmission over a single fiber has the advantage of reducing not only the number of fiber link, but also the number of passive components such as splitters and WDM multiplexers. Recently, lots of problems in bidirectional s were investigated, and various structure schemes of the were reported to overcome the problems, such as back reflections [3] An automatic gain control (AGC) function for bidirectional s, however, has been rarely reported[4]. This method has the advantage of providing optical fiber with few Erbium clusters because the Er is uniformly doped into silica soot perform in a vapor phase atmosphere. In order to attain highly efficient s, the three key factors outlined below must be considered. The first is the Erbium concentration effect on Erbium cluster generation in silica- based glass. It has already been confirmed that an increase in Erbium concentration causes deterioration in amplification efficiency [4]. In the block diagram, we are using an optical source with multiple channels (1520-nm to 1618-nm) whose output is given to the isolator. The isolator allows only the forward propagation restricting the reverse propagation. Further the output of the isolator and the first pumping source (codirectional) has been multiplexed using WDM technique. This multiplexed signal is given to the first where the signal is amplified to improve the gain characteristics. Again the output is multiplexed with the second pumping source (co-directional), which is then amplified by the second. The amplified output is given to WDM to combine with third pumping source in counter directional and again given to Third to increase gain and then given WDM to combine with Last pumping source (Counter directional). Page 149

Source Isolato r (1) WDM (1) WDM (2) WD M doped silica cladding. The fiber has a relative refractive-index difference of 1.88%, which corresponds to a 0.285 numerical aperture. MODEL SIMULATION First Hybrid Quad pumping model with the wavelengths 980nm twice times in codirectional 1480-nm twice times in Counter directional has been simulated as shown in Figure 3. And the second Hybrid Quad pumping model with the wavelengths 980-nm, 1480-nm in the co-directional and 1480-nm, 980-nm in the counter directional has been simulated as shown in Figure 8. The parameters Gain and Noise figure has been measured from the simulation models before and after Gain Flattening Filter and that has been plotted as shown in Figure 4, Figure 5 Figure 6 and Figure 7. WD M Isolato r Filte r (2) Figure 2: Block Diagram of Hybrid Quad Counter directional pumping gives high gain and Co- directional pumping allows less noise performance especially 980nm pumping gives better noise performance and achieves better population inversion than 1480nm wavelength. The second important factor is to design a fiber structure to maximize the pump/dopant overlap and therefore attain maximum pump efficiency. In previous work, it has been established that Erdoped fibers with a high NA can greatly increase the pumping intensity in a very small core, resulting in a very large gain coefficient. An Er-doped high NA fiber was achieved using a glass system consisting of an Er- Ge-co- doped silica core and fluorine (F)- Figure3: First model for Hybrid Quad Figure 4: Gain characteristics of before GFF Page 150

Figure 5: Noise figure before GFF Figure 9: Gain before GFF Figure 6: Gain after GFf Figure10: Noise figure before Gff Figure7: Noise figure after GFF Figure 11: Gain after GFF Figure 8: Second model of Hybrid quad pumping Figure12: Noise figure after GFF Page 151

Figure 9 and Figure 10 shows Gain characteristics and noise characteristics before GFF of 2nd simulation model. Figure 11 and Figure 12 show the Gain characteristics and Noise Figure Characteristics after GFF of 2nd Simulation model. RESULTS AND DISCUSSIONS The Plotted Values of simulation results before re and after GFF are tabulated as shown in Table I. Table I shows the simulation results of 1 st and 2 nd Hybrid Quad pumping models (Proposed) were compared with Dual techniques with different wavelengths. The results of Dual pumping models are, Gain has been flattened after GFF but Noise Figure has been maintained. For the Hybrid Quad pumping models, after GFF Gain has been flattened but Noise Figure has been decreased half, means output noise has been decreased half. Table I. shows the tabular representation of the simulation results and comparison of Gain with and without GFF (gain flattening filter) with 980nm, 1480nm, dual and quad hybrid directional pumping. In the first proposed model with hybrid quad pumping (980nm twice in left of and 1480nm twice in right of ) the gain without GFF is 38.7 and gain with GFF is 5.3 flattened. In the second proposed model with hybrid quad pumping (980nm, 1480nm in left of and 980nm, 1480nm in right of ) the gain without GFF is 35.9 and the gain with GFF is 5.3 flattened. Table 1: Results of comparison of gain with and without gain flattening filter (GFF) with 980nm, 1480nm, dual and quad hybrid directional pumping S.No Types Gain without GFF (DB) Gain with GFF(D B) 1 Dual (980nm) 33.7 4.8 2 Dual (1480nm) 22 3 3 4 5 Dual (980nm,1480nm) Hybrid Quad (980nm, 1480nm in left of and 1480nm, 980nm in right of ) Hybrid Quad (980nm twice times in left of and 1480nm twice times in right of ) 25 3.4 35.9 5.3 38.7 5.4 Table 2 show results of comparison of Noise Figure with and without Gain Flattening Filter (GFF) with 980nm, 1480nm, Dual and Quad Hybrid Directional. In the first proposed model with hybrid quad pumping (980nm twice in left of and 1480nm twice in right of ) the noise figure without GFF is 11.5 and noise figure with GFF is 8.4 flattened. In the second proposed model with hybrid quad pumping (980nm, 1480nm in left of and 980nm,1480nm in right of ) the noise figure without GFF is 14.8 and the noise with GFF is 7.6 flattened. Page 152

Table 2: results of comparison of noise figure with and without gain flattening filter (GFF) with 980nm, 1480nm, dual and quad hybrid directional pumping S. NO 4 1 2 3 5 Types Noise Figure with out GFF Noise Figure with GFF Dual (980nm) 4.8 4.8 Dual (1480nm) Dual (980nm, 1480nm) Hybrid Quad (980nm, 1480nm in left of and 1480nm, 980nm in right of Hybrid Quad (980nm twice times in left of and 1480nm twice time in right 7.4 7.4 6 6 14.8 7.6 11.5 8.4 Figure 10. Shows the bar chart for Gain with and without GFF Figure 10. Shows the results of bar chart, comparison of Gain with and without GFF for different pumping models. CONCLUSION AND FUTURE ASPECTS The capability of Simulating Models of with Hybrid Quad pumping with and without GFF is proposed in this work. Based on above discussion it can be concluded that an with Hybrid Quad pumping has been modeled and simulated successfully with flattened gain and reduced noise figure for DWDM networks to increase transmission quality. Goal is to model Hybrid Quad pumping that would model some real world phenomena using. Thus, we have shown that the proposed model of an with Hybrid Quad was successfully simulated using WDM. In future work, the model can be modified and enhanced further by using different filters will concentrate further optimize the gain REFERENCES 1. N. Zervas, R.L. Laming and David N. Payne," Efficient incorporating an optical isolator, In IEEE journal of quantum electrinics, March 1995, vol 31, no.3 UK. 2. Aditya Goel and Ravi Shankar Mishra, Design of broadband for next generation optical network, International journal of Neural networks and applications, jan-june 2010, pp.9-13. 3. J.H. Jang, J.H. Jung, K.K.Lee, Implementation of Automatic gain controlled bidirectional in WDM Networks, IEEE CLEO/Pacific Rain 1999. 4. Masaharu horiguchi, IEEE Journal of Lightwave technology, Vol 12, no.5, May 1994. 5. Temmer, H. Ould Saadi and A. Boutaleb, Simulation based analysis of, Journal of Applied science, Asian network for scientific information,page no. 789-794, 2006. 6. M.Karasek, Gain enhancement in gain shifted for WDM applications, IEEE photonics technology letters vol 11 no. 9, September 1999. 7. S.W. Harun, N.N. Samsuri, H.Ahmad, Partial gain clamping in two stage double pass L band using a ring resonator, IEEE 2004. Page 153