Lab 3: BJT Digital Switch

Similar documents
Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 8. Bipolar Junction Transistor

.dc Vcc Ib 0 50uA 5uA

7. Bipolar Junction Transistor

Lecture (01) Transistor operating point & DC Load line

5.25Chapter V Problem Set

Experiment #6: Biasing an NPN BJT Introduction to CE, CC, and CB Amplifiers

Dr. Charles Kim ELECTRONICS I. Lab 5 Bipolar Junction Transistor (BJT) I TRADITIONAL LAB

EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT

BJT Characteristics & Common Emitter Transistor Amplifier

ANALYSIS OF AN NPN COMMON-EMITTER AMPLIFIER

ES 330 Electronics II Homework # 2 (Fall 2016 Due Wednesday, September 7, 2016)

ELEC 2210 EXPERIMENT 7 The Bipolar Junction Transistor (BJT)

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

Well we know that the battery Vcc must be 9V, so that is taken care of.

Experiment #8: Designing and Measuring a Common-Collector Amplifier

Chapter 6. BJT Amplifiers

Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS

EXP8: AMPLIFIERS II.

EXPERIMENT 10: SINGLE-TRANSISTOR AMPLIFIERS 11/11/10

Electronics EECE2412 Spring 2017 Exam #2

By: Dr. Ahmed ElShafee

Figure1: Basic BJT construction.

2. SINGLE STAGE BIPOLAR JUNCTION TRANSISTOR (BJT) AMPLIFIERS

EE 3111 Lab 7.1. BJT Amplifiers

The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering ECE 20 - LAB

PHY405F 2009 EXPERIMENT 6 SIMPLE TRANSISTOR CIRCUITS

The shape of the waveform will be the same, but its level is shifted either upward or downward. The values of the resistor R and capacitor C affect

Early Effect & BJT Biasing

14. Transistor Characteristics Lab

DC Bias. Graphical Analysis. Script

Current Mirrors. Basic BJT Current Mirror. Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror.

Physics 481 Experiment 3

ECE321 Electronics I Fall 2006

Emitter base bias. Collector base bias Active Forward Reverse Saturation forward Forward Cut off Reverse Reverse Inverse Reverse Forward

A 3-STAGE 5W AUDIO AMPLIFIER

EXPERIMENT 12: SIMULATION STUDY OF DIFFERENT BIASING CIRCUITS USING NPN BJT

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 12, 2017

I C I E =I B = I C 1 V BE 0.7 V

Lab 2: Discrete BJT Op-Amps (Part I)

After the initial bend, the curves approximate a straight line. The slope or gradient of each line represents the output impedance, for a particular

ITT Technical Institute. ET215 Devices 1. Unit 6 Chapter 3, Sections

Chapter 6: Transistors and Gain

Experiment 6: Biasing Circuitry

When you have completed this exercise, you will be able to determine the ac operating characteristics of

Analog Electronic Circuits Lab-manual

Experiments #6. Differential Amplifier

Phy 335, Unit 4 Transistors and transistor circuits (part one)

ECEN 325 Lab 7: Characterization and DC Biasing of the BJT

The Common Emitter Amplifier Circuit

SAMPLE FINAL EXAMINATION FALL TERM

ECE 3274 Common-Emitter Amplifier Project

Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Department of Mechanical Engineering

The collector terminal is common to the input and output signals and is connected to the dc power supply. Common Collector Circuit

UNIVERSITY OF PENNSYLVANIA EE 206

EXPERIMENT 6 REPORT Bipolar Junction Transistor (BJT) Characteristics

55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point.

Experiment # 4: BJT Characteristics and Applications

Experiment 6: Biasing Circuitry

Chapter Two "Bipolar Transistor Circuits"

Electronics II Lecture 2(a): Bipolar Junction Transistors

Experiment #7: Designing and Measuring a Common-Emitter Amplifier

E84 Lab 3: Transistor

ECE 3274 Common-Collector (Emitter-Follower) Amplifier Project

Frequency Response of Common Emitter Amplifier

Carleton University ELEC Lab 1. L2 Friday 2:30 P.M. Student Number: Operation of a BJT. Author: Adam Heffernan

Experiment 9 Bipolar Junction Transistor Characteristics

Lab 4. Transistor as an amplifier, part 2

I1 19u 5V R11 1MEG IDC Q7 Q2N3904 Q2N3904. Figure 3.1 A scaled down 741 op amp used in this lab

When you have completed this exercise, you will be able to determine ac operating characteristics of a

Lecture (09) Bipolar Junction Transistor 3

Hello, and welcome to the TI Precision Labs video series discussing comparator applications. The comparator s job is to compare two analog input

PHYS 3152 Methods of Experimental Physics I E2. Diodes and Transistors 1

TTL LOGIC and RING OSCILLATOR TTL

BJT Fundamentals and Applications JOR

4 Transistors. 4.1 IV Relations

ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model

BJT. Bipolar Junction Transistor BJT BJT 11/6/2018. Dr. Satish Chandra, Assistant Professor, P P N College, Kanpur 1

Transistor Biasing and Operational amplifier fundamentals. OP-amp Fundamentals and its DC characteristics. BJT biasing schemes

Prelab 6: Biasing Circuitry

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 2 (CONT D - II) DIODE APPLICATIONS

The Bipolar Junction Transistor- Small Signal Characteristics

Bipolar Junction Transistors

Transistors and Applications

Electronic Circuits - Tutorial 07 BJT transistor 1

Electronic Circuits EE359A

Chapter 3 Bipolar Junction Transistors (BJT)

Diode and Bipolar Transistor Circuits

Page 1 of 7. Power_AmpFal17 11/7/ :14

Chapter 5 Transistor Bias Circuits

Lecture 3: Transistors

Transistor Biasing. DC Biasing of BJT. Transistor Biasing. Transistor Biasing 11/23/2018

ENEE 306: Electronics Analysis and Design Laboratory

Tutorial #5: Emitter Follower or Common Collector Amplifier Circuit

Chapter 3. Bipolar Junction Transistors

Chapter 4 DC Biasing BJTs. BJTs

Lab 2: Common Emitter Design: Part 2

CHAPTER 3: BIPOLAR JUNCION TRANSISTOR DR. PHẠM NGUYỄN THANH LOAN

Engineering Spring Homework Assignment 4: BJT Biasing and Small Signal Properties

ECE 3274 Common-Emitter Amplifier Project

Electronics EECE2412 Spring 2018 Exam #2

Transcription:

Lab 3: BJT Digital Switch Objectives The purpose of this lab is to acquaint you with the basic operation of bipolar junction transistor (BJT) and to demonstrate its functionality in digital switching circuits. Introduction Before we start, let s do a review on the I-V characteristic of BJT and the principle of BJT inverter. A transistor has three terminals, so we can plot more than one I-V curve. However, the most useful I-V curve to understand the transistor behavior and to help design circuits is the one that plots the collector current (I C ) as a function of the collector-emitter voltage (V CE ), as those shown in Fig. 3-1. Note that there is a different curve for every different value of the base current (I B ) or equivalently the baseemitter voltage (V BE ). To determine the operating point of a BJT, both I B (or V BE ) and I C (or V CE ) need to be determined. Typically, I B (or V BE ) is set by the input and I C (or V CE ) is determined collectively by the BJT and the load usually a resistor or another transistor (active load). The I-V characteristic of the load is called the load line when plotted and overlaid on the I-V curves of the BJT. Figure 3-1: I C - V CE characteristic for varying I B values of a 2N3904 NPN BJT Professor Y. Chiu 1

For example, a BJT amplifier with a resistive load is shown in Fig. 3-2. Figure 3-2: BJT with a resistive load The load resistor R C that is placed in the collector-emitter loop will define the load-line equation, I C = V CC V CE R C (3-1) We can plot the I C V CE relationship defined in Eq. 3-1 on top of the I-V curves of the BJT, thus obtaining the load line. This is done and shown in Fig. 3-3. To find the operating point of the BJT, i.e. the I C and the V CE, we need to know the value of the base current so that we can select one of the BJT curves in the figure. Then the operating point is defined by the intersection of the load line and the BJT I-V curve. Figure 3-3: Load line and three operation regions of BJT Professor Y. Chiu 2

There are three possible operation regions for a BJT we can see along the load line. Saturation region: In this region the collector current does not increase for any increase in the base current. The collector essentially acts like a voltage source of 0.2V-0.3V. Forward-active region (FAR): In this region the collector current increases proportionally to the increase in the base current. For a fixed base current, the collector acts like a current source to the load. The ratio of the collector and base currents defines the current gain of the BJT. Cut-off region: In this region the collector current is very small and we can consider it as zero. Now that we have learned the three regions, it is important to know in which regions a digital inverter is supposed to work. We will use the BJT inverter shown in Fig. 3-4 to illustrate this. (Note: the same circuit also functions as a BJT common-emitter amplifier by tweaking the bias voltages of the circuit this will be discussed in Lab 4.) Figure 3-4: BJT inverter configuration To function as an inverter means that the BJT will work in only two states, the on and off states or the high/1 and low/0 states. These two states usually correspond to the cut-off and the saturation regions of operation. Since we do not want the transistor to operate somewhere in between the two states, we would like the inverter to have an input-output voltage transfer function exhibiting a steep slope in the transition (or middle) region, as shown in Fig. 3-5. The inverter transfer characteristic can be further explained as follows. The circuit is going to yield nearly zero volts at the output, i.e., low or 0 state, when you apply a high or 1 input. The converse is also true the voltage at the output is high or 1 when you apply nearly zero volts at the input. The relationship between the input and output voltages/currents is shown in Eqs. 3-2 and 3-3. These equations should help you design your circuit. I B = V IN V f R B (3-2) V OUT = V CC β F R C R B (V IN V f ) (3-3) where V f is the turn-on voltage of the base-emitter junction and β F is the current gain (I C /I B ) of the BJT. Professor Y. Chiu 3

Figure 3-5: Transfer characteristic for different ratios of R C /R B of an inverter The trip point of an inverter is determined by drawing a line with a slope of 1 through the origin; and the intercept point of the line and the inverter transfer curve is the trip point or trip voltage of that inverter. The trip voltage is also called the transition voltage sometimes. Preparation We will be using a BJT as a digital switch in the inverter and follower configurations. See Fig. 3-6 for schematics of these two circuits. Note that an inverter is supposed to invert the input signal, i.e., a high/low or 1/0 input will yield a low/high or 0/1 output; while the follower is supposed to derive a non-inverting output, i.e., a high/low or 1/0 input will yield a high/low or 1/0 output as well. This is the fundamental difference between the two circuits. Figure 3-6: BJT inverter and follower configurations Professor Y. Chiu 4

For the inverter circuit, use PSpice to do the following: 1. Obtain the I-V curves of the 2N3904 BJT as those shown in Fig. 3-1. You can accomplish this by performing a DC sweep of V CE with a secondary sweep of I B. 2. Use a 2k resistor as your load, i.e., R C = 2k, and a V CC of 10V. Plot the load line. Use this plot to show where the different operation regions of the BJT are, label them. Give the approximate base current ranges that will make the transistor to operate in these regions. 3. Find the value of R B needed to produce a transition voltage of approximately 2.5V when a 0V-5V square wave is applied at the input. You may assume V f = 0.7V and use Eqs. 3-2 and 3-3 to do rough hand calculations first. 4. Obtain the input-output voltage transfer function of the inverter. Identify and label the three operation regions here also. Determine the input voltage range for the three different regions. 5. Use a 1kHz, 0V-5V square wave at the input and perform a transient simulation to find the waveform of V out, label the high or 1 level and the low or 0 level of the inverter. For the follower circuit, use PSpice to do the following: 1. Derive the load-line equation for the follower circuit (similar to Eq. 3-1) and repeat the load line simulation. Use a 2k resistor for both R B and R E, and a V CC of 10V. Use this plot to show where the different operation regions of the BJT are, label them. 2. Obtain the input-output voltage transfer function of the follower. How many different operation regions can the BJT assume in this case? Identify and label these operation regions. Determine the input voltage range for these different regions. (Hint: Can the BJT enter saturation region under normal operation in this case?) 3. Use a 1kHz, 0V-5V square wave at the input and perform a transient simulation to find the waveform of V out, label the high or 1 level and the low or 0 level of the follower. Procedure Your goal in this experiment is to design a digital switching circuit that can light an LED in series with a 1k resistor using the two configurations you studied the inverter and the follower. You need to replace the R C or R E in Fig. 3-6 with the LED in series with a 1k resistor. Determine the best value of R B for your inverter and follower. Record the values and explain how you made your selection. You will need to measure the following curves and show how you use them for your designs. I-V characteristics of the BJT (using BJT_iv_curve.vi in LabView) I-V characteristic of the LED in series with a 1k resistor (using iv_curve.vi in LabView) Once the circuit is working, use the function generator (set to a sufficiently low frequency) to monitor the LED turning on and off. Use the oscilloscope to capture the V CE waveform of the BJT. Use the LabView program scopegrab.vi to capture the waveforms. Professor Y. Chiu 5

Lab 3 Report Instructions Besides the general guidelines, report the following specifics for this lab: From preparation 1. Show PSpice schematic of the inverter circuit with BJT (2N3904) from Fig. 3-4. Use only current input IB to the base. Run a primary DC sweep for VCE (0 to 10V) and a secondary sweep for IB (0 to 100uA), plot the I-V curves. 2. Run a new DC sweep (primary and secondary) of the above circuit after changing Rc value from 1k to 2k, plot the I-V curves similarly and the load line (Eq. 3-1) on the same graph. Show on the plot where the three different regions are, give the ranges for the base current for each region. 3. Calculate Rb from IB=(Vin-0.7V)/Rb to make the BJT work in the digital regime when a 0-5V square wave is applied as the input to the inverter. 4. For both circuits in Fig. 3-6, run a DC sweep for Vin (0-5V), plot input-output transfer curve and identify the operation regions. 5. Run transient analysis with a square wave input (1kHz, 0-5V), plot Vout, show 1 and 0 levels. From procedure 1. Plot the I-V characteristic of the BJT obtained using BJT_iv_curve.vi. 2. Plot the I-V characteristic of the LED with a 1k resistor obtained using iv_curve.vi. 3. Plot the output waveform for both the inverter and voltage follower circuits in Fig. 3-6 captured from oscilloscope using scopegrab.vi. Show the rms, peak-to-peak, and average values. Professor Y. Chiu 6