! CAUTION D TABLE 1

Similar documents
3.0 CHARACTERISTICS. Type CKO Overcurrent Relay. switch, which allows the operation indicator target to drop.

Type CVX and CVX-1 Synchro-Verifier Relays

Type CA Percentage Differential Relay for Transformer Protection (50 and 60 Hertz)

A. Photo #9664A14. Figure 1. Type KS-3 Out-of-Step Blocking Relay Without Case

ABB Automation, Inc. Substation Automation & Protection Division Coral Springs, FL Allentown, PA

Type PM Line of Relays For Pilot Wire Monitoring And Transferred Tripping R. Table 1:

INSTRUCTIONS TYPE SBF STATIC BREAKER FAILURE RELAY

Table 1 Various IRD models and their associated time/current characteristics Time/Current Characteristics. Definite Time Moderately Inverse Time

WATT TRANSDUCER. Instruction Manual

Type KLF Generator Field Protection-Loss of Field Relay

CATALOG & INSTRUCTION MANUAL. Type LJ High Speed Auxiliary Relays

INSTALLATION AND MAINTENANCE MANUAL FOR GROUND MONITOR GM-250 COPYRIGHT 1983 AMERICAN MINE RESEARCH, INC.

Type VDG 13 Undervoltage Relay

INSPECTION 1. Take the cover off the relay, taking care to not shake or jar the relay or other relays around it.

Variable Transformers Product Design & Engineering Data

TRANSFORMER OPERATION

DANFYSIK A/S - DK-4040 JYLLINGE - DENMARK

Outdoor Water Solutions, Inc. Small Backyard Windmill. Installation Manual

which is used to shift the phase angle between the two sets of coils to produce torque.

R-F Skewed Hybrids. Type H1SB and H1SB-R. & R-F Balanced Hybrids Type H1R, H3X and Type H1RB, H3XB and Type H1RB-40. System Manual CH44 VER03

FMR622S DUAL NARROW BAND SLIDING DE-EMPHASIS DEMODULATOR INSTRUCTION BOOK IB

which is used to shift the phase angle between the two sets of coils to produce torque.

Category: ELECTRICITY Requirement: EL-ENG Page: 1 of 13. Document(s): S-E-01, S-E-04 Issue Date: Effective Date:

Style FR HI Shunt Track Unit

UNIT II MEASUREMENT OF POWER & ENERGY

www. ElectricalPartManuals. com Westinghouse HRU Instantaneous Overcurrent Relay with Harmonic Restraint Descriptive Bulletin Page 1

INTELLIMETER REGISTER

Outdoor Water Solutions, Inc. 9 Backyard Windmill. Installation Manual

Model 9305 Fast Preamplifier Operating and Service Manual

U, W, and Y -- MULTIPLE LEG STARBARS, SILICON CARBIDE HEATING ELEMENTS

INSTALLATION, OPERATION AND MAINTENANCE GUIDE

www. ElectricalPartManuals. com Type CGR Ratio Ground Relay Descriptive Bulletin Page 1

REPAIR INSTRUCTIONS. Cat. No Cat. No MILWAUKEE ELECTRIC TOOL CORPORATION. SDS Max Demolition Hammer. SDS Max Rotary Hammer

7. INSPECTION AND TEST PROCEDURES

TRANSFORMERS INTRODUCTION

Thomas Disc Couplings Installation and Maintenance Series 71 Sizes (Page 1 of 11) DANGER!

6o ft (18.3 m) Southwest Windpower, Inc West Route 66 Flagstaff, Arizona USA Phone: Fax:

DCM20 Series. Three-Function DC Power Meters. DCM20 DISPLAY PRODUCT OVERVIEW FEATURES

4.2 - PUMP MAINTENANCE MODELS: AC, AS, WC, WS

Installation & Operation Manual

TYPE SE and TSE, SILICON CARBIDE SPIRAL HEATING ELEMENTS

TOA 500 SERIES MIXER POWER AMPLIFIER

ELECTRIC TOOL CORPORATION

CAPSULE CONTACT MECHANISM AND HIGH-CAPACITY CUTOFF COMPACT RELAY FEATURES

MobileTrak5 Installation Instructions

Section L5: PRE-ENERGIZATION TEST PROCEDURES FOR LOAD-ONLY ENTITIES AND TRANSMISSION-ONLY ENTITIES

Standard Pole Mount Parabolic Antenna Mounting Instructions 3 ft. (90cm) & 4 ft. (120cm)

Replacement of Pitch Link Retainer and Service Improvement of the Pitch Control System. Effectivity: Helicopters manufactured prior to January, 1981

ATD AMP Variable Speed Reciprocating Saw Owner s Manual

INSTALLATION RECOMMENDATIONS For The Con-Tech ODYSSEY Line Voltage Flexible Track System

CALRAD 25 series - potentiometers

PO STYLE AIR CLUTCH INSTALLATION AND MAINTENANCE MANUAL

PART #MSP-DCCST Flat Panel Tilt Mount

Solenoid Data Book 1425 Lake Avenue Woodstock, IL Phone: (815) Toll Free: Sales Fax: (815)

General Four-Way Operation, Maintenance & Service Manual

Thomas Scientific Swedesboro, NJ U.S.A.

Wilcoxon Research PA8HF power amplifier Operating guide

GE Power Management. Digital Microprocessor-based Non-directional Overcurrent Relays MIC series 1000 Instructions GEK 98840C

Operating, Servicing, and Safety Manual Model # & 72 Ultimate Box & Pan Brake

Introduction LOADING COIL COUNTERPOISE ATTACHMENT ANTENNA ATTACHMENT. Figure 1: MFJ-1625 Window/Balcony Mount Antenna

EASUN REYROLLE LIMITED

176 S. New Holland Road Gordonville, PA Tel: Fax: Castle Loft

User Manual Digital Multimeter. model no.: MSR-U1000

SINGLE PHASE BUCK & BOOST TRANSFORMERS INSTRUCTION MANUAL

The object of these Operating Instructions is to assist you in the correct safe and economical use of the TORSIOMAX torque screwdriver.

Hand Crimp Tool Operating Instruction And Specifications Sheet Order No Eng. No. RHT 7050 (Replaces )

OPERATION, PARTS & MAINTENANCE MANUAL MODELS HB73-16 HB97-18 HB97-16 HB97-12 HB HB HB HB145-18

PRE COMMISSIONING TESTS ON EQUIPMENT AT 33/11 KV SUB STATIONS. IR Values are to be read on the megger by meggering the Power transformer

DIAC Type 66K. DIGITAL OVERCURRENT RELAY Instruction Manual. GE Power Management

MM700R Recess Box Kit Addendum

Service Instructions. The Conductor Controls. Conductor DC15-A, Enclosed Unit CH15-A, Open Chasis Unit

INSTALLATION INSTRUCTIONS

installation guide

Installation and Owner s Instructions Customizable Wood Lockers

Electronics for Analog Signal Processing - I Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology - Madras

MX8 SERIES 6-1/4 HANDRAIL W/ VINYL HANDGRIP

Angle Grinder. Model Visit our website at:

INSTALLATION INSTRUCTIONS

COPPER / FIBER MANAGER RACK INSTALLATION INSTRUCTIONS PX Standard Release A March 2008

DAWN TO DUSK SENSOR OWNER S MANUAL

ASX SERIES PACIFIC OPERATION MANUAL AC POWER SOURCE POWER SOURCE

STEEL WORKBENCH WB SERIES ASSEMBLY INSTRUCTIONS WB SERIES. 300 South Krueger Street Suring, WI diversifiedwoodcrafts.

HD installation guide

Planar Transformer Prototyping Kit. Designer s Kit C356

HANDHOLE SEAT GRINDER

PA8HF power amplifier Operating guide

W-7 DECODING TRANSFORMER

MEDIUM FLAT PANEL DISPLAY TILT MOUNT MSP-MT (MTR-V)

NX8 SERIES 6-1/4 HANDRAIL W/ VINYL HANDGRIP

PFW 6875 Installation Guide Installationsanleitung, Guía de Instalacíon, Guida de Installazione, Guide d Installation, Installatie gids

WESTERN UNDERGROUND COMMITTEE GUIDE 2.6 (2.6/00/0868)

1995 Metric CSJ SPECIAL SPECIFICATION ITEM Drop/Insert Multiplexor/Demultiplexor

Series Inline Oscillating Saw

BLACK WIDOW COMPOSITE

Thomas Disc Couplings Installation and Maintenance Series 71-8 Sizes (Page 1 of 10) DANGER!

BE1-32R, BE1-32 O/U DIRECTIONAL POWER RELAY

Operating Manual Multi-Spot M22AL CD Stud Welding Machine

Wiring Techniques for Wiring a Lamp

THANK YOU FOR PURCHASING OUR STUDIO RTA CREATION STATION

INSTALLATION INSTRUCTIONS

Transcription:

Volts Line to Line 120 208 120 TABLE 1 (I L V LL ) 3 (single phase watts) Range Taps 20-120 20-30- 40-60- 80-100- 120 100-600 100-150- 200-300- 400-500- 600 35-200 35-50- 70-100- 140-175- 200 175-1000 175-250- 350-500- 700-875- 1000 10-60 None 20-120 None 50-300 None 100-600 None 150-900 None 4.0 SETTINGS 4.1 Product Unit The CWD relay for three-phase application, senses single-phase watts. The power to operate the relay equals the three phase primary power divided by the quantity 3 times the current and potential transformer ratios. Tap value is the volt-ampere value at which the contacts close with relay current leading relay voltage by 30. The watt sensing unit settings can be defined either by contact settings or tap setting. The high and low watt contact settings are described under Section 3, CHARACTERISTICS. 3.0 CHARACTERISTICS The type CWD relays are available in the ranges and taps listed in Table 1. The type CWD watt sensing relay has adjustable high and low wattage contacts that can be set around a 150 arc which is calibrated in watts on non-tapped relays, or in percent of tap value watts on tapped relays. These values represent the tripping position of the moving contacts when the value of watts is applied to the relay. For the tapped relays the percent scale markings are 80, 85, 90, 95, 100, 105 and 110. The moving contacts will assume a position corresponding to the watts applied to the relay and will stay in that position until the wattage changes. If the wattage changes either gradually or suddenly, the contact will assume a new position corresponding to the change unless the travel is limited by the setting of the adjustable contacts. If the contacts are set to close for a particular value of watts, and if a wattage of that exact amount is applied, then the relay is operating at its minimum trip point and the times on repeated operations are not repetitive within close tolerances. However, wattage appreciably greater than the wattage setting, or appreciably less than the wattage setting, result in relay timing operations which are consistent for repeated trials. The induction unit has inverse timing; that is, the greater the change in watts, the faster the relay contact will travel. Relays which are tapped have a connector screw on the terminal plate above the scale which makes connections to various turns on the operating coil. The tap setting is made by placing this screw in the desired tap as marked on the terminal plate. 5.0 INSTALLATION The relays should be mounted on switchboard panels or their equivalent in a location free from dirt, moisture, excessive vibration and heat. Mount the relay vertically by means of the four mounting holes on the flange for semi-flush mounting or by means of the rear mounting stud or studs for projection mounting. Either a mounting stud or the mounting screws may be utilized for grounding the relay. The electrical connections may be made directly to the terminals by means of screws for steel panel mounting or to the terminal studs furnished with the relay for thick panel mounting. The terminal studs may be easily removed or inserted by locking two nuts on the stud and then turning the proper nut with a wrench. For detailed FT case information refer to I.L. 41-076.! CAUTION Since the tap block screw carries operating current, be sure that the screws are turned tight. In order to avoid opening current transformer circuits when changing taps under load, RED handles FIRST and open all switchblades. Chassis operating shorting switches on the case will short the secondary of the current transformer. 2

Taps may then be changed with the relay either inside or outside the case. Then reclose all switchblades making sure the RED handles are closed LAST. 6.0 ADJUSTMENTS AND MAINTENANCE The proper adjustments to insure correct operation of this relay have been made at the factory. Upon receipt of the relay no customer adjustments, other than those covered under Section 4, SETTINGS, should be required. 6.1 Acceptance Check The following check of the Current Sensing Unit is recommended to insure that the relay is in proper working order. a. Contact Adjustment Check Set the left hand contact in the center of the scale and adjust the wattage until the moving contact just makes. Move the left-hand contact out of the way and bring the right-hand contact up until the contacts just make. The right pointer should be within ±1/32 of where the left-hand pointer was. b. Calibration Check Check the scale markings by setting either of the two contacts at a value marked on the scale, then alternately apply this wattage plus 5% and minus 5% for non-tapped relays, and plus and minus 3% for tapped relays. The under wattage contact should make at the lower wattage and break at the higher wattage. For the over wattage contact check, the contact will make for the higher wattage and break at the lower wattage. 6.2 Routine Maintenance All relays should be inspected periodically and the time of operation should be checked at least once every year or at such other time intervals as may be dictated by experience to be suitable to the particular application. The use of phantom loads, in testing induction-type relays, should be avoided, since the resulting distorted current wave form will produce an error in operation. All contacts should be periodically cleaned. A contact burnisher #182A836H01 is recommended for this purpose. The use of abrasive material for cleaning contacts is not recommended, because of the danger of embedding small particles in the face of the soft silver and thus impairing the contact. 6.3 CALIBRATION Use the following procedure for calibrating the Watts Sensing Unit if the relay has been taken apart for repairs or the adjustments disturbed. This procedure should not be used until it is apparent that the relay is not in proper working order. (See Section 6.1, Acceptance Check). a. Contacts Apply sufficient wattage to the relay, to make the disc float in the center of its travel. Move both of the adjustable contacts until they just make with the moving contact. If the two contact pointers do not meet at the same point on the scale (±1/32 ), adjust the follow on both adjustable contacts. Approximately the same follow should be in each of the adjustable stationary contacts. b. Calibration Check The adjustment of the spring tension in calibrating the relay is most conveniently made with the damping magnet removed. Set either of the adjustable stationary contacts in the center of its travel and apply this wattage to the relay. Wind up the spiral spring by means of the spring adjuster until the stationary contact and moving contact just make. Check the other markings by setting the adjustable contact on these markings and applying the corresponding wattage to the relay. The contacts should make within plus or minus 5% of contact setting for non-tapped relays and plus or minus 3% of contact setting for tapped relays. 7.0 RENEWAL PARTS Repair work can be done most satisfactorily at the factory. However, interchangeable parts can be furnished to the customers who are equipped for doing repair work. When ordering parts, always give the complete nameplate data. 3

Sub 1 188A396 Figure 1. Internal Schematic of the Tapped Type Relay in the Type FT-11 Case Sub 1 188A024 Figure 2. Internal Schematic of the Non-Tapped Type Relay In the Type FT-11 Case 4

Sub 3 629A698 Figure 3. External Schematic of Three Type CWD Relays on a Three-Phase System. Note: For Balanced Three Phase Conditions only One CWD Relay is required. 5

Sub 2 629A689 Figure 4. Diagram of Test Connections for CWD Relays. ENERGY REQUIREMENTS The 60 Hertz burdens of the type CWD Relay for Three-Phase Applications are as follows: Relay Range Potential Circuit Current Circuits Watts Voltage Voltamperes Current Current Relay Voltamperes Current lags by Tap lags by 10-60 120 20.5 68 5 Amps None 16.2 78 20-120 50-300 100-600 150-900 35-200 208 18.8 59 5 Amps 35 16.2 78 100-600 120 20.5 68 5 Amps 100 5.4 67 175-1000 208 18.8 59 5 Amps 175 5.4 67 A. Non-Tapped B. Tapped Current Coil Ratings: Watt Range Continuous 1 Sec 10-60 5 110 Amps 20-120 50-300 8 Amps 230 Amps 100-600 150-900 35-200 5 Amps 230 Amps 100-600 8 Amps 370 Amps 6

ABB IL 41-241.4 - Revision D ABB Inc. 4300 Coral Ridge Drive Coral Springs, Florida 33065 Telephone: +1 954-752-6700 Fax: +1 954-345-5329 www.abb.com/substation automation