Dynamic gain-tilt compensation using electronic variable optical attenuators and a thin film filter spectral tilt monitor

Similar documents
Optical Fiber Technology

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

Transient Control in Dynamically Reconfigured Networks with Cascaded Erbium Doped Fiber Amplifiers

EDFA-WDM Optical Network Analysis

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender

EDFA TRANSIENT REDUCTION USING POWER SHAPING

Linear cavity erbium-doped fiber laser with over 100 nm tuning range

A WDM passive optical network enabling multicasting with color-free ONUs

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

Gain-clamping techniques in two-stage double-pass L-band EDFA

Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion

UNIT - 7 WDM CONCEPTS AND COMPONENTS

EDFA WDM Optical Network using GFF

Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration

from ocean to cloud SEAMLESS OADM FUNCTIONALITY FOR SUBMARINE BU

PERFORMANCE ANALYSIS OF 4 CHANNEL WDM_EDFA SYSTEM WITH GAIN EQUALISATION

Performance of optical automatic gain control EDFA with dual-oscillating control lasers

EDFA-WDM Optical Network Design System

Optical simulations for experimental networks: lessons from MONET

Utilizing Self-Seeding RSOA with Faraday Rotator Mirror for Colorless Access Network

All-optical NRZ to RZ format and wavelength converter by dual-wavelength injection locking

Opto-VLSI-based reconfigurable photonic RF filter

Transient gain dynamics in long-haul transmission systems with electronic EDFA gain control

WDM. Coarse WDM. Nortel's WDM System

PERFORMANCE EVALUATION OF GB/S BIDIRECTIONAL DWDM PASSIVE OPTICAL NETWORK BASED ON CYCLIC AWG

Polarization Mode Dispersion compensation in WDM system using dispersion compensating fibre

UNIT - 7 WDM CONCEPTS AND COMPONENTS

All-Optical Signal Processing and Optical Regeneration

Module 19 : WDM Components

Colorless Amplified WDM-PON Employing Broadband Light Source Seeded Optical Sources and Channel-by-Channel Dispersion Compensators for >100 km Reach

Optimisation of DSF and SOA based Phase Conjugators. by Incorporating Noise-Suppressing Fibre Gratings

Improvisation of Gain and Bit-Error Rate for an EDFA-WDM System using Different Filters

Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers

AN EFFICIENT L-BAND ERBIUM-DOPED FIBER AMPLIFIER WITH ZIRCONIA-YTTRIA-ALUMINUM CO-DOPED SILICA FIBER

OBSERVATION AND MITIGATION OF POWER TRANSIENTS IN 160Gbps OPTICAL BACKHAUL NETWORKS

Design and Performance Evaluation of 20 GB/s Bidirectional DWDM Passive Optical Network Based on Array Waveguide Gratings

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber

Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source

Optical Fibre Amplifiers Continued

International Journal of Computational Intelligence and Informatics, Vol. 2: No. 4, January - March Bandwidth of 13GHz

Chapter 3 Metro Network Simulation

Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode

A HIGH SPEED WDM PON FOR DOWNSTREAM DPSK ASK SIGNALS AND UPSTREAM OOK SIGNAL WITH BROADCAST CAPABILTY

Introduction Fundamental of optical amplifiers Types of optical amplifiers

Bit error rate and cross talk performance in optical cross connect with wavelength converter

Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise

Optical Transport Technologies and Trends

OBSERVATION AND EVALUATION OF POWER TRANSIENTS IN 45 CHANNEL SSDWDM OPTICAL NETWORK

! Couplers. ! Isolators/Circulators. ! Multiplexers/Filters. ! Optical Amplifiers. ! Transmitters (lasers,leds) ! Detectors (receivers) !

Optimized Flattened Gain Spectrum in C Band WDM using Automatic Gain Control in Bi-Directionally Pumped EDFA

Channel wavelength selectable singleõdualwavelength erbium-doped fiber ring laser

International Journal of Advanced Research in Computer Science and Software Engineering

Emerging Subsea Networks

Analysis of four channel CWDM Transceiver Modules based on Extinction Ratio and with the use of EDFA

Comparative Analysis Of Different Dispersion Compensation Techniques On 40 Gbps Dwdm System

Progress In Electromagnetics Research C, Vol. 15, 37 48, 2010 TEMPERATURE INSENSITIVE BROAD AND FLAT GAIN C-BAND EDFA BASED ON MACRO-BENDING

Dr. Monir Hossen ECE, KUET

A review on optical time division multiplexing (OTDM)

OPTICAL NETWORKS. Building Blocks. A. Gençata İTÜ, Dept. Computer Engineering 2005

Performance Evaluation of Hybrid (Raman+EDFA) Optical Amplifiers in Dense Wavelength Division Multiplexed Optical Transmission System

Gain Inhomogeneity in L-band Phosphosilicate-based Erbium-Doped Fiber Amplifiers

Rogério Nogueira Instituto de Telecomunicações Pólo de Aveiro Departamento de Física Universidade de Aveiro

Extending the Offset Frequency Range of the D2-135 Offset Phase Lock Servo by Indirect Locking

CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER

PERFORMANCE ANALYSIS OF WDM AND EDFA IN C-BAND FOR OPTICAL COMMUNICATION SYSTEM

Performance Improvement of 40-Gb/s Capacity Four-Channel WDM. Dispersion-Supported Transmission by Using Broadened Passband

SIMULATION OF FIBER LOOP BUFFER MEMORY OF ALL-OPTICAL PACKET SWITCH. Mandar Naik, Yatindra Nath Singh

Compact Optical Fiber Amplifiers with Fast AGC or for Analog Signal Transmission

DESIGN AND CHARACTERIZATION OF HIGH PERFORMANCE C AND L BAND ERBIUM DOPED FIBER AMPLIFIERS (C,L-EDFAs)

Investigation of Performance Analysis of EDFA Amplifier. Using Different Pump Wavelengths and Powers

Comparative Analysis of Various Optimization Methodologies for WDM System using OptiSystem

Emerging Subsea Networks

Performance of A Multicast DWDM Network Applied to the Yemen Universities Network using Quality Check Algorithm

Photonics and Optical Communication

Flat Frequency Comb Generation Based on Efficiently Multiple Four-Wave Mixing Without Polarization Control

Burst-mode EDFA based on a mid-position gain flattening filter with an overpumping configuration for variable traffic conditions in a WDM environment

CHAPTER 4 RESULTS. 4.1 Introduction

Spectrally Compact Optical Subcarrier Multiplexing with 42.6 Gbit/s AM-PSK Payload and 2.5Gbit/s NRZ Labels

Photonics and Optical Communication Spring 2005

Development of Etalon-Type Gain-Flattening Filter

Available online at ScienceDirect. Procedia Computer Science 93 (2016 )

Photonics (OPTI 510R 2017) - Final exam. (May 8, 10:30am-12:30pm, R307)

RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE

Setup of the four-wavelength Doppler lidar system with feedback controlled pulse shaping

To investigate effects of extinction ratio on SOA based wavelength Converters for all Optical Networks

Effect of SNR of Input Signal on the Accuracy of a Ratiometric Wavelength Measurement System

High bit-rate combined FSK/IM modulated optical signal generation by using GCSR tunable laser sources

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity

Implementation of Dense Wavelength Division Multiplexing FBG

Optical fiber-fault surveillance for passive optical networks in S-band operation window

Gain Flattening Improvements With Two Cascade Erbium Doped Fiber Amplifier In WDM Systems

Fiber-Optic Communication Systems

ANALYSIS OF THE CROSSTALK IN OPTICAL AMPLIFIERS

1.6 Tbps High Speed Long Reach DWDM System by incorporating Modified Duobinary Modulation Scheme

Amplitude independent RF instantaneous frequency measurement system using photonic Hilbert transform

An integrated recirculating optical buffer

Advanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay

S Optical Networks Course Lecture 2: Essential Building Blocks

The Report of Gain Performance Characteristics of the Erbium Doped Fiber Amplifier (EDFA)

A Comparative Study of Techniques to Control Power Transients in Optical WDM Networks

Transcription:

Dynamic gain-tilt compensation using electronic variable optical attenuators and a thin film filter spectral tilt monitor P. S. Chan, C. Y. Chow, and H. K. Tsang Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China pschan@ee.cuhk.edu.hk Abstract: An all-optical dynamic gain tilt compensator (DGTC) is proposed and experimentally demonstrated. A single wide-band thin film filter and a pair of photodetector allow the DGTC to distinguish band add/drop position. Power fluctuations from EDFA gain tilt were reduced with fast electronic variable optical attenuators. 2006 Optical Society of America OCIS codes: (060.2410) Fiber, erbium; (060.4230) Multiplexing References and links 1. A. K. Srivastava, Y. Sun, J. L. Zyskind, and J. W. Sulhoff, EDFA transient response to channel loss in WDM transmission system, IEEE Photon. Technol. Lett. 9, 386-389, (1997). 2. A. V. Tran, C-J Chae, and R. S. Tucker, All-optical gain control for bi-directional optical add-drop multiplexer using ASE noise path through multi-port circulators, IEE Electron. Lett. 39, 1839-1841, (2003). 3. A. Bianciotto, A. Carena, V. Ferrero, and R. Gaudino, EDFA gain transients: experimental demonstration of a low cost electronic control, IEEE Photon. Technol. Lett. 15, 1351-1353 (2003). 4. Y. Sun, A. K. Srivastava, J. Zhou, and J. W. Sulhoff, Optical fiber amplifiers for WDM optical networks, Bell Labs Tech. J. 1876 (1999). 5. P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-doped fiber amplifiers: Fundamentals and technology, (Academic Press, 1999), Chap. 9. 6. P. S. Chan, C. Y. Chow, and H. K. Tsang, EDFA per-band gain-tilt compensation, in conference on Optical Amplifier and their Applications (Washington, DC, Optical Society of America, 2006). 7. H. A. Macleod, Thin film optical filter, 3 rd ed., (Bristol & Philadelphia, Institute of Physics Publishing, 2001), Chap. 6. 8. See for example the mico-optic thin film filter (TFF) bandpass products at http://www.fibercom.com.tw 1. Introduction The presence of saturated erbium doped fiber amplifiers (EDFA) in optical networks which experience abrupt change of data traffic optical add/drop will introduce power transients in the surviving channels [1] and is a potential issue for future reconfigurable networks [2]. Dynamic transient control is therefore essential if reconfigurable optical add/drop multiplexers (ROADM) are to be used in optical mesh networks. Previous work on transient compensation, including all-optical control assisted by linearized electrical circuit [3] and link control scheme [4], have demonstrated that transients may be suppressed with minimal interruption in network traffic In a metro network, band add/drop will however also introduce a wavelength dependence in the gain transient because of the predominantly homogeneous broadened gain characteristic of EDFA [5]. Dynamic gain tilt must therefore also be catered for to avoid the accumulation of excess optical power in optical channels in reconfigurable optical mesh networks. In this paper, we propose and perform a proof-ofconcept demonstration of a per-link based dynamic gain tilt compensator (DGTC) employing a feed forward controlled electronic variable optical attenuator (EVOA). The EVOA controller uses a pair of thin film filter for low cost gain tilt monitoring and provides a stable reference for the dynamic gain tilt compensation [6]. We demonstrate the operation of the (C) 2006 OSA 2 October 2006 / Vol. 14, No. 20 / OPTICS EXPRESS 9022

system in a three band DWDM system, in which the wavelengths are added or dropped in one of three bands within the EDFA gain bandwidth. 2. Dynamic gain tilt compensation We measure the dynamic gain tilt after dropping channels at different wavelengths in an EDFA link. In Fig. 1, for example, dropping of Band A introduces 0.40 db power increase of channels in Band B while channels in Band C undergo 0.34 db power increases. Due to the wavelength dependent gain characteristics of EDFAs, dropping of longer wavelengths (Band C) causes higher power fluctuation than that of shorter wavelengths resulting in dynamic gain tilt of the whole system. The resultant dynamic gain tilt can propagate and accumulate throughout the reconfigurable network, and is difficult to compensate at the receiver since the received traffic may have been routed all-optically between an arbitrary number of nodes and transmitted through a variable number of EDFAs. Power Fluctuation of surviving channels Power increased (db) Power Fluctuation of surviving channels Power increased (db) Power Fluctuation of surviving channels Power increased (db) 1.5 1.0 0.5 0.0 1.5 1.0 0.5 0.0 1.5 1.0 0.5 0.0 C dropped Band A Band B Band C B dropped Band A Band B Band C A dropped Band A Band B Band C Power (dbm) Power (dbm) Power (dbm) Drop C -15-25 -35 1535 1545 1555 Drop B -15-25 -35 1535 1545 1555 Drop A -15-25 -35 1535 1545 1555 Fig. 1. Power fluctuation induced by dropping neighboring bands sharing a common EDFA. The proposed dynamic gain tilt compensator (DGTC) needs to determine the position of band add/drop and generate the appropriate optical attenuation to compensate the change in gain in each of the surviving bands to maintain a near constant gain level immediately after each add or drop. The DGTC employs a pair of photodiodes with different spectral responses to measure the gain tilt. A small fraction of the power in the optical fiber transmission line is tapped, split and detected by the two photodiodes. One of the two photodiodes has the spectral filter placed in front of it as shown in Fig. 2. By measuring the relative output from each photodiode and using the known spectral response of the optical filter, it is possible to determine the wavelength band of the add/drop and generate the appropriate control signal for the predefined gain tilt compensation for the given EDFA link. The electronic control circuit operates with 2.2µs delay from the detectors to EVOA, and a fiber delay was inserted to cater for this delay. (C) 2006 OSA 2 October 2006 / Vol. 14, No. 20 / OPTICS EXPRESS 9023

EVOA Array Band A Band B Band C Cascaded EDFA 80/20 coupler Fiber Delay 3dB coupler Control Circuitry Fig. 2. Schematic diagram of dynamic gain tilt compensator (DGTC). The thin film filter used for the gain tilt monitor was designed by Essential Macleod [7] and was fabricated by an ion beam assisted e-beam deposition system. The filter consists of alternating layers of SiO 2 / Ta 2 O 5. Using the measurement of average detected power from the filtered and unfiltered photodiodes, the control circuit shown in Fig. 3 generated the required outputs needed to drive the electronic variable optical attenuator. Deviation of power levels detected from the photodiode pair gave an indication of the wavelength position of the optical band that was added or dropped. The logarithmic amplifier produced a signal proportional to the log of the ratio of the photodiode signals. This was fed to a window comparator and analog switch which outputted the pre-calibrated current levels for the precise power adjustments needed for the gain tilt compensation. Coated PD Uncoated PD Logarithmic Amplifier V log (A/B) Electronic Control Comparator (V ref ) Analog Switch Fig. 3. Block diagram of control circuit to produce the gain tilt compensation for controlling different bands. 3. Experimental results We demonstrated the operation of the DGTC in a three-band system containing a single unclamped EDFA without additional gain control. Each band (namely Band A, B and C) consists of 8 DWDM channels (100 GHz spacing) with equalized optical power after the EDFA link as shown in Fig. 4(a). A near logarithmic filter response (near -0.3 db/nm) was used with one of the photodiodes. The spectral response of all three bands after this logarithmic filter is shown in Fig. 4(b). The free space coupling loss of filter and photodiode was 3 db. Table 1 summarizes the reference level of the control circuit with fixed power ratio. With add/drop of different bands inducing average power fluctuation, the power ratio differs from the reference level and drives the EVOA to various attenuations. The EVOA may be biased at a non-zero attenuation so that adding of bands (or decrease of power in surviving channels) may be compensated by reducing the drive current. (C) 2006 OSA 2 October 2006 / Vol. 14, No. 20 / OPTICS EXPRESS 9024

Table 1. Power detected after EDFA under different filter responses. Power detected Power detected Power Ratio (Without filter) (With filter) Band A -12.14dBm -17.45dBm 3.40 Band B -11.97dBm -19.88dBm 6.18 Band C -14.20dBm -22.60dBm 6.92 0 0 Transmittance (dbm) -10-50 Transmittance (dbm) -10-50 -60 1535 1540 1545 1550 1555 1560-60 1535 1540 1545 1550 1555 1560 Fig. 4. Spectral response of Band A (red), Band B (blue) and Band C (green) with (a) spectrum from gain flattened reference and (b) spectrum passing through thin film filter. We experimentally tested the gain tilt compensation by modulating Band A using an optical modulator at a frequency of 1 khz. 24 channels carrying -35dBm optical power each were amplified by a saturated unclamped EDFA with 23dB gain for each channel. A flattened spectrum after EDFA was obtained after gain flattening technique as appear in Fig. 4 (left). The removal of Band A causes average power fluctuations in Band B (17%) and Band C (12%) after the constant-pump-current EDFA. With the DGTC, power fluctuations were reduced as shown in Fig. 5. Without DGTC With DGTC 60uW/div; 200us/div Band B 60uW/div; 200us/div Band C Fig. 5. Power fluctuation before and after dynamic gain tilt compensator (Left: Band B; Right: Band C) with respect to channels add and drop in Band A. Finally we compare the 10 Gbit/s 2 31-1 PRBS bit error rate (BER) of a surviving channel in Band B with and without compensation. Figure 6 shows the BER after 3m and 40km optical fiber before and after the transient compensator is added. 3 db power penalty improvement was observed after 3 meters fiber transmission. If the uncompensated signal is allowed to travel through 40km fiber (without dispersion compensation), the signal is degraded by the add/drop as shown in the inset of Fig. 6. The eye diagram of the (C) 2006 OSA 2 October 2006 / Vol. 14, No. 20 / OPTICS EXPRESS 9025

uncompensated signal shows two-level amplitude induced by add/drop of Band A channels, and this is removed by the DGTC. 3m after EDFA, NO Compensation 40km after EDFA, NO compensation 3m after EDFA, WITH compensation 40km after EDFA, WITH compensation Bit Error Rate 1E-01 1E-02 1E-03 1E-04 1E-05 1E-06 1E-07 1E-08 1E-09 1E-10-15 -10-5 0 Received Optical Power (dbm) Fig. 6. Bit-error-rate test of compensated and un-compensated 10Gbit/s PRBS 2 31-1 using feedforward compensation scheme. The inset shows eye diagrams of demultiplexed optical outputs. In the experiment an 80:20 fiber coupler was used to tap the signal from the transmission line and arrayed waveguide gratings were used for the wavelength multiplexer and demultiplexer. The total loss of the gain tilt compensator was about 7 db comprising 1.5-2 db insertion loss for the EVOAs, 1 db loss from the 20% tap for the gain tilt monitor and about 5 db insertion loss from the arrayed waveguide grating based wavelength demultiplexers and multiplexers. The insertion loss may be greatly reduced if lower insertion loss multiplexers/demultiplexers were used. A lower loss implementation based on commercially available thin film filter filters for the mulitplexers and demultiplexers [8] is proposed in Fig. 7. The thin film filter based fiber-pigtailed multiplexers and demultiplexers have transmission and reflection losses of 0.6 db and 0.4 db, respectively. With EVOA of less than 2 db insertion loss, it should be possible to reduce the insertion loss of the proposed compensation scheme to less than 4 db. (C) 2006 OSA 2 October 2006 / Vol. 14, No. 20 / OPTICS EXPRESS 9026

A+B+C Band A pass EVOA A B+C Band B pass EVOA B C EVOA C A+B A+B+C Fig. 7. Low loss implentation of DGTC using thin film filter based bandpass multiplexers. 4. Discussion and conclusion The gain tilt detection via the use of a pair of photodiodes and a thin film filter was found to operate reliably in the three-band system. The stability and sensitivity of dynamic gain tilt compensation may be improved by using a steeper slope filter. The technique provides optically transparent compensation and is suitable for re-configurable optical network at different bitrates. The tilt monitoring and compensation scheme has potential for low cost implementation by depositing the required thin film filter onto the photodiode die for minimizing the package size and potential integration with an electronic variable optical attenuator. In summary, we proposed and demonstrated a dynamic gain tilt compensator (DGTC) using thin film filter monitoring technique for different band power fluctuation. The alloptical gain tilt compensation is potentially low cost and bitrate transparent and may make it attractive for future reconfigurable and banded DWDM networks. Acknowledgments This work was fully funded by RGC Earmarked grant CUHK4198/03E. (C) 2006 OSA 2 October 2006 / Vol. 14, No. 20 / OPTICS EXPRESS 9027