Low-threshold femtosecond Nd:glass laser

Similar documents
80-fs Nd:silicate glass laser pumped by a singlemode 200-mW diode

Soliton stability conditions in actively modelocked inhomogeneously broadened lasers

DIODE-PUMPED low-power femtosecond lasers at 1-μm

Generation of 15-nJ pulses from a highly efficient, low-cost. multipass-cavity Cr 3+ :LiCAF laser

Module 4 : Third order nonlinear optical processes. Lecture 24 : Kerr lens modelocking: An application of self focusing

A new picosecond Laser pulse generation method.

Passive mode-locking performance with a mixed Nd:Lu 0.5 Gd 0.5 VO 4 crystal

Femtosecond pulse generation

Widely tunable Yb:KYW laser with a volume Bragg grating

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity

Tunable GHz pulse repetition rate operation in high-power TEM 00 -mode Nd:YLF lasers at 1047 nm and 1053 nm with self mode locking

Quantum-Well Semiconductor Saturable Absorber Mirror

Controllable harmonic mode locking and multiple pulsing in a Ti:sapphire laser

Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy

3550 Aberdeen Ave SE, Kirtland AFB, NM 87117, USA ABSTRACT 1. INTRODUCTION

taccor Optional features Overview Turn-key GHz femtosecond laser

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 2, NO. 3, SEPTEMBER

Low-cost, single-mode diode-pumped Cr:Colquiriite lasers

Vertical External Cavity Surface Emitting Laser

Progress in ultrafast Cr:ZnSe Lasers. Evgueni Slobodtchikov, Peter Moulton

Heriot-Watt University

DEVELOPMENT OF CW AND Q-SWITCHED DIODE PUMPED ND: YVO 4 LASER

High Average Power, High Repetition Rate Side-Pumped Nd:YVO 4 Slab Laser

101 W of average green beam from diode-side-pumped Nd:YAG/LBO-based system in a relay imaged cavity

Single-frequency operation of a Cr:YAG laser from nm

Continuum White Light Generation. WhiteLase: High Power Ultrabroadband

LOPUT Laser: A novel concept to realize single longitudinal mode laser

Ring cavity tunable fiber laser with external transversely chirped Bragg grating

Dispersion Effects in an Actively Mode-Locked Inhomogeneously Broadened Laser

High brightness semiconductor lasers M.L. Osowski, W. Hu, R.M. Lammert, T. Liu, Y. Ma, S.W. Oh, C. Panja, P.T. Rudy, T. Stakelon and J.E.

G. Norris* & G. McConnell

Stable laser-diode pumped microchip sub-nanosecond Cr,Yb:YAG self-q-switched laser

External-Cavity Tapered Semiconductor Ring Lasers

Q-switched mode-locking with acousto-optic modulator in a diode pumped Nd:YVO 4 laser

Direct diode-pumped Kerr Lens 13 fs Ti:sapphire ultrafast oscillator using a single blue laser diode

High-power semiconductor lasers for applications requiring GHz linewidth source

A novel tunable diode laser using volume holographic gratings

Design and Alignment Criteria for a Simple, Robust, Diode-Pumped Femtosecond Yb:KYW Oscillator

Fundamental Optics ULTRAFAST THEORY ( ) = ( ) ( q) FUNDAMENTAL OPTICS. q q = ( A150 Ultrafast Theory

A CW seeded femtosecond optical parametric amplifier

Integrated disruptive components for 2µm fibre Lasers ISLA. 2 µm Sub-Picosecond Fiber Lasers

High-Power, Passively Q-switched Microlaser - Power Amplifier System

Improving the output beam quality of multimode laser resonators

X-CAN. A coherent amplification network of femtosecond fiber amplifiers

How to build an Er:fiber femtosecond laser

Applied Physics Springer-Verlag 1981

FOR A LONG TIME, it was believed that the use of a

Development of near and mid-ir ultrashort pulse laser systems at Q-Peak. Evgueni Slobodtchikov Q-Peak, Inc.

Special 30th Anniversary

All-fiber, all-normal dispersion ytterbium ring oscillator

1ps passively mode-locked laser operation of Na,Yb:CaF 2 crystal

Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG

Eye safe solid state lasers for remote sensing and coherent laser radar

Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate

R. J. Jones Optical Sciences OPTI 511L Fall 2017

Ultrafast second-stokes diamond Raman laser

Powerful Single-Frequency Laser System based on a Cu-laser pumped Dye Laser

Faraday Rotators and Isolators

Solid-State Laser Engineering

dnx/dt = -9.3x10-6 / C dny/dt = -13.6x10-6 / C dnz/dt = ( λ)x10-6 / C

Data sheet for TDS 10XX system THz Time Domain Spectrometer TDS 10XX

Regenerative Amplification in Alexandrite of Pulses from Specialized Oscillators

Laser Science and Technology at LLE

Extremely simple device for measuring 1.5-µm ultrashort laser pulses

Designing for Femtosecond Pulses

Simultaneous pulse amplification and compression in all-fiber-integrated pre-chirped large-mode-area Er-doped fiber amplifier

Self-organizing laser diode cavities with photorefractive nonlinear crystals

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

Single-photon excitation of morphology dependent resonance

Multi-Wavelength, µm Tunable, Tandem OPO

Ultrafast ytterbium-doped bulk lasers and laser amplifiers

Single frequency MOPA system with near diffraction limited beam

Review of MPS Solid State Laser Systems

Passively Q-switched m intracavity optical parametric oscillator

Dr. Rüdiger Paschotta RP Photonics Consulting GmbH. Competence Area: Fiber Devices

GENERATION OF FEMTOSECOND PULSED FROM TI:SAPPHIRE OSCILLATOR ABSTRACT INTRODUCTION

R. J. Jones College of Optical Sciences OPTI 511L Fall 2017

High-Power Femtosecond Lasers

Kilowatt Class High-Power CW Yb:YAG Cryogenic Laser

E. U. Rafailov Optoelectronics and Biomedical Photonics Group School of Engineering and Applied Science Aston University Aston Triangle Birmingham

High-power operation of Tm:YLF, Ho:YLF and Er:YLF lasers

UNMATCHED OUTPUT POWER AND TUNING RANGE

External cavities for controling spatial and spectral properties of SC lasers. J.P. Huignard TH-TRT

High power VCSEL array pumped Q-switched Nd:YAG lasers

Coupling effects of signal and pump beams in three-level saturable-gain media

FPPO 1000 Fiber Laser Pumped Optical Parametric Oscillator: FPPO 1000 Product Manual

Spectral phase shaping for high resolution CARS spectroscopy around 3000 cm 1

Recent Progress in Pulsed Optical Synchronization Systems

A Novel Multipass Optical System Oleg Matveev University of Florida, Department of Chemistry, Gainesville, Fl

Ph 77 ADVANCED PHYSICS LABORATORY ATOMIC AND OPTICAL PHYSICS

Pulse stretching and compressing using grating pairs

Grating-waveguide structures and their applications in high-power laser systems

Fiber Lasers for EUV Lithography

Testing with Femtosecond Pulses

Drive Laser State-of-the-art: Performance, Stability and Programmable Repetition Rate The Jefferson Lab Experience

Research on the mechanism of high power solid laser Wenkai Huang, Yu Wu

Survey Report: Laser R&D

DESIGN OF COMPACT PULSED 4 MIRROR LASER WIRE SYSTEM FOR QUICK MEASUREMENT OF ELECTRON BEAM PROFILE

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name:

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name:

Transcription:

Low-threshold femtosecond Nd:glass laser Antonio Agnesi, Federico Pirzio, and Giancarlo Reali Dipartimento di Elettronica dell Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy antonio.agnesi@unipv.it Abstract: Using a 150-mW single-transverse-mode laser diode at 802 nm for pumping an Nd:phosphate laser, we achieved efficient cw operation (40% slope efficiency) with pump threshold as low as 12 mw at optimum coupling, and a maximum output power of 53 mw. Under passive modelocking operation, we obtained nearly Fourier-limited 270-fs pulses in a prismless dispersion-compensated cavity and 173-fs pulses with a singleprism setup. This compact laser is especially interesting for applications requiring low power levels, such as seeding amplifiers and for biodiagnostics. 2009 Optical Society of America OCIS codes: (140.4050) Mode-locked lasers; (140.7090) Ultrafast lasers; (140.3480) Lasers, diode-pumped. References and links 1. D. Kopf, F. X. Kärtner, U. Keller, and K. J. Weingarten, Diode-pumped mode-locked Nd:glass lasers with an antiresonant Fabry Perot saturable absorber, Opt. Lett. 20, 1169-1171 (1995). 2. J. Aus der Au, D. Kopf, F. Morier-Genoud, M. Moser, and U. Keller, 60-fs pulses from a diode-pumped Nd:glass laser, Opt. Lett. 22, 307-309 (1997). 3. S. Han, W. Lu, B. Y. Sheh, L. Yan, M. Wraback, H. Shen, J. Pamulapati, and P. G. Newman, Generation of sub-40 fs pulses from a mode-locked dual gain-media Nd:glass laser, Appl. Phys. B 74, S177-S179 (2002). 4. D. Kopf, G. J. Spühler, K. J. Weingarten, and U. Keller, Mode-locked laser cavities with a single prism for dispersion compensation, Appl. Opt. 35, 912-915 (1996). 5. J. Aus der Au, F. H. Loesel, F. Morier-Genoud, M. Moser, and U. Keller, Femtosecond diode-pumped Nd:glass laser with more than 1 W of average output power, Opt. Lett. 23, 271-273 (1998). 6. C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G.A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, Ultrafast ytterbium-doped bulk lasers and laser amplifiers, Appl. Phys. B 69, 3-17 (1999). 7. N. Deguil, E. Mottay, F. Salin, P. Legros, and D. Choquet, Novel diode-pumped infrared tunable laser system for multi-photon microscopy, Microsc. Res. Tech. 63, 23-26 (2004). 8. G. Molis, R. Adomavicius, A. Krotkus, K. Bertulis, L. Giniunas, J. Pocius, and R. Danielius, Terahertz time-domain spectroscopy system based on femtosecond Yb:KGW laser, Electron. Lett. 43, 190-191 (2007). 9. S. Bourquin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. J. Wadsworth, U. Bünting and D. Kopf, Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd:Glass laser and nonlinear fiber, Opt. Express 11, 3290-3297 (2003). 10. G. J. Valentine, J.-M. Hopkins, P. Loza-Alvarez, G. T. Kennedy, W. Sibbett, D. Burns and A. Valster, "Ultralow-pump-threshold, femtosecond Cr 3+ :LiSrAlF 6 laser pumped by a single narrow-stripe AlGaInP laser diode," Opt. Lett. 22, 1639-1641 (1997). 11. J.-M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, and U. Keller, Highly compact and efficient femtosecond Cr:LiSAF lasers, IEEE J. Quantum Electron. 38, 360-368 (2002). 12. A. A. Lagatsky, C. T. A. Brown, and W. Sibbett, Highly efficient and low threshold diode-pumped Kerrlens mode-locked Yb:KYW laser, Opt. Express 12, 3928-3933 (2004). 13. A. A. Lagatsky, A. R. Sarmani, C. T. A. Brown, W. Sibbett, V. E. Kisel, A. G. Selivanov, I. A. Denisov, A. E. Troshin, K. V. Yumashev, N. V. Kuleshov. V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, Yb 3+ -doped YVO 4 crystal for efficient Kerr-lens mode locking in solid-state lasers, Opt. Lett. 30, 3234-3246 (2005). 14. A. Agnesi, L. Carrà, and G. Reali, Phosphate Nd:glass materials for femtosecond pulse generation, Opt. Mater. 30, 1828-1831 (2008). 15. D. Findlay and R. A. Clay, The measurement of internal losses in a 4-level laser, Phys. Lett. 20, 277-278 (1966). 16. W. Koechner, Solid State Laser Engineering, 6th Edition (Springer, Berlin, 2006). (C) 2009 OSA 25 May 2009 / Vol. 17, No. 11 / OPTICS EXPRESS 9171

17. C. Jacinto, S. L. Oliveira, T. Catunda, A. A. Andrade, J. D. Myers, and M. J. Myers, Upconversion effect on fluorescence quantum efficiency and heat generation in Nd 3+ -doped materials, Opt. Express 13, 2040-2046 (2005). 18. S. Basu and R. L. Byer, "Continuous-wave mode-locked Nd:glass laser pumped by a laser diode," Opt. Lett. 13, 458-460 (1988). 1. Introduction Neodymium glass lasers were first investigated as potentially compact, cost-effective femtosecond solid-state laser sources that could be directly diode-pumped [1]. Pulse durations of 60 fs were achieved in a diode-pumped Nd:fluorophosphate glass laser [2], whereas pulses as short as 38 fs were generated by a dual gain-media laser oscillator allowing for a broadened gain bandwidth, pumped by a Ti:sapphire laser [3]. Owing to the poor thermal characteristics of glass laser materials with respect to crystalline hosts, Nd:glass femtosecond lasers were mostly studied with pump power < 2 W and output power in the range 30-200 mw [1-4], even though a successful design solution for output power upscaling to the 1-W level was demonstrated [5]. The most interesting applications of low-power femtosecond oscillators emitting at 1 µm are as seeders of neodymium- or ytterbium-doped amplifiers (bulk or fibre) [6] and their use in various diagnostic techniques, such as nonlinear microscopy [7], THz generation and detection [8] and optical coherent tomography [9]. Such applications usually require a modest average power of few tens milliwatts, hence the pump setup can be conveniently simplified by taking advantage of the excellent beam quality and narrow spectrum of commercially available, low-cost single-transverse-mode laser diodes emitting at 800 nm. The pump power of 100 mw, made available by such devices, is sufficient to be employed in an efficient and extremely simple pump setup, that has been recently exploited in Cr:LiSAF and ytterbium lasers [10-13]. Owing to the excellent modelocking performance, Nd:glass is a promising candidate for expanding this class of ultralow pump power, compact and low-cost femtosecond lasers. Among laser glasses, Nd:phosphate is particularly attractive for low-power diode-pumping because of its high emission cross section and low fluorescence quenching. Unfortunately, its fluorescence bandwidth is mostly homogenously broadened, making generation of pulses shorter than 200 fs more difficult than with other glasses [1]. We report the results, for both cw and mode-locking operation, obtained with an Nd:phosphate laser, pumped by a single high-brightness low-power diode laser. 2. Experiments Initially we designed the cavity setup for the femtosecond laser employing two folding mirrors with 100-mm radius of curvature [14], and pumping the Nd:phosphate with a 1-W diode laser (100 1 µm 2 single emitter), which achieved cw threshold level at an absorbed power as low as 50 mw. From these preliminary results one can expect that the replacement of the 100-mm concave mirror with a 50-mm one, and with significantly better pump beam quality, will reduce by a factor of 4 the mode area, and, correspondingly, the absorbed pump power at threshold. We then switched to a single-mode 150-mW device (Axcel Photonics, Inc.), emitting at 802 nm with a narrow linewidth of 0.15 nm. Given the relatively broad absorption spectrum near 800 nm for the Nd:phosphate this last requirement is not compelling, but it helps minimize the absorption length, which is beneficial for tight focusing. The laser diode was collimated by an 8-mm focal length aspheric (numerical aperture = 0.5) and focused into the active laser glass with a 50-mm plane-convex singlet lens (Fig. 1). A 100-mm plane-convex lens was contacted with the 50-mm concave mirror (high reflectivity at 1000-1100 nm, high transmissivity at 802 nm) to counterbalance its defocusing effect. A CCD camera scanning along the pump axis around the focal plane then analyzed the pump beam. According to the manufacturer s specifications, the beam proved to be nearly (C) 2009 OSA 25 May 2009 / Vol. 17, No. 11 / OPTICS EXPRESS 9172

diffraction limited (horizontal and vertical directions: M x 2 = 1.0, M y 2 = 1.4) with a markedly elliptical shape (minor-to-major axes ratio 1:2). The pump spot radii were measured to be w px w py = 14 7 µm 2 in air, while the resonant mode radius was calculated to be 15-20 µm within the resonator stability range. This was the simplest pump setup with minimal optical elements we intended to investigate. A more refined setup, which could better mode matching, would have required an anamorphic prism pair before focusing to circularize the pump spot. Fig. 1. Resonator layout. LD: pump laser diode; L1: aspheric lens (8-mm focal); L2: spherical singlet lens (50-mm focal); M1: concave mirror, 50-mm curvature, high-reflectivity (HR) at 1000-1100 nm, high-transmissivity (HT) at 800-810 nm; M2, M5: concave mirror, 100-mm curvature, HR at 1000-1100 nm; M3, M4: flat mirrors, HR at 1000-1100 nm; TP: thin plate (fused silica); GTI: negative dispersion mirror; P: SF10 prism; OC1, OC2: output coupler mirrors, 30 wedge, for the dispersion-compensated cavity using GTI or prism, respectively; SAM: saturable absorber mirror. As active medium, we used an Nd:phosphate N31 glass [14], which was chosen for the shortest absorption length allowed by the high doping concentration of 4%. Other phosphate glasses such as Kigre Q98 and Schott LG760 were also available but with lower doping levels; however they performed comparably well in our tests with the 1-W pump diode. The 5-mm long Brewster-cut N31 glass slab was put in the pump focusing optics focal plane, kept in place by a mirror holder without any active thermal control. Almost all the diode power was absorbed by the Nd:glass, owing to the high transmission optical coatings of the lenses L1 and L2 and the mirror M1 (147 mw out of 150 mw was measured to reach the laser glass). The laser resonator was first aligned for cw operation. The coefficient κ = g 0 /P i (being g 0 the single-pass small-signal gain and P i the incident pump power) and the intracavity loss L were deduced by the measured data applying a Findlay-Clay analysis [15] to the four-level laser model. A fused-silica glass plate was used as a variable output coupler with equivalent transmissivity T oc (θ) (Fig. 2). The ideal four-level model considered is [16]: P o = η λ P λ L T oc ( T oc + L P i P th) (1) P th = λ L (L +T oc ) P sat λ P η 2 where P o is the output power, P th the threshold pump power, P sat the saturation power, λ P and λ L the pump and laser wavelengths, η the pump efficiency given by the product (quantum efficiency) (mode-matching efficiency) (absorption efficiency) [16]. Notice that the slope efficiency deviates from the dependence expected for an ideal fourlevel laser at equivalent output couplings > 3-4%. This is likely due to parasitic upconversion (2) (C) 2009 OSA 25 May 2009 / Vol. 17, No. 11 / OPTICS EXPRESS 9173

processes, which significantly reduce the effective quantum efficiency [17] and eventually the pump efficiency η. Limiting the numerical fitting to a range of output coupling < 4% and to the correspondent plate angles, we found the passive loss L 0.5%, coefficient κ 1.35 W -1, saturation power P sat 347 mw and pump efficiency η 59%. The saturation power, given by the product of saturation intensity [16] and the effective modal area, turned out in fair agreement with the numerically fitted value. The excellent pump beam quality allowed remarkable improvements in terms of slope efficiency with respect to the multimode 1-W pump diode (40% instead of 32%), as well as very low pump threshold, 12 mw at the optimum coupling (T oc = 3%), which further reduced to only 2 mw using all high-reflectivity mirrors. Fig. 2. Performance of Nd:phosphate in cw operation, as a function of the glass plate deviation from Brewster angle (θ-θ B) or the corresponding effective output coupling T oc(θ). a) Output power (measured from the glass plate reflections) and threshold pump power; b) slope efficiency and output power. Best-fit curves are also indicated (see the text for a detailed discussion of the method and the results). The resonator was then modified to accommodate a semiconductor saturable absorber mirror (BATOP, GmbH) with 1.2% reflectivity modulation (0.8% nonsaturable loss). A 100- mm focusing mirror M5 was chosen. A 1.6% output coupler (element OC1 in Fig. 1) was used. Several combinations of negative dispersion Gires-Tournois mirrors (GTIs) were tried to optimize the mode-locking regime. A single GTI with dispersion of -400 fs 2 produced the best results, yielding self-starting mode-locking with 18-mW, 270-fs pulses and spectral bandwidth of 5.8 nm, at 250 MHz repetition rate. However, shorter pulses of 230 fs, with the same output power, were produced finely tuning the dispersion with a single prism [4] of SF10 glass in place of the GTI, using the same 1.6% output coupling (OC2). ABCD modeling showed that the crossing point of monochromatic rays (the position X of the virtual prism, (C) 2009 OSA 25 May 2009 / Vol. 17, No. 11 / OPTICS EXPRESS 9174

according to the notation used in Ref. 4) was at -15 mm, i.e. preceding the 50-mm concave mirror in the path toward the OC, allowing for a comparably compact cavity design in this case, too. The separation M1-P was 170 mm. Reducing the output coupling (OC2) to 0.8%, in order to maximize intracavity power and self-phase-modulation, pulses as short as 173 fs were generated, with 8-nm bandwidth and 12mW output power (Fig. 3). It is worth noticing that in all these configurations a self-starting and robust mode-locking was obtained. The product bandwidth pulsewidth was in the range 0.37-0.4, higher than the Fourier limit of 0.32 for sech2 pulse shape. However, given the asymmetric spectral shape (Fig. 3), the autocorrelation inferred by the numerical inversefourier transformation indicates an even smaller deviation ( 5%) from the theoretical Fourier limit. The clear advantage of the single-prism setup was the straightforward optimization of the intracavity dispersion, as well as the smooth tuning in the range 1053-1069 nm that for example, is highly beneficial for seeding pulse amplifiers. Fig. 3. Non-collinear second-harmonic autocorrelation and spectra of mode-locking pulses, corresponding to GVD compensation with the prism and 0.8% OC2. Autocorrelation best-fit is done assuming sech2 intensity profile. 3. Conclusions We have demonstrated what is, to the best of our knowledge, the first mode-locked femtosecond Nd:glass laser pumped with a simple, cost-effective, single-mode laser diode. A detailed analysis of highly efficient cw operation has been also presented. An actively modelocked 10-ps Nd:glass laser pumped by a single-mode 30-mW laser diode was reported as early as 1988 [18], with only 9.1% slope efficiency in cw operation and 0.3 mw output power. Clearly, the significant advances reported in this work have been possible owing to the progress in technology (more powerful single-mode laser diodes, high-quality semiconductor saturable absorbers, negative dispersion mirrors) as well as to the development of new design concepts for dispersion-compensated resonators. Comparing to similar ytterbium lasers pumped by single-mode low-power diodes, Nd:glass has several advantages. The ultralow threshold of the four-level material allows lower pump power. Furthermore, dichroic pump optics for Nd:glass are cheaper and less demanding since the pump and laser wavelengths are well separated. This makes compact femtosecond Nd:glass oscillators ideal for low-power applications, with pulse duration as short as 173 fs and tunable wavelength over 16 nm. Although ytterbium lasers maintain the advantage of generating shorter pulses, down to 61 fs [13], it is not unlikely #107580 - $15.00 USD (C) 2009 OSA Received 18 Feb 2009; revised 6 Apr 2009; accepted 9 Apr 2009; published 15 May 2009 25 May 2009 / Vol. 17, No. 11 / OPTICS EXPRESS 9175

to expect that Nd:silicate and Nd:fluorophosphate, which exhibit an inhomogeneous gain broadening, could approach at least the 100-fs limit with this same laser setup. (C) 2009 OSA 25 May 2009 / Vol. 17, No. 11 / OPTICS EXPRESS 9176