An upstream reach-extender for 10Gb/s PON applications based on an optimized semiconductor amplifier cascade

Similar documents
Optimisation of DSF and SOA based Phase Conjugators. by Incorporating Noise-Suppressing Fibre Gratings

Semiconductor Optical Amplifiers (SOAs) as Power Boosters. Applications Note No. 0001

SOA-BASED NOISE SUPPRESSION IN SPECTRUM-SLICED PONs: IMPACT OF BIT-RATE AND SOA GAIN RECOVERY TIME

50Gb/s technical feasibility analysis. Dekun Liu, Huawei Stanley Shuai, Source Sep, 2017

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender

Lecture 8 Fiber Optical Communication Lecture 8, Slide 1

Performance of an optical equalizer in a 10 G wavelength converting optical access network

SOA pre-amplified upstream signal power in 100G EPON

25G TDM PON overview. Ed Harstead, member Fixed Networks CTO Dora van Veen, Vincent Houtsma, and Peter Vetter, Bell Labs

Marek Hajduczenia, ZTE Corp.

A HIGH SPEED WDM PON FOR DOWNSTREAM DPSK ASK SIGNALS AND UPSTREAM OOK SIGNAL WITH BROADCAST CAPABILTY

NG-PON2 Optical Components Update. Hal Roberts System Architect

Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source

ITU-T G (03/2008) Gigabit-capable passive optical networks (GPON): Reach extension

Spectrally Compact Optical Subcarrier Multiplexing with 42.6 Gbit/s AM-PSK Payload and 2.5Gbit/s NRZ Labels

Technical Feasibility of 4x25 Gb/s PMD for 40km at 1310nm using SOAs

All-VCSEL based digital coherent detection link for multi Gbit/s WDM passive optical networks

Colorless Amplified WDM-PON Employing Broadband Light Source Seeded Optical Sources and Channel-by-Channel Dispersion Compensators for >100 km Reach

Minimization of amplified spontaneous emission noise in upstream SuperPON 512 ONU, 10 Gbit/s.

Utilizing Self-Seeding RSOA with Faraday Rotator Mirror for Colorless Access Network

Lecture 15 Semiconductor Optical Amplifiers and OTDR

Performance Analysis of Multi-format WDM-RoF Links Based on Low Cost Laser and SOA

Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration

Optical Fiber Technology

A WDM passive optical network enabling multicasting with color-free ONUs

Public Progress Report 2

PERFORMANCE ASSESSMENT OF TWO-CHANNEL DISPERSION SUPPORTED TRANSMISSION SYSTEMS USING SINGLE AND DOUBLE-CAVITY FABRY-PEROT FILTERS AS DEMULTIPLEXERS

OFC SYSTEM: Design Considerations. BC Choudhary, Professor NITTTR, Sector 26, Chandigarh.

Visible to infrared high-speed WDM transmission over PCF

Optical Local Area Networking

11.1 Gbit/s Pluggable Small Form Factor DWDM Optical Transceiver Module

Consideration about wavelength allocation in O-band

Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise

Electrical-to-optical conversion of OFDM g/a signals by direct current modulation of semiconductor optical amplifiers

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

Life Science Journal 2013;10(4)

from ocean to cloud SEAMLESS OADM FUNCTIONALITY FOR SUBMARINE BU

π code 0 Changchun,130000,China Key Laboratory of National Defense.Changchun,130000,China Keywords:DPSK; CSRZ; atmospheric channel

High-Power Semiconductor Laser Amplifier for Free-Space Communication Systems

TS-GP2512-OLT-C+ GPON OLT Class C+ SFP Transceiver FEATURES

Coexistence of 10G-PON and GPON Reach Extension to 50-Km with Entirely Passive Fiber Plant

Bit error rate and cross talk performance in optical cross connect with wavelength converter

A 10Gb/s APD-based linear burst-mode receiver with 31dB dynamic range for reach-extended PON systems

Optical Digital Transmission Systems. Xavier Fernando ADROIT Lab Ryerson University

Research on Optical Access Network. Assoc. Prof. Dr. Duang-rudee Worasucheep Electrical Engineering Department Chulalongkorn University

Development of Small Optical Transceiver for 10G-EPON

Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion

Electronic equalization for enabling communications at OC-192 rates using OC-48 components

SCTE. San Diego Chapter March 19, 2014

Evolution from TDM-PONs to Next-Generation PONs

Analysis of four channel CWDM Transceiver Modules based on Extinction Ratio and with the use of EDFA

GPON OLT SFP Class C+

Mahendra Kumar1 Navneet Agrawal2

Eye-Diagram-Based Evaluation of RZ and NRZ Modulation Methods in a 10-Gb/s Single-Channel and a 160-Gb/s WDM Optical Networks

Performance Analysis of SOA-MZI based All-Optical AND & XOR Gate

Enhanced 10 Gb/s operations of directly modulated reflective semiconductor optical amplifiers without electronic equalization

Interoperability of CWDM-routed reflective PONs. This chapter presents a complete multi-pon access network infrastructure by means of

photonique et laser (COPL) Department of Electrical and Computer Engineering, Université Laval

Study of All-Optical Wavelength Conversion and Regeneration Subsystems for use in Wavelength Division Multiplexing (WDM) Telecommunication Networks.

1.25 Gb/s Broadcast Signal Transmission in WDM-PON Based on Mutually Injected Fabry-Perot Laser Diodes

HOLT Transceiver for EPON (HOLT-11C214L22) 2X10 SFF, Pigtailed with SC, +3.3V, 1.25Gbps, 20km 1490nmTX/1310RX, DFB-LD/APD, 0~70. Feature.

Packet clock recovery using a bismuth oxide fiber-based optical power limiter

Burst Mode Technology

Characterization of uncooled RSOA for upstream transmission in WDM reflective PONs

Novel OBI noise reduction technique by using similar-obi estimation in optical multiple access uplink

CSO/CTB PERFORMANCE IMPROVEMENT BY USING FABRY-PEROT ETALON AT THE RECEIVING SITE

Mitigation of Mode Partition Noise in Quantum-dash Fabry-Perot Mode-locked Lasers using Manchester Encoding

Novel Design of Long Reach WDM-PON by using Directly Modulated RSOA

Chapter 8. Wavelength-Division Multiplexing (WDM) Part II: Amplifiers

Physical Media Dependent Prototype for 10-Gigabit-Capable PON OLT

P2MP PMD Baseline. Prepared by Frank Effenberger Quantum Bridge Communications

PERFORMANCE EVALUATION OF GB/S BIDIRECTIONAL DWDM PASSIVE OPTICAL NETWORK BASED ON CYCLIC AWG

Impact of Double Cavity Fabry-Perot Demultiplexers on the Performance of. Dispersion Supported Transmission of Three 10 Gbit/s

Microwave and Optical Technology Letters. Minhui Yan, Qing-Yang Xu 1, Chih-Hung Chen, Wei-Ping Huang, and Xiaobin Hong

between in the Multi-Gigabit Regime

Chapter 8. Digital Links

Optimization of uncooled RSOA parameters in WDM reflective PONs based on self-coherent or direct detection OLT receivers

To investigate effects of extinction ratio on SOA based wavelength Converters for all Optical Networks

22-Channel Capacity of 2.5Gbit/s DWDM-PON ONU Transmitter by Direct-Modularly Side-Mode Injection Locked FPLD

An integrated recirculating optical buffer

Assessment of improvement of extension of reach of 10 Gbps PONs by using APDs

The Reduction of FWM effects using Duobinary Modulation in a Two-Channel D-WDM System

Vol. 6, No. 9 / September 2007 / JOURNAL OF OPTICAL NETWORKING 1105

Optical Transport Tutorial

All-optical NRZ to RZ format and wavelength converter by dual-wavelength injection locking

Optical Delay Line Application Note

EDFA TRANSIENT REDUCTION USING POWER SHAPING

Performance Analysis of Chromatic Dispersion Compensation of a Chirped Fiber Grating on a Differential Phase-shift-keyed Transmission

Performance Analysis of WDM-FSO Link under Turbulence Channel

Chirped Bragg Grating Dispersion Compensation in Dense Wavelength Division Multiplexing Optical Long-Haul Networks

Photonic Systems Group

Performance Analysis of Gb/s DWDM Metropolitan Area Network using SMF-28 and MetroCor Optical Fibres

Long Haul Communication using Hybrid Optical Amplifiers.

10 Gb/s transmission over 5 km at 850 nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD

A proposal for two-input arbitrary Boolean logic gates using single semiconductor optical amplifier by picosecond pulse injection

Design and Performance Evaluation of 20 GB/s Bidirectional DWDM Passive Optical Network Based on Array Waveguide Gratings

Detectors for Optical Communications

Experimental demonstration of both inverted and non-inverted wavelength conversion based on transient cross phase modulation of SOA

Study of Orthogonal Modulation Schemes for Passive. Optical Access Networks.

S Optical Networks Course Lecture 4: Transmission System Engineering

Transcription:

An upstream reach-extender for 1Gb/s PON applications based on an optimized semiconductor amplifier cascade Stefano Porto, 1,2,* Cleitus Antony, 1,3 Peter Ossieur, 1,3 and Paul D. Townsend 1,3 1 Photonics System Group, Tyndall National Institute, Cork, Ireland 2 Department of Electrical & Electronic Engineering, University College Cork, Cork, Ireland 3 Department of Physics, University College Cork, Cork, Ireland * stefano.porto@tyndall.ie Abstract: We present a reach-extender for the upstream transmission path of 1Gb/s passive optical networks based on an optimised cascade of two semiconductor optical amplifiers (SOAs). Through careful optimisation of the bias current of the second stage SOA, over 19dB input dynamic range and up to 12dB compression of the output dynamic range were achieved without any dynamic control. A reach of 7km and split up to 32 were demonstrated experimentally using an ac-coupled, continuous-mode receiver with a reduced 56ns ac-coupling constant. 211 Optical Society of America OCIS codes: (6.451) Optical communications; (6.425) Networks. References and links 1. R. Davey, J. Kani, F. Bourgart, and K. McCammon, Options for Future Optical Access Networks, IEEE Commun. Mag. 44(1), 5 56 (26). 2. D. Nesset, D. Payne, R. Davey, and T. Gilfedder, Demonstration of enhanced reach and split of a GPON system using semiconductor optical amplifier, in European Conference on Optical Communication (ECOC 26), paper Mo4.5.1, Cannes, France. 3. S. Pato, R. Meleiro, D. Fonseca, P. André, P. Monteiro, and H. Silva, All-Optical Burst-Mode Power Equalizer Based on Cascaded SOAs for 1Gbit/s EPONs, IEEE Photon. Technol. Lett. 2(24), 278 28 (28). 4. B. Cao and J. E. Mitchell, Modelling Optical Burst Equalisation in Next Generation Access Networks, in Proceedings of International Conference on Transparent Optical Networks (ICTON 21), paper Th.A2.3, Munich, Germany. 5. C. Antony, G. Talli, and P. D. Townsend, SOA Based Upstream Packet Equalizer in 1Gb/s Extended-Reach PONs, in Proceedings of Optical Fiber Communication Conference (OFC 29), paper OThA5, San Diego, USA. 6. IEEE Standard, 82.3 av (29). 7. K. Inoue, Waveform distortion in a gain-saturated semiconductor optical amplifier for NRZ and Manchester formats, IEE Proc., Optoelectron. 144(6), 433 437 (1997). 8. A. Ghazisaeidi, F. Vacondio, A. Bononi, and L. A. Rusch, Bit Patterning in SOAs: Statistical Characterization through Multicanonical Monte Carlo Simulations, IEEE J. Quantum Electron. 46(4), 57 578 (21). 9. R. J. Manning and D. A. O. Davies, Three-wavelength device for all-optical signal processing, Opt. Lett. 19(12), 889 991 (1994). 1. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (John Wiley & Sons, Inc, 1997). 11. H. A. Haus, The noise figure of optical amplifiers, IEEE Photon. Technol. Lett. 1(11), 162 164 (1998). 12. E. Rotem and D. Sadot, Performance analysis of AC-coupled burst-mode receiver for fiber-optic burst switching networks, IEEE Trans. Commun. 53(5), 899 94 (25). 13. Maxim Inc, NRZ bandwidth LF cutoff and baseline wander, Appl. Note HFAN-9..4, available online http://pdfserv.maxim-ic.com/en/an/an1738.pdf 1. Introduction Today, there is high interest in new generations of passive optical networks (PONs) with 1Gb/s line-rates for the downstream and upstream directions. For long reach applications [1], this requires the development of mid-span reach-extenders to increase the PON optical budget to support the additional insertion loss of the trunk fibres. Semiconductor optical amplifiers (SOAs) have been shown to be good candidates for reach-extenders in conventional Gigabit PONs [2] and several authors have considered their use in 1Gb/s PONs [3 5]. A theme in (C) 212 OSA 2 January 212 / Vol. 2, No. 1 / OPTICS EXPRESS 186

[3 5] is to also use the SOA to compress the input dynamic range of the upstream channel (which results from differential access loss and variations in the launched power from the optical network unit (ONU)), thus reducing the required dynamic range for the burst-mode receiver (BMRx) located in the optical line termination (OLT). In [3], it is proposed to boost the signal and compress the input dynamic range by operating the SOAs in deep saturation for strong input signals. However, with conventional SOAs, operation in deep saturation leads to large overshoots on rising edges in the input signal and eye closure due to gain compression and recovery effects (which have a time constant of a few hundred picoseconds, comparable to the bit period at 1Gb/s). The authors in [3] therefore propose to use an SOA with an increased nanosecond gain recovery time and show theoretically that this reduces the signal quality degradation. However, standard SOAs do not exhibit such long gain recovery times. Another solution uses a narrow optical filter at the receiver side to reduce the signal distortion by suppressing the broadening caused by the chirped components of the signal in the frequency domain [4]. However, this introduces loss and would require the use of tightly wavelength-specified, temperature-controlled lasers in the ONU, which are expensive. In contrast, recent 1Gb/s PON standards specify a wide 2nm wavelength band for the upstream channel to allow the use of uncooled lasers at the ONU. In [5], it is proposed to switch the SOA bias current based on the magnitude of the incoming packets. While this allows significant compression of the input dynamic range while avoiding saturation of the SOA, it requires a monitoring photodiode and high-speed electronics to adjust the bias current on a packet basis. This paper demonstrates the feasibility of an upstream reach-extender based on an optimised cascade of two SOAs that overcomes the disadvantages of the above methods. The scheme gives sufficient dynamic range compression without any dynamic control to enable the use of an ac-coupled, continuous-mode receiver at the optical line termination. 2. Principle of operation, experimental setup and results Fig. 1. Experimental setup (DML = Directly Modulated Laser, PG = Pattern Generator, PC = Polarisation Controller, VOA = Variable Optical Attenuator, RX = Receiver, CR = Clock Recovery, LA = Limiting Amplifier, ED = Error Detector, DR = Dynamic Range). Figure 1 shows the experimental setup. The ONU employed a 131nm DFB laser (as a 127nm laser was not available for this experiment) which was directly modulated at a linerate of 1.3125Gb/s (NRZ, 2 31-1 PRBS, 6.5dB extinction ratio, close to the worst-case 1GEPON specification). An SOA whose bias current was modulated on a packet basis was used to emulate an alternating sequence of loud (corresponding to the maximum expected input power to the reach-extender) and soft (corresponding to the minimum expected input power to the reach-extender) packets thus emulating two ONUs with different path losses to the OLT. For correct emulation, a 1nm wide optical filter was used to suppress the ASE noise from this gated SOA. A variable optical attenuator was used to emulate splitting loss in the PON distribution network. The reach-extender was located between the distribution network (split: 32, reach: 1km) and a 6km trunk fibre. Due to differential access loss, the power of packets at the input of the reach-extender was assumed to range from 25dBm (soft packets) to 6dBm (loud packets) (IEEE 82.3av class PR2 [6]). The reach-extender consisted of a cascade of two SOAs. The first SOA provided low-noise amplification; the second SOA provided additional compression of the input dynamic range and boosted the signal launched (C) 212 OSA 2 January 212 / Vol. 2, No. 1 / OPTICS EXPRESS 187

into the trunk fibre. The OLT comprised an SOA preamplifier, a 17nm bandpass filter for outof-band amplified spontaneous emission (ASE) suppression (a 2nm filter was not available for this experiment, however this does not alter the outcomes of this experiment), and a conventional continuous-mode PIN receiver with a reduced 56ns ac-coupling time constant (56pF coupling capacitor) to make it suitable for burst-mode operation with less than 8ns preamble (1GEPON standard). A variable optical attenuator was added in front of the PIN receiver to measure power penalties. The SOAs used in the experiments had + 21dB small signal gain, 3dB gain saturation output power of + 11dBm, 1dB polarisation dependent gain (PDG) and a 7dB noise figure at 131nm wavelength and 25mA bias. The polarisation controllers were for experimental characterisation purposes only and would not be required in a real deployed system, where the reach-extender would need to provide sufficient system margin for all input polarisation states, including the worst-case state. (a) 25 (b) 5 (c) 2 3 sat P in 15 1 Without filter 1-1 5-3 I bias -5 With 17nm filter -5-4 -3-2 -1 1-7 5 1 15 2 25 Input power SOA2 (dbm) Bias Current SOA2 (ma) Gain SOA2 (db) Fig. 2. (a): Soft packet eye diagrams at the reach-extender output (back-to-back), (b): gain of the 2 nd stage SOA vs. input power (solid line) and P in sat for different bias currents (dots), (c): input saturation power of the 2 nd stage SOA vs. bias current. The reach-extender was first characterised in continuous-mode and in a back-to-back (B2B) configuration without the fibres and the OLT preamplifier SOA. A mid-stage optical filter, which is typically used to remove out-of-band ASE noise from the first SOA, was intentionally omitted here. Note that in order to satisfy the specifications in [6] for a 1GEPON system (which defines the upstream wavelength window from 126 to 128nm), the bandwidth of any mid-stage filter needs to be at least 2nm wide. As is evident from the eye diagrams shown in Fig. 2a (measured at the output of the reach-extender for soft packets, bias current of the 2 nd stage SOA: 25mA), significant reduction of the eye-closure induced by patterning can be achieved by omitting such a filter. Patterning occurs when the input signals at a bit rate comparable to the gain recovery time are sufficiently strong to saturate the SOA, leading to carrier depletion in the gain medium and consequently reducing the optical gain. The signal-dependent gain of the saturated SOA leads to distortions at the bit level, which results in a signal-dependent extinction ratio degradation and intersymbol interference (ISI) [7,8]. The observed reduction in patterning can be explained by noting that for soft packets the input to the 2 nd stage SOA mainly consists of ASE noise ( 4.5dBm signal power, +2.7dBm ASE power). The total power is sufficiently high to saturate the 2 nd stage SOA. The ASE noise acts as a continuous-wave (CW) holding beam, which is known to speed-up the gain recovery in the SOA and reduces the patterning [9]. No similar improvement was observed for loud packets, which is consistent with the above explanation as the input to the 2 nd stage SOA is then dominated by the signal rather than the ASE from the first SOA. Hence, a mid-stage filter is unnecessary for loud packets and its omission is shown to enhance the performance in the soft packets case, besides being a more cost-effective solution. In principle, SOA gain saturation can be used to reduce the dynamic range that must be supported by the OLT receiver if the concomitant patterning effect can be ameliorated. We demonstrate here that this is achievable by reduction of the bias current of the 2 nd stage SOA. This allows significant reduction of patterning induced penalties stemming from deep saturation of the 2 nd stage SOA, while at the same time maintaining essentially the same Input power SOA2 (dbm) (C) 212 OSA 2 January 212 / Vol. 2, No. 1 / OPTICS EXPRESS 188

amount of input dynamic range compression. An explanation for this is provided hereafter. The large-signal gain of an SOA can be written as [1]: ( )( ) G = G exp G 1 Pin P sat, (1) where G represents the amplifier gain, G its unsaturated value, P in the input power of the signal being amplified, and P sat the saturation power which depends on the gain-medium properties. The input saturation power P in sat of an amplifier can be defined as the input power for which the gain G is reduced by half (or by 3dB) from its unsaturated value G, and can be derived from Eq. (1) by using G = G / 2: ( ) ( ) sat 2ln 2 Pin = Psat ( I bias ), G Ibias 2 where it is indicated explicitly that G and P sat are both dependant on the amplifier bias settings I bias. Both Eq. (1) and (2) agree with the experimental data shown respectively in Fig. 2b and 2c, where G and P sat were measured for different values of the 2 nd stage SOA bias current (15, 17.5, 2, 25, 3, 4, 5, 1, 15, 25mA). Figure 2b shows the well-known relation between the gain of the amplifier and its input power. The input saturation powers P in sat are emphasised with a circular marker for each bias current. From this set of curves one can see that P in sat rapidly decreases with increasing SOA bias current. This is especially clear when plotting P in sat as a function of bias current as shown in Fig. 2c. For the maximum bias current of 25mA P in sat is 6dBm, while for a bias current of 15mA P in sat increases up to + 4dBm. In other words, if the bias current is reduced from 25 to 15mA, the 2 nd stage SOA is able to tolerate a 1dB stronger input signal before entering the saturation regime. Reducing the bias current of the 2 nd stage SOA may degrade the overall noise figure, however here such degradation is negligible. Indeed the noise figure NF tot of the cascaded SOA equals to [11]: ( ) NF = NF + NF 1 G NF, (3) tot 1 2 1 1 where NF 1 and G 1 are respectively the noise figure and the gain of the first SOA, and NF 2 the noise figure of the second SOA. The approximation holds when the gain of the first SOA is sufficiently large and the noise figure of the 2 nd SOA reasonably small (which is the case here as the gain of the 1st SOA is greater than 2dB, and the noise figure of the 2 nd SOA equals 7dB). In the worst-case a negligible.25db degradation of the overall noise figure was measured for a reduction of the bias current from 25mA to 15mA. Note that reduction of the bias current reduces the power launched into the trunk fibre, but this is acceptable as long as the input power to the OLT receiver remains higher than its sensitivity. Obviously, this requirement is most stringent for the soft packet. With the setup shown in Fig. 1, in order to support 6km trunk fibre for the soft packet, it was found that a launched power at the output of the cascade of at least dbm is sufficient (see below). Figure 3a shows the output power of the reach-extender for both loud and soft packets. For the loud packets sufficient launch power is always available, however for the soft packets the bias current of the 2 nd stage SOA needs to be at least 3mA. Figure 3a also shows the output dynamic range at the reach-extender output for a 19dB input dynamic range. It can be seen how larger dynamic range compression is achieved for higher bias currents. For bias currents higher than 3mA an almost constant 12dB (~19dB-7dB) compression of the input dynamic range can be observed. Next we obtained the power penalty induced by patterning by measuring the power on the PIN photodiode (without SOA3) required to achieve a bit-error rate (BER) of 1.1 x 1 3 (FEC threshold for RS(255,223) encoding, as specified in 1GEPON), and comparing it to the receiver sensitivity. The results, which were taken in continuous-mode and B2B for both soft and loud packet power levels, are shown in Fig. 3b plotted as a function of the 2 nd stage SOA bias current. Up to 5dB reduction in patterning-penalty can be obtained for the loud packets (2) (C) 212 OSA 2 January 212 / Vol. 2, No. 1 / OPTICS EXPRESS 189

by reducing the 2 nd stage SOA bias current from 25 to 3mA. From Fig. 3a, this results in a negligible.3db reduction in output dynamic range compression. The soft packet output power is reduced to + 1dBm at 3mA bias, which results in an OLT input power of 2dBm if a 6km trunk fibre with 21dB (.35dB/km) insertion loss is used. To avoid additional bit errors due to thermal noise of the receiver electronics, this requires the use of an avalanche photodiode (APD) receiver to ensure operation sufficiently above the receiver sensitivity. As a suitable ac-coupled APD receiver was not available for this experiment, an SOA preamplifier (SOA3) was used instead. DR after reach extender (db) 12 (a) 1 8 6 4 Dynamic range 2 SP launched power LP launched power 5 1 15 2 25 Bias current SOA2 (ma) 2 15 1 5-5 -1 Reach R h extender d power output (dbm) ) Penalty at FEC threshold (db) 16 (b) 14 SP penalty 12 LP penalty 1 8 6 4 2 5 1 15 2 25 Bias current SOA2 (ma) Fig. 3. Reach-extender characteristics in B2B, (a): dynamic range and output power for soft packets (SP) and loud packets (LP), (b): soft packets and loud packets power penalties. Next we used the optimised cascade in a burst-mode transmission experiment, designed to emulate a 1GEPON system. Sufficient reduction in dynamic range was obtained to enable the use of a conventional ac-coupled continuous-mode PIN receiver (albeit with a reduced 56ns ac-coupling constant) followed by a conventional 1Gb/s limiting amplifier which equalises the different amplitudes of the packets after detection. When operating ac-coupled receivers in burst-mode, the ac-coupling time constant sets the required time needed to discharge the coupling capacitor after the end of a burst, and charge the coupling capacitor for a new burst. The worst-case situation occurs when a soft burst occurs immediately after a loud burst. It can be shown that the recovery time for a given power penalty α R (expressed as a linear value) is then given by [12]: 1+ ER α R t RX = τ ln ( β 1 ), 1 ER α R 1 where τ is the RC time constant of the ac-coupling network, ER is the extinction ratio (defined as the power in a 1 to the power in a ) and β is the is the loud/soft ratio (expressed as a linear value). For a negligible power penalty of.5db, an extinction ratio of 6.5dB, a dynamic range of 7.4dB at the input of the receiver and the mentioned 56ns ac-coupling constant, the recovery time is calculated to be 292ns which is well in line with the 1GEPON standard (which limits the preamble for recovery of the receiver to 8ns). Note that if the ac-coupled receiver is required to handle the entire dynamic range of 19dB, the recovery time would be 452ns, hence the achieved dynamic range compression allows a significant reduction in the required receiver recovery time. It is known that a smaller ac-coupling capacitor increases the baseline wander and incurs a power penalty. This power penalty α P can be calculated as [12]: ( T τ) (4) αp = exp CBD AV b, (5) where CBD AV is the averaged cumulative bit difference in the received bit sequence (difference between number of transmitted 1s and number of transmitted s) [13] and T b the bit period. For the 64B/66B scrambling specified in the 1GEPON standard, CBD AV is 8, (C) 212 OSA 2 January 212 / Vol. 2, No. 1 / OPTICS EXPRESS 19

resulting in a negligible.1db penalty due to baseline wander. Figure 4a shows the structure of the packet signal used to evaluate the performance of the network at a bit rate of 1.3125Gb/s. Each packet (24ns) consists of a preamble (8ns, alternating 11 pattern) followed by the BM synchronisation pattern, a burst delimiter and a data payload. The data payload (124ns) consists of 2 31-1 PRBS sequences, additionally stressed with 66 consecutive 1s and 66 consecutive s. The pattern terminates with an end burst delimiter. The guard time between successive bursts is 25.6ns. The synchronisation pattern, burst delimiter, and end burst delimiter structures have been adopted from the IEEE Standard 82.3av, and they are all considered as part of the payload in measuring the burst BER. BERs were measured in a given packet, always preceded by the worst-case packet that maximally stressed the packet under consideration. For soft packets, the worst-case preceding packet is the loud packet. Similarly, for the loud packet, the worst-case preceding packet is the soft packet. The measured BERs are shown in Fig. 4b for the best-case and worst-case polarisations. For bestcase polarisation, over 19dB dynamic range (assuming a BER less than 1.1x1 3 ) corresponding to the 1GEPON power levels is easily achievable. For practical reasons the maximum packet power level was limited to 6dBm for the measurements presented here. However, the trend of the best polarisation curve suggests that this dynamic range could be further improved, since for the loud packet there is still a significant margin before the FEC threshold is reached. A reduction to 14dB dynamic range in the worst-case polarisation can also be seen, which is attributed to the relatively large total PDG of the three SOAs used in the system. This can be improved in principle by using lower PDG SOAs in the reachextender together with an APD receiver at the OLT (which avoids PDG of the third SOA). (a) BER 1e-2 1e-3 (b) Worst-case polarisation Best-case polarisation FEC THRESHOLD FEC THRESHOLD 1e-4 1e-5 1e-6 1e-7 1e-8 1e-9 1e-1-26 -24-22 -2-18 -16-14 -12-1 -8-6 -4 Power input at the reach extender (dbm) 3. Conclusion Fig. 4. (a): Pattern structure, (b): BER vs. reach-extender input power. We have experimentally demonstrated a reach-extender for the upstream direction of 1Gb/s PONs. Up to 12dB compression of a 19dB input dynamic range was achieved. A reduction in patterning induced penalties for soft packets can be achieved by using the broadband ASE from the 1st stage SOA to clamp the gain of the 2 nd stage SOA. For loud packets, it is shown that significant reduction in patterning induced penalties can be achieved through careful optimisation of the bias current of the 2 nd stage SOA. The reach-extender is shown to be able to support 7km reach for a 32-split 1Gb/s PON. Acknowledgments This work was funded by Science Foundation Ireland under Grant 6/IN/I969 (C) 212 OSA 2 January 212 / Vol. 2, No. 1 / OPTICS EXPRESS 191