GPS-free Geolocation using LoRa in Low-Power WANs. Bernat Carbonés Fargas, Martin Nordal Petersen 08/06/2017

Similar documents
IOT GEOLOCATION NEW TECHNICAL AND ECONOMICAL OPPORTUNITIES

Mobile Positioning in Wireless Mobile Networks

Datasheet LoRaWAN prototype PCB v Table of Contents 1. Specifications Data rates... 3

Feasibility of LoRa for Indoor Localization

LoRaWAN, IoT & Synchronization. ITSF 2015 Richard Lansdowne, Senior Director Network System Solutions

Low Power Gelocation Solution. Stéphane BOUDAUD CTO Abeeway Jonathan DAVID Polytech Student

LoRa Scalability: A Simulation Model Based on Interference Measurements

MOBILE COMPUTING 1/28/18. Location, Location, Location. Overview. CSE 40814/60814 Spring 2018

Seminar on Low Power Wide Area Networks

OPEN EXTENSIVE IOT RESEARCH AND MEASUREMENT INFRASTRUCTURE FOR REMOTE COLLECTION AND AUTOMATIC ANALYSIS OF ENVIRONMENTAL DATA

B L E N e t w o r k A p p l i c a t i o n s f o r S m a r t M o b i l i t y S o l u t i o n s

T Mani Bhowmik Dated:

Bluetooth positioning. Timo Kälkäinen

Ad hoc and Sensor Networks Chapter 9: Localization & positioning

LPWAN Narrowband Technologies (LoRaWAN, SigFox, etc.) for M2M Networks and Internet of Things Design

Pixie Location of Things Platform Introduction

HM-LW-M200 Specification HW-LW -M200. Product Specification V HOPERF All Rights Reserved 1

Math 215 Project 1 (25 pts) : Using Linear Algebra to solve GPS problem

White paper. LoRaWAN vs /N2 : An technical comparative analysis

Localization in WSN. Marco Avvenuti. University of Pisa. Pervasive Computing & Networking Lab. (PerLab) Dept. of Information Engineering

A Survey of Indoor Localization Systems and Technologies

MAPS for LCS System. LoCation Services Simulation in 2G, 3G, and 4G. Presenters:

Wireless communication for Smart Buildings

SPREAD SPECTRUM CHANNEL MEASUREMENT INSTRUMENT

Introduction. Introduction ROBUST SENSOR POSITIONING IN WIRELESS AD HOC SENSOR NETWORKS. Smart Wireless Sensor Systems 1

LoRa/LRSC. Wireless Long Range Network for M2M Communication

GPS (Introduction) References. Terms

best practice guide Ruckus SPoT Best Practices SOLUTION OVERVIEW AND BEST PRACTICES FOR DEPLOYMENT

TEPZZ _7 8Z9A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: G01S 5/06 ( ) G01S 5/02 (2010.

Indoor Localization Alessandro Redondi

Localization in Wireless Sensor Networks

The Assesement of LoRaWAN Protocol Operation Mode Impact on Average Power Consumption of End-Node Network Device

THE APPLICATION OF ZIGBEE PHASE SHIFT MEASUREMENT IN RANGING

LoRaWAN for Smart Cities Munich, May Jonathan Pearce Wireless Marketing Manager

OMESH Networks. OPM15 Application Note: Wireless Location and Tracking

Prof. Maria Papadopouli

Indoor Positioning by the Fusion of Wireless Metrics and Sensors

Internet of Things and smart mobility. Dr. Martin Donoval POWERTEC ltd. Slovak University of Technology in Bratislava

ALPS: A Bluetooth and Ultrasound Platform for Mapping and Localization

Measuring Galileo s Channel the Pedestrian Satellite Channel

A SYSTEM FOR ASSESSING THE GEOLOCATION OF INTERNET USERS IN A CDMA-EVDO NETWORK

A Testbed for Real-Time Performance Evaluation of RSS-based Indoor Geolocation Systems in Laboratory Environment

GPS (Introduction) References. Terms

Location Determination Systems for WLANs *

LoRa for the Internet of Things

ETSI work on IoT connectivity: LTN, CSS, Mesh and Others. Josef BERNHARD Fraunhofer IIS

LoRaWAN. All of the gateways in a network communicate to the same server, and it decides which gateway should respond to a given transmission.

Location-Enhanced Computing

Measurement of Node Mobility for the LoRa Protocol

INTRODUCTION TO WIRELESS SENSOR NETWORKS. CHAPTER 8: LOCALIZATION TECHNIQUES Anna Förster

Localization. of mobile devices. Seminar: Mobile Computing. IFW C42 Tuesday, 29th May 2001 Roger Zimmermann

Characteristics of the Land Mobile Navigation Channel for Pedestrian Applications

Understanding Advanced Bluetooth Angle Estimation Techniques for Real-Time Locationing

t =1 Transmitter #2 Figure 1-1 One Way Ranging Schematic

GPS Global Positioning System

The LoRa Protocol. Overview. Interference Immunity. Technical Brief AN205 Rev A0

Research Article Kalman Filter-Based Hybrid Indoor Position Estimation Technique in Bluetooth Networks

3D-Map Aided Multipath Mitigation for Urban GNSS Positioning

Bluetooth Angle Estimation for Real-Time Locationing

Evaluating OTDOA Technology for VoLTE E911 Indoors

Chapter 9: Localization & Positioning

ISO/IEC INTERNATIONAL STANDARD

Abderrahim Benslimane, Professor of Computer Sciences Coordinator of the Faculty of Engineering Head of the Informatic Research Center (CRI)

GPS (GLOBAL POSITIONING SYSTEM)

The Long Range Wide Area Network - LoraWAN

Sigfox and LoRa PHY and MAC layers

Enabling Low Power Wide Area Networks in the Internet of Things with LoRa

Influence of GPS Measurements Quality to NTP Time-Keeping

Entity Tracking and Surveillance using the Modified Biometric System, GPS-3

Mobile Security Fall 2015

Global Positioning Systems (GPS) Trails: the achilles heel of mapping from the air / satellites

FieldGenius Technical Notes GPS Terminology

Digital Surveillance Devices?

One interesting embedded system

LoRaWAN industrial IoT network. Only one is open source: LoRaWAN

Digital surveillance devices?

Principal Investigator Co-Principal Investigator Co-Principal Investigator Prof. Talat Ahmad Vice-Chancellor Jamia Millia Islamia Delhi

The Influence of Multipath on the Positioning Error

Alternative Positioning, Navigation and Timing (APNT) for Performance Based Navigation (PBN)

Satellite Navigation (and positioning)

RAK831 Pilot Gateway Product Specification V1.0

An Experiment Study for Time Synchronization Utilizing USRP and GNU Radio

LOCALIZATION WITH GPS UNAVAILABLE

Part I: Introduction to Wireless Sensor Networks. Alessio Di

Panoramica sui segnali radio in ambito IoT (cellular IoT, LPWAN) Daniela Valente ISCOM

GLOBAL POSITIONING SYSTEMS

Smart Antenna Techniques and Their Application to Wireless Ad Hoc Networks. Plenary Talk at: Jack H. Winters. September 13, 2005

MIMO-Based Vehicle Positioning System for Vehicular Networks

Assignment 1: Solutions to Problems on Direct Sequence Spread Spectrum

Implementation of RSSI-Based 3D Indoor Localization using Wireless Sensor Networks Based on ZigBee Standard

CHAPTER 4 ANALYSIS AND DESIGN

IoT-Aided Indoor Positioning based on Fingerprinting

Channel Modeling ETIN10. Wireless Positioning

Working Party 5B DRAFT NEW RECOMMENDATION ITU-R M.[500KHZ]

Wireless Location Detection for an Embedded System

Pervasive Systems SD & Infrastructure.unit=3 WS2008

TEST YOUR SATELLITE NAVIGATION PERFORMANCE ON YOUR ANDROID DEVICE GLOSSARY

LoRa Transmission Parameter Selection

Emergency Locator Signal Detection and Geolocation Small Satellite Constellation Feasibility Study

Location in Ubiquitous Computing

Transcription:

GPS-free Geolocation using LoRa in Low-Power WANs Bernat Carbonés Fargas, Martin Nordal Petersen 08/06/2017

Outline 1. Introduction 2. LoRaWAN for geolocation 3. System design 4. Multilateration in LoRaWAN networks 5. Tests and results 6. Conclusions 2 DTU Fotonik, Danmarks Tekniske Universitet

1. Introduction Elderly assisted living à Global Navigation Satellite System (GNSS) available Main problem à Battery lifetime Goal à Design and implement a tracking IoT system in a LPWAN capable of transmitting the current position using low power technologies 3 DTU Fotonik, Danmarks Tekniske Universitet

Outline 1. Introduction 2. LoRaWAN for geolocation 3. System design 4. Multilateration in LoRaWAN networks 5. Tests and results 6. Conclusions 4 DTU Fotonik, Danmarks Tekniske Universitet

2. LoRaWAN for geolocation (I) Features Long range -> 5 km urban / 15 km rural Low power consumption Low data rate -> From 250 bps to 50 kbps Bandwidth bigger than other IoT technologies in LPWANs Previous studies presented good results Open source 5 DTU Fotonik, Danmarks Tekniske Universitet

2. LoRaWAN for geolocation (II) LoRa Physical layer Chirp Spread Spectrum (CSS) Forward Error Correction (FEC) LoRaWAN MAC protocol Bidirectional Standardized Source: LoRaWAN Specification - LoRa Alliance 6 DTU Fotonik, Danmarks Tekniske Universitet

Outline 1. Introduction 2. LoRaWAN for geolocation 3. System design 3.1 System structure 3.2 End-node 3.3 Gateways 3.4 Server 3.5 Application 4. Multilateration in LoRaWAN networks 5. Tests and results 6. Conclusions 7 DTU Fotonik, Danmarks Tekniske Universitet

3.1 System structure LoRaWAN ID/UDP MQTT Important information à Time each packet was received by each gateway to apply multilateration 8 DTU Fotonik, Danmarks Tekniske Universitet

3.2 End-node End-node Gateways Server Application Transmit GPS data through LoRaWAN module Elements Waspmote LoRaWAN module GPS receiver 9 DTU Fotonik, Danmarks Tekniske Universitet

3.3 Gateways End-node Gateways Server Application Time received packet Forward data to server via UDP/IP 4 Kerlink gateways à Embedded GPS 10 DTU Fotonik, Danmarks Tekniske Universitet

3.4 Server End-node Gateways Server Application Decode data from the gateways and transmit it to the application The Things Network (TTN) Open Source Third-party apps 11 DTU Fotonik, Danmarks Tekniske Universitet

3.5 Application End-node Gateways Server Application Parse and insert the information to a database Elements Java Application + MQTT client MySQL 12 DTU Fotonik, Danmarks Tekniske Universitet

Outline 1. Introduction 2. LoRaWAN for geolocation 3. System design 4. Multilateration in LoRaWAN networks 4.1 Geolocation techniques 4.2 Algorithm structure 4.3 Extraction of TDOAs 4.4 Detection of outliers 4.5 Non-iterative algorithm 4.6 Iterative algorithm 5. Tests and results 6. Conclusions 13 DTU Fotonik, Danmarks Tekniske Universitet

4.1 Geolocation techniques (I) Triangulation Angles of incidence Triangle defined with angles Trilateration Distance between transmitter and receiver à Time Of Flight (TOF) à Requires Synchronization Intersection of three circles 14 DTU Fotonik, Danmarks Tekniske Universitet

4.1 Geolocation techniques (II) Multilateration No synchronization à Time Difference Of Arrival (TDOA) Intersection of at least two hyperbolas (3 antennas required) 15 DTU Fotonik, Danmarks Tekniske Universitet

4.2 Algorithm structure 16 DTU Fotonik, Danmarks Tekniske Universitet

4.3 Extraction of TDOAs Extraction TDOA Detection of outliers Non-iterative algorithm Iterative algorithm Compute TDOA based on a pair of UTC times per each packet t "# = t " t # i, j = 1: 4 j i Where t " = time packet was received by gateway i 17 DTU Fotonik, Danmarks Tekniske Universitet

4.4 Detection of outliers Extraction TDOA Detection of outliers Non-iterative algorithm Iterative algorithm Definition (Barnett and Lewis): An observation which appears to be inconsistent with the remainder of that set of data Methods to detect outliers Grubb s test Tietjen-Moore test Generalized Extreme Studentized Deviate (ESD) test 18 DTU Fotonik, Danmarks Tekniske Universitet

4.5 Non-iterative algorithm (I) Extraction TDOA Detection of outliers Non-iterative algorithm Based on a linear multilateration 4 gateways à TDOAs Location of the 4 gateways Coordinates conversion required Geodetic (latitude, longitude) ßà Cartesian (x, y) Reference ellipsoid WGS-84 (GPS) Iterative algorithm 19 DTU Fotonik, Danmarks Tekniske Universitet

4.5 Non-iterative algorithm (II) Extraction TDOA Detection of outliers Non-iterative algorithm Iterative algorithm 20 DTU Fotonik, Danmarks Tekniske Universitet

4.6 Iterative algorithm (I) Extraction TDOA Detection of outliers Non-iterative algorithm Iterative algorithm Avoid coordinates transformation à Error propagation Solution à Iterative algorithm Haversine formula à Compute the distance between two points over the globe 21 DTU Fotonik, Danmarks Tekniske Universitet

4.6 Iterative algorithm (II) Extraction TDOA Detection of outliers Non-iterative algorithm Iterative algorithm Create two grids of possible latitude and longitude values Find the minimum error 22 DTU Fotonik, Danmarks Tekniske Universitet

Outline 1. Introduction 2. LoRaWAN for geolocation 3. System design 4. Multilateration in LoRaWAN networks 5. Tests and results 5.1 Test spots 5.2 Non-iterative algorithm 5.3 Iterative algorithm 6. Conclusions 23 DTU Fotonik, Danmarks Tekniske Universitet

5.1 Test spots C à 168 samples B à 1728 samples 24 DTU Fotonik, Danmarks Tekniske Universitet A à 454 samples

5.2 Non-iterative algorithm Mean Absolute Localization Error (MALE) Mean estimator à F t AB = 1 N D t ABE EGH 25 DTU Fotonik, Danmarks Tekniske Universitet

5.3 Iterative algorithm (I) 26 DTU Fotonik, Danmarks Tekniske Universitet

5.3 Iterative algorithm (II) 27 DTU Fotonik, Danmarks Tekniske Universitet

Outline 1. Introduction 2. LoRaWAN for geolocation 3. System design 4. Multilateration in LoRaWAN networks 5. Tests and results 6. Conclusions 6.1 Future work 28 DTU Fotonik, Danmarks Tekniske Universitet

6. Conclusions IoT tracking system using LoRa LoRaWAN presents attractive features Long range Low power consumption Two designed algorithms à Accuracy 100 meters Real-time tracking application à Not usable Mean estimator improves accuracy 29 DTU Fotonik, Danmarks Tekniske Universitet

6.1 Future work Kerlink gateways Clock Increase amount Multipath To resolve à Bandwidth signal Algorithm Machine Learning to combine TDOAs with RSSI measurements K-Nearest Neighbors to improve the accuracy in real-time 30 DTU Fotonik, Danmarks Tekniske Universitet

31 DTU Fotonik, Danmarks Tekniske Universitet