Intro to Electricity. Introduction to Transistors. Example Circuit Diagrams. Water Analogy

Similar documents
Lecture - 18 Transistors

UNIT 3 Transistors JFET

EDC UNIT IV- Transistor and FET Characteristics EDC Lesson 9- ", Raj Kamal, 1

Student Lecture by: Giangiacomo Groppi Joel Cassell Pierre Berthelot September 28 th 2004

EE 5611 Introduction to Microelectronic Technologies Fall Thursday, September 04, 2014 Lecture 02

EE70 - Intro. Electronics

Department of Electrical Engineering IIT Madras

I E I C since I B is very small

PHYS 3050 Electronics I

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism;

COLLECTOR DRAIN BASE GATE EMITTER. Applying a voltage to the Gate connection allows current to flow between the Drain and Source connections.

Lecture 3: Transistors

UNIT 3: FIELD EFFECT TRANSISTORS

Digital Electronics. By: FARHAD FARADJI, Ph.D. Assistant Professor, Electrical and Computer Engineering, K. N. Toosi University of Technology

Design cycle for MEMS

ME 4447 / 6405 Student Lecture. Transistors. Abiodun Otolorin Michael Abraham Waqas Majeed

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s.

THE METAL-SEMICONDUCTOR CONTACT

FET(Field Effect Transistor)

Downloaded from

FIELD EFFECT TRANSISTOR (FET) 1. JUNCTION FIELD EFFECT TRANSISTOR (JFET)

Conduction Characteristics of MOS Transistors (for fixed Vds)! Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor

Topic 2. Basic MOS theory & SPICE simulation

Conduction Characteristics of MOS Transistors (for fixed Vds) Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor

FIELD EFFECT TRANSISTORS MADE BY : GROUP (13)/PM

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET)

(Refer Slide Time: 02:05)

Physics 160 Lecture 5. R. Johnson April 13, 2015

EECE 481. MOS Basics Lecture 2

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha

Lesson 5. Electronics: Semiconductors Doping p-n Junction Diode Half Wave and Full Wave Rectification Introduction to Transistors-

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

ITT Technical Institute. ET215 Devices 1. Unit 8 Chapter 4, Sections

Power Bipolar Junction Transistors (BJTs)

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 6 FIELD-EFFECT TRANSISTORS

Semiconductor Physics and Devices

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY)

ECE 440 Lecture 29 : Introduction to the BJT-I Class Outline:

Lecture 15. Field Effect Transistor (FET) Wednesday 29/11/2017 MOSFET 1-1

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati


ENG2410 Digital Design CMOS Technology. Fall 2017 S. Areibi School of Engineering University of Guelph

UNIT IX ELECTRONIC DEVICES

KOREA UNIVERSITY. Photonics Laboratory. Ch 15. Field effect Introduction-The J-FET and MESFET

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011

NAME: Last First Signature

Basic Fabrication Steps

IENGINEERS- CONSULTANTS LECTURE NOTES SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU. Lecture-4

Three Terminal Devices

2.9 Junction field-effect transistors

Learning Outcomes. Spiral 2-6. Current, Voltage, & Resistors DIODES

FUNDAMENTALS OF MODERN VLSI DEVICES

INTRODUCTION: Basic operating principle of a MOSFET:

Chapter Semiconductor Electronics

Lecture 13. Metal Oxide Semiconductor Field Effect Transistor (MOSFET) MOSFET 1-1

INTRODUCTION TO MOS TECHNOLOGY

MTLE-6120: Advanced Electronic Properties of Materials. Semiconductor transistors for logic and memory. Reading: Kasap

6. Field-Effect Transistor

CONTENTS. 2.2 Schrodinger's Wave Equation 31. PART I Semiconductor Material Properties. 2.3 Applications of Schrodinger's Wave Equation 34

MEASUREMENT AND INSTRUMENTATION STUDY NOTES UNIT-I

Summary. Electronics II Lecture 5(b): Metal-Oxide Si FET MOSFET. A/Lectr. Khalid Shakir Dept. Of Electrical Engineering

SEMICONDUCTOR ELECTRONICS: MATERIALS, DEVICES AND SIMPLE CIRCUITS. Class XII : PHYSICS WORKSHEET

EIE209 Basic Electronics. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: T ransistor devices

In this lecture we will begin a new topic namely the Metal-Oxide-Semiconductor Field Effect Transistor.

Unit III FET and its Applications. 2 Marks Questions and Answers

EE301 Electronics I , Fall

ELECTRONIC DEVICES AND CIRCUITS

Introduction to semiconductor technology

Lecture 14. Field Effect Transistor (FET) Sunday 26/11/2017 FET 1-1

Basic Electronics: Diodes and Transistors. October 14, 2005 ME 435

TRANSISTOR TRANSISTOR

Field Effect Transistor (FET) FET 1-1

Chapter 8. Field Effect Transistor

Transistors, Gates and Busses 3/21/01 Lecture #

Solid State Devices- Part- II. Module- IV

CHAPTER FORMULAS & NOTES

Lecture 17. Field Effect Transistor (FET) FET 1-1

Integrated diodes. The forward voltage drop only slightly depends on the forward current. ELEKTRONIKOS ĮTAISAI

Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET

EECE251 Circuit Analysis I Set 6: Diodes

Lecture 4. Reading: Chapter EE105 Fall 2007 Lecture 4, Slide 1 Prof. Liu, UC Berkeley

Downloaded from

THE JFET. Script. Discuss the JFET and how it differs from the BJT. Describe the basic structure of n-channel and p -channel JFETs

CHAPTER SEMI-CONDUCTING DEVICES QUESTION & PROBLEM SOLUTIONS

L MOSFETS, IDENTIFICATION, CURVES. PAGE 1. I. Review of JFET (DRAW symbol for n-channel type, with grounded source)

Class XII - Physics Semiconductor Electronics. Chapter-wise Problems

Analog Electronic Circuits Prof. S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology Delhi Lecture No 03

Sharjah Indian School, Sharjah ELECTRONIC DEVICES - Class XII (Boys Wing) Page 01


MOS Field-Effect Transistors (MOSFETs)

Field Effect Transistors (npn)

97.398*, Physical Electronics, Lecture 21. MOSFET Operation

PHYSICS OF SEMICONDUCTOR DEVICES

ELEC 3908, Physical Electronics, Lecture 16. Bipolar Transistor Operation

Device Technologies. Yau - 1

Lecture 4 - Digital Representations III + Transistors

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) Subject Code: Model Answer Page No: 1/

Physics 364, Fall 2012, reading due your answers to by 11pm on Thursday

The Discussion of this exercise covers the following points:

Transcription:

Introduction to Transistors Transistors form the basic building blocks of all computer hardware. Invented by William Shockley, John Bardeen and Walter Brattain in 1947, replacing previous vaccuumtube technology Won Nobel Prize for Physics in 1956 Used for applications such as amplification, switching and digital logic design. CSC258 Lecture Slides Steve Engels, 2006 Slide 1 of 22 Intro to Electricity Before we can understand how transistors work, we have to review some basics of electricity. Electricity is the phenomenon caused by the presence or flow of electric charge, usually in the form of electrically-charged particles Voltage is the electrical potential associated with some point in a circuit, relative to a reference point (aka ground) measured in volts (V) Current is the flow of electrically-charged particles measured in amperes (A) An electric field is the effect produced by the force exerted by an electrically-charged object on other electricallycharged objects or particles. Similar to magnetic fields, which cause magnetically-charged objects to attract or repulse each other. CSC258 Lecture Slides Steve Engels, 2006 Slide 2 of 22 Water Analogy Example Circuit Diagrams When trying to picture electrical concepts such as voltage and current, picture the waterfall model: The charged particles are the drops of water Voltage is the elevation of the water above the ground Current is the flow of water from one level to another Note: current always flows from a point of high voltage to a point of lower voltage. Just like waterfalls. Circuit diagrams are composed of: Sources (voltage source, current source) Components (resistors, capacitors, inductors) Connectors (switches & leads) ground CSC258 Lecture Slides Steve Engels, 2006 Slide 3 of 22 CSC258 Lecture Slides Steve Engels, 2006 Slide 4 of 22

Conductivity of Materials Electricity can flow freely through a solid if it is a good conductor, that is, if there are free valence electrons after the solid is formed. Semiconductor materials (silicon, germanium) straddle the boundary between conductors and insulators, behaving like one or the other, depending on factors like temperature and impurities in the material. CSC258 Lecture Slides Steve Engels, 2006 Slide 5 of 22 Semiconductor Conductivity Silicon and germanium have four valence electrons, and four spaces in its valence layer to fill. When the solid forms, the atoms share electrons with neighbouring atoms, similar to the diagram on the right. Even though this solid is stable, energy can make electrons from the valence layer become loose. At room temperature, a weak current will flow through the material, much less than that of a conductor. CSC258 Lecture Slides Steve Engels, 2006 Slide 6 of 22 Semiconductor Impurities To encourage the semiconductor s conductivity, impurities can be introduced in the fabrication process, to increase the number of charge carriers. n-type: adding elements from group 15, which have 5 electrons in its valence layer (e.g. phosphorus, arsenic) p-type: adding elements from group 13, which have 3 electrons in its valence layer (e.g. boron) Process is also referred to as doping the semiconductor In the case of n-type semiconductors, the carriers are electrons that are not bound to the solid, and can flow more freely through the material. For p-type semiconductors, the carriers are called holes, to represent the electron gap as a particle as well. CSC258 Lecture Slides Steve Engels, 2006 Slide 7 of 22 p-n Junctions Q: Why do we care about semiconductors, anyway? A: Because it s useful to have materials that can change from conductor to insulator, given some outside stimulus. This comes into play when we consider integrating p- type and n-type semiconductors together into a single device (a p-n junction, for instance). By placing a chunk of p-type material next to a chunk of n-type material and applying a voltage from one end to the other, we get differing current flow behaviour. CSC258 Lecture Slides Steve Engels, 2006 Slide 8 of 22

p-n Junctions When left alone, the electrons from the n half of the junction will mix with the holes of the p half of the junction, cancelling each other out, and creating a depletion layer. Once this depletion layer is wide enough, it creates an electric field that sends holes back to the p layer, and sends electrons back to the n layer. The current caused by this field is called drift. The current caused by carrier recombination is called diffusion. At rest, these two currents reach equilibrium. CSC258 Lecture Slides Steve Engels, 2006 Slide 9 of 22 Forward Bias When a voltage is applied to this junction (with the positive terminal attached to the p-type section and the negative terminal attached to the n-type section), electrons are continuously injected into the n-type section, narrowing the depletion layer and increasing the electron diffusion rate. With a smaller depletion layer, the electrons travel more easily through to the p-type section, and back into the other terminal of the voltage source electron velocity is too fast to be absorbed by the p-type material, as in the case of electron drift. CSC258 Lecture Slides Steve Engels, 2006 Slide 10 of 22 Reverse Bias When a p-n junction is reverse biased (the negative terminal of the voltage source is applied to the p-type section and the positive terminal is applied to the n-type section), the depletion region at the junction becomes wider, preventing the carriers from passing. a small current still flows through the circuit, but it is weak and does not increase with an increase in the applied voltage. So when a junction is forward biased, it becomes like a virtual short-circuit, and when the junction is reverse biased, it becomes like a virtual open-circuit. idea behind a diode (e.g. LED) CSC258 Lecture Slides Steve Engels, 2006 Slide 11 of 22 Transistors Again Transistors use the characteristics of p-n junctions to create more interesting behaviour. Three main types: Bipolar Junction Transistors (BJTs) Metal Oxide Semiconductor Field Effect Transistor (MOSFET) Junction Field Effect Transistor (JFET) The last two are part of the same family, but we ll only look at the MOSFET for now. Note: There are two arrangement of n-type and p- type semiconductors in every transistor design. By reversing the voltage sources and swapping the n- type and p-type sections, you get the same transistor. CSC258 Lecture Slides Steve Engels, 2006 Slide 12 of 22

Bipolar Junction Transistors When a p-n junction is reverse biased, the depletion layer prevents the electrons from passing through the p section into the n section where they could be collected by the positive voltage terminal. This could be overcome by altering the temperature, or by artificially injecting more electrons through the p-region. make p-region narrower nn p inject electrons at a high velocity, so p they don t have time to recombine n Solution: Use a forward biased p-n junction to inject electrons into the reverse biased p-n junction! CSC258 Lecture Slides Steve Engels, 2006 Slide 13 of 22 Bipolar Junction Transistors A BJT has three contact points: the base (middle layer) the emitter (the source of the injected electrons) the collector (the recipient of the injected electrons) By increasing the voltage between the base and the emitter, we can make the current from the base to the collector go from zero (V EB = 0) to higher values. CSC258 Lecture Slides Steve Engels, 2006 Slide 14 of 22 Bipolar Junction Transistors Note: Not all the electrons are injected directly from emitter to collector. Some are absorbed into the positive voltage terminal at the base, some are absorbed by the p-type section, some stay in one of the n-type sections, etc. Most make it through though, and cause the constant current output to increase as V EB rises amplification! MOSFETs Metal Oxide Semiconductor Field Effect Transistors can be broken down into two components: The field effect is an electric field that creates a channel between two n-type regions for electrons to pass through. This field is generated by an electrically-charged metal layer that is shielded from the semiconductor material by an insulating oxidized layer (thus the MOS component). CSC258 Lecture Slides Steve Engels, 2006 Slide 15 of 22 CSC258 Lecture Slides Steve Engels, 2006 Slide 16 of 22

MOSFETs The semiconductor sections are two pockets of n-type material, resting on a substrate layer of p-type material. A voltage is applied across the two n-type sections, called the drain and the source. No current will pass through though, because of the intermediate p layer. CSC258 Lecture Slides Steve Engels, 2006 Slide 17 of 22 MOSFETs However, when a voltage is applied between the source and the metal plate (called the gate), this causes a buildup of positive charge in the metal layer, which draws a layer of negative charge to the surface of the substrate. This layer of electrons creates a virtual n-type channel between the drain to the source, allowing current to flow between them. the wider the channel, the higher the current CSC258 Lecture Slides Steve Engels, 2006 Slide 18 of 22 V G V D Output MOSFETs Note: Two different types of MOSFET exist, based on the semiconductor type of the drain and source. The small circle in the pmos diagram indicates an inverted input (in this case, a negative channel) CSC258 Lecture Slides Steve Engels, 2006 Slide 19 of 22 Transistors to Gates In the end, we want to model basic logic functions by using transistors. Consider then, the truth table that results from the various combinations of transistor inputs: V EB BJT (slide 14) V C Output V DS MOSFET V GS Output Conclusion: Can be used to model logic operations. CSC258 Lecture Slides Steve Engels, 2006 Slide 20 of 22

Makin Gates Since these transistors aren t simply on/off switches, digital logic gates (AND, OR, NOT) are created by a combination of transistors Examples: inverter (NOT) at top, NAND gate at bottom Physical data: input = 5V input = 0V Switching time 120 picoseconds Switching interval 10 ns NAND is most common logic gate CSC258 Lecture Slides Steve Engels, 2006 Slide 21 of 22 Transistor Fabrication Transistors are not formed by pushing large chunks of n- and p-type semiconductors together. Transistors are now made by bombarding silicon with doping substances to create the layers for each junction surface is oxidized in between stages to ensure that only the necessary sections are doped. CSC258 Lecture Slides Steve Engels, 2006 Slide 22 of 22