Technical Manual TRANSDUCER AMPLIFIER TYPE DR7AC. Doc. Ref CD2402K

Similar documents
Technical Manual TRANSDUCER AMPLIFIER TYPE S7AC. Doc. Ref CD1201T

Technical Manual TRANSDUCER AMPLIFIER TYPE S7TW. Doc. Ref CD1210W

TECHNICAL MANUAL DUAL TRANSDUCER AMPLIFIER MANUAL TYPE 621

Technical Manual Transducer Indicator TYPE E309

Technical Manual TRANSDUCER AMPLIFIER TYPE S7M. Doc. Ref CD1203V

TECHNICAL MANUAL TRANSDUCER AMPLIFIER TYPE

Technical Manual Transducer Indicator TYPE E308

TECHNICAL MANUAL TWO CHANNEL DC AMPLIFIER MODULE TYPE 611

TECHNICAL MANUAL. SERIES AP5202 DC Strain Gage In-Line Amplifier ISO 9001/AS9100

611 Strain gauge transducer amplifier ELECTRONICS

OPERATION MANUAL LDM-1000

Instruction Manual MSC710 MSC710-U MSC710-I

LVC Low Voltage Conditioner. User Manual

Series APD4059. For Load Cells/Pressure Transducer Transmitters. Field Rangeable, with Calibration Resistor. Standard Features.

Signal Isolation Module. Instruction Manual SIM

DRC DIN Rail Conditioner. user manual

TRANSDUCER IN-LINE AMPLIFIER

MODEL UBP-10 UNIVERSAL IN-LINE TRANSDUCER AMPLIFIER BI-POLAR SUPPLY, 0-10 VOLT OUTPUT

INSTALLATION AND OPERATING INSTRUCTIONS MODEL SIVF. KB Part No Signal Isolator for KBVF Controls. See Page 1 Pending

TIM-018 Mk2. London Electronics Limited. Triple output loop splitter. Connection details and general information

TECHNICAL MANUAL STRAIN GAUGE AMPLIFIER MODULE TYPE 628

OD4 PRODUCT NAME. user manual. user manual. Conditioning Module. Product Type

Data Acquisition Modules/ Distributed IO Modules

TECHNICAL MANUAL. SERIES AP5103 DIN-Rail DC Strain Gage Conditioner ISO 9001/AS9100

CAH CARD. user leaflet. 1 of 15. Copyright Issue 12.1 January 2015

Model A. DIN Rail Strain Gage Conditioner. Installation and Operating Manual

34134A AC/DC DMM Current Probe. User s Guide. Publication number April 2009

Model 7000 Low Noise Differential Preamplifier

INSTRUCTION MANUAL MODEL 2455T SUBCARRIER MODULATOR

301 & 601 Mic/Line Mixers Operation Manual

ATA-2001 Analog LVDT/RVDT Signal Conditioner with digital calibration

ATA-2001 Analog LVDT/RVDT Signal Conditioner with digital calibration

user leaflet BICM - LVDT (Boxed Inline Conditioning Module) For LVDT Transducers only

Model LIA100. Lock-in Amplifier

ATA-2001 Analog LVDT/RVDT Signal Conditioner with digital calibration

SC200 Series. Signal Conditioner MNX10020, REV H 10/17/ Connection Technology Center, Inc Rae Boulevard Victor, NY (585)

ICA User Manual ICA. ICA Embedded Strain Gauge Analogue Amplifiers

INSTRUCTION MANUAL LKG 601 Electrical Safety Analyzer

Passive Current Transducers for Sinusoidal Alternate Currents From A/0...5 A MCR-SLP-1/5-UI-0(-SW)

LINCO MEASUREMENT MODEL CP-2B MASTER METER PROVER COUNTER INSTRUCTION MANUAL

DANFYSIK A/S - DK-4040 JYLLINGE - DENMARK

40 Amp Digital Bidirectional PWM Motor Controller with Regenerative Braking BIDIR-340-DR

2002-ALM USER MANUAL

EA3012 TRANSCONDUCTANCE AMPLIFIER OPERATION MANUAL

HHMA2 DC / TRUE RMS AC NON-CONTACT MILLIAMMETER

TRANSDUCER IN-LINE AMPLIFIER

User's Manual: Series 450T AC Current Input (External Sensor), AC-Powered Transmitters

INSTALLATION AND MAINTENANCE MANUAL FOR GROUND MONITOR GM-250 COPYRIGHT 1983 AMERICAN MINE RESEARCH, INC.

T L Audio CRIMSON SERIES. User Manual EQ-3011 EQUALISER. Tony Larking Professional Sales Limited, Letchworth, England.

The Harvard Research Carrier Signal Conditioner User s Manual

Digital Lighting Systems, Inc.

An American Control Electronics Brand PCM4 SERIES USER MANUAL PCM4.

MINI MCR-SL-UI-I-LP-NC

INSTALATION, OPERATION & MAINTENANCE MANUAL. PA-1001A Series SIGNAL CONDITIONER & CONVERTORS

BC145 SIGNAL ISOLATOR BOARD

Transducer for Measurement Bridges SCM90, SIGS15

Current Loop Interface Module M 2025D

T-IVA001S. Highly Sensitive Galvanometer Amplifier that can Measure Picoamperes. Operating Instruction Manual I V

Model Hz to 10MHz Precision Phasemeter. Operating Manual

SEM104 SERIES. SEM104P Pt100 Temperature Transmitter. SEM104TC Thermocouple Temperature Transmitter INDEX SECTION CONTENTS PAGE NO.

INSTRUCTION MANUAL MODEL 2779 SUBCARRIER MODULATOR

4002-ALM USER MANUAL 4002 ALM DUAL TRIP AMPLIFIER WITH RE-TRANSMITTED OUTPUT

Harris IRT Enterprises Multi-Channel Digital Resistance Tester Model XR

MLA High Performance Microstepping Driver. User s Guide E. Landon Drive Anaheim, CA

Copyright 2014 by Minarik Drives

RM3-IV-LPI. 4-20mA Loop Powered Signal Isolators ma & DC Volts Inputs Operation and Instruction Manual

MODEL IFMA - DIN-RAIL FREQUENCY TO ANALOG CONVERTER

Operating Manual. Model Channel. DC Signal Conditioner Amplifier

DIN Thermocouple Conditioner MODEL 5M14(V)

Installation and Operating Manual

T L Audio CRIMSON SERIES. User Manual EQ-3012 PARAMETRIC EQUALISER. Tony Larking Professional Sales Limited, Letchworth, England.

PEOPLE IN CONTROL OF MOTION

Isolated DIN Rail Mount Loop-Powered 2-Wire Signal Conditioners. DRLP Series

PARALLEL MULTI-AMP KIT for 7200 Series AMPLIFIERS INSTRUCTION SHEET

BROADBAND LINEAR AMPLIFIER Model P150

USER S MANUAL PROCESS CONTROL MODULE PCM3

Instruction Manual TABLE OF CONTENTS 1 PRINCIPLE OF OPERATION Limitations INSTALLATION Mains connection...

MODEL AT-10 ANALOG TRANSMITTER

IF30. User's manual. Description. Table of contents IF30

AMP-13 OPERATOR S MANUAL

INSTRUCTION MANUAL LKG

SB.5.1 MODEL STRAIN GAGE CONDITIONER INSTRUCTION MANUAL. Instrument Series

SB.5.1 MODEL STRAIN GAGE CONDITIONER INSTRUCTION MANUAL. Instrument Series

Voltage Adjustment. Load Regulation

Josephson Engineering, Inc. 329A Ingalls Street Santa Cruz, California Josephson Engineering Rev B

10 Amp Digital PWM Motor Speed Controller CV-2110-HD and CV-2110-HDS

15 Amp Digital High Frequency PWM Motor Speed Controller SPD-315-D and SPD-315-DS

Model 4800 O P E R AT I O N M A N U A L L O A D C E L L S U M M I N G T R A N S M I T T E R

Section 1, General information Introduction... 3 Description... 3 Specifications... 4 Wiring connections... 5

Isolated, Linearized Thermocouple Input 5B47 FEATURES APPLICATIONS PRODUCT OVERVIEW

SSR-150xxx-40VL-12P-xC-xxxCS

User's Manual: Series 350T AC Current Input (External Sensor), DC-Powered Transmitters

AD-8100 & AD-8200 Servo Amplifiers

MBC Bipolar Microstep Driver. User s Guide E. Landon Drive Anaheim, CA

VariTrans P Compact automation solutions can be implemented thanks to the 17.5 mm modular housing and operation at temperatures up to 70 C.

USER MANUAL. MODEL 457B Seven Port Active Twinax Star Hub. SALES OFFICE (301) TECHNICAL SUPPORT (301)

OPERATION MANUAL ATA-2001 LVDT/RVDT Signal Conditioner

Strain Gauge Measuring Amplifier BA 662

6688 OCXO Frequency Reference 6689 Rubidium Frequency Reference. User's Manual

Instruction Manual Model Upconverter

Transcription:

RDP CUSTOMER DOCUMENT Technical Manual TRANSDUCER AMPLIFIER TYPE DR7AC Doc. Ref CD2402K BS EN ISO 9001 Certificate No. FM13141 Affirmed by Declaration of Conformity USA & Canada RDP Electrosense Inc. 2216 Pottstown Pike Pottstown, PA 19465 U.S.A. Tel (610) 469-0850 Fax (610) 469-0852 E-mail info@rdpe.com www.rdpe.com All other countries RDP Electronics Ltd Grove Street, Heath Town, Wolverhampton, WV10 0PY United Kingdom Tel: +44 (0) 1902 457512 Fax: +44 (0) 1902 452000 E-mail: sales@rdpe.com www.rdpe.com

I N D E X 1. INTRODUCTION... 3 1.1 Certificate of EMC conformity... 4 2. INSTALLATION INSTRUCTIONS... 5 2.1 EMC Requirements... 5 2.2 Unit Mounting... 5 2.3 Connections General... 6 2.4 Internal Controls... 6 2.5 Transducer connections (LVDT and half bridge)... 7 3. CONTROLS... 8 3.1 Voltage/Current Output... 8 3.2 Coarse Gain Selection... 8 3.3 Fine Gain (On front panel, labelled GAIN)... 8 3.4 Coarse Zero... 8 3.5 Zero Input... 9 3.6 Fine Zero (On front panel, labelled ZERO)... 9 3.7 Over-Range Indicator... 9 3.8 Excitation Voltage... 9 3.9 Excitation Frequency... 9 3.10 Master/Slave... 9 4.0 SETTING UP PROCEDURES... 10 4.1 LVDT & Half Bridge (Differential Inductance) Transducers... 10 5. SPECIFICATION... 11 6 WARRANTY AND SERVICE... 12 TABLE OF FIGURES Fig. 1 Connections... 6 Fig. 2 Internal Controls... 6 Fig. 3a LVDT transducer connections.... 7 Fig. 3b Half bridge (differential inductance) transducer connections.... 7 Fig 4. Excitation Frequency... 9 Fig 5. Master/Slave Connections... 9 2

1. INTRODUCTION The DR7AC is a single channel signal-conditioning unit for use with transducers requiring AC excitation and synchronous demodulation, producing a DC output voltage or current. The DR7AC incorporates a DC-DC converter ensuring that the output of the unit is electrically isolated from the supply. Units may be master-slaved in systems where carrier frequency beating is a problem. The unit is housed in a DIN-rail mounting thermoplastic case with recessed screw-clamp terminals for all connections and 25-turn front-panel-accessible span and zero adjustments. All other controls are internal including coarse gain and zero switches, a zero input switch and jumper links for master/slave setting and excitation frequency setting. The unit is suitable for use with the complete range of RDP LVDT transducers. 3

1.1 Certificate of EMC conformity DECLARATION OF CONFORMITY RDP ELECTRONICS LTD. Grove Street, Heath Town Wolverhampton, West Midlands WV10 0PY United Kingdom We declare that the product described in this technical manual is manufactured by RDP Electronics Limited and performs in conformity to the following: The Electromagnetic Compatibility Directive 2014/30/EU RoHS2 Directive 2011/65/EU R D Garbett Director RDP Electronics Limited 4

2. INSTALLATION INSTRUCTIONS 2.1 EMC Requirements For optimum EMC performance use shielded multi-core cables for connection to this instrument; the cable shield may be terminated by means of a short "pig-tail" and connected to the terminals marked: (a) (b) Pin 5 Transducer cable Pin 15 Supply/Output cable The DIN-rail to which the unit is attached should be earthed. The screw clamp terminals can accept either solid or stranded wire sizes from 0.2 mm (24 AWG) to 2.5 mm (12 AWG). NOTES: 1. Cable shields to be grounded at only one end - the DR7AC end, although grounding at both ends may reduce the effects of high frequency EMI. 2. When the DR7AC is a small part of a large electrical installation, ensure the cables to and from the DR7AC are segregated from electrically noisy cables. 3. Ensure cables to and from the DR7AC are routed away from any obviously powerful sources of electrical noise, e.g. electric motor, relays, solenoids. 4. ESD precautions should be used when working on the instrument with the lid removed. The user should ensure he is "grounded" by use of an earthed wrist strap or at least touching earth before touching any component including wires, terminals or switches. 5. The transducer body should be grounded. Some transducers such as LVDTs, load cells, etc. without an internal body-to-shield connection, require a separate earth. This should preferably be connected to the instrument shield terminal or as near (electrically) as possible to this point. 2.2 Unit Mounting The DR7AC housing is a standard DIN rail enclosure which can clip directly to a 35 mm top hat rail. The units can be mounted side by side if in an ambient temperature up to 40 C. Above this temperature, a gap of 15 mm should be left in between each unit. 5

2.3 Connections General Transducer, supply and output connections are made by 4 x 4 way screw-clamp terminals as shown in Fig 1. To reverse output polarity, reverse signal hi/signal lo. Voltage output is between Volts Out and common, current output is between current out and common. Output common is internally connected to Excitation Lo. WARNING: INCORRECT SUPPLY CONNECTION, e.g. CONNECTING SUPPLY WIRE TO OUTPUT (O/P) MAY DAMAGE THE UNIT AND INVALIDATE THE WARRANTY. Fig. 1 Connections 1 Excitation Hi 2 Excitation Lo 3 Signal Lo 4 Signal Hi 5 Screen 6 Master 7 Slave 8 m/s comm 9 Volts Out 10 Common 11 Common 12 Current Out 13 Supply + 14 Supply - 15 Screen 16 N/C 2.4 Internal Controls To access internal controls the front part of the DR7AC case needs to be removed. To do this, use a small screw driver to gently press in the clips behind terminal 1-4 and 13-16. At the same time pull forward the front of the case. The front of the case and pcb assembly should now slide forward. It will usually only be necessary to make changes to Gain and Zero controls. Fig. 2 Internal Controls Jumper J2 Master/Slave Location for Bridge Completion Resistors Jumper J3, Exc. Volt. Jumper J1 Exc. Freq. Coarse Gain Control Coarse Zero Control & Zero Input Switch To put case back together, gently slide pcb assembly into case guide slots. Ensure pcb earth pad CG1 is lined up with the earth clip inside the case, and push back until the front of the case clicks back into place. 6

2.5 Transducer connections (LVDT and half bridge) Fig. 3a LVDT transducer connections. Primary Input 1 (Excitation High) PRIMARY COIL Primary Input 2 (Excitation Low) See fig. 1 for pin designations. Secondary Output 1 (Signal High) SECONDARY COIL Secondary Output 2 (Signal Low) Shield Most RDP LVDT transducers also have a BLACK wire. This is not required with the DR7AC amplifier and should be insulated and left unconnected. If the above configuration does not give the required output phase (i.e. the output rises for outward transducer movement instead of falling); reverse signal high and signal low connections. Fig. 3b Half bridge (differential inductance) transducer connections. Excitation High Signal High Excitation Low Shield In addition to these connections, it is necessary to add two bridge completion resistors to compensate for the fact that the transducer is only half bridge. For RDP transducers, the resistors should be 1k Ohms, high stability. These should be mounted in R11 and R12 locations, as shown in Fig. 2. If when connected, the phase of the amplifier output is not as required (for example, an inward moving armature causes a rising amplifier output when a falling output is required) then reversing the excitation high and excitation low wires will correct this. 7

3. CONTROLS (For locations, see Figure 2) 3.1 Voltage/Current Output Voltage output is available between pins 9 & 10 (common). Current output is available between pins 12 and 11 (common). Pins 10 and 11 are internally connected. 3.2 Coarse Gain Selection Typically, transducer manufacturers' data sheets or calibration certificates will give a figure allowing the full-scale output to be calculated. Possible formats for this are as follows; the examples assume a transducer range of ±50mm. Sensitivity format Explanation To convert to F.S. output mv/v/mm e.g. 46mV/V/mm Millivolts of output, per volt of excitation, per mm of travel Sensitivity x 1 x range in mm e.g. 0.046 x 1 x 50 = 2.3V V/V at full-scale, e.g. 2.3 V//V Volt of output, per volt of excitation, at full-scale Sensitivity x 1 e.g. 2.3 x 1 = 2.3V mv/mm at a specified Millivolts of output, per mm of (Sensitivity / specified excitation excitation voltage. E.g. 230mV/mm at 5V exc. travel, given a specified excitation voltage. voltage) x 1 x range in mm e.g. (0.230/5) x 3 x 50=2.3V The standard excitation of the DR7AC is 1V, as used in the calculations above. The following table shows the band of transducer full-scale output voltages appropriate to each of the 8 Gain Range Settings. For example, a transducer with a full-scale output of 2.3V would be correctly set as gain range 3. An 4-way toggle switch, SW1, sets the overall gain in the ranges shown below: SW1 toggles ON Gain Range Gain Range (Approximate) Recommended Input For ±5V O/P For 4-20mA O/P For ±10V O/P 1 1 X0.07 to 0.25 4V max 4V max 4V max 1+2 2 0.25 to 0.7 4V max 4V max 4V max 1+3 3 0.7 to 2.5 2-4V max 1.7-4V max 4V max 1+4 4 2 to 6 0.8-2.5 0.7-2 1.6-4V max NONE 5 5 to 20 0.3-1 0.22-0.8 0.6-2 2 6 17 to 50 0.1-0.3 0.07-0.25 0.2-0.6 3 7 50 to 170 0.03-0.1 0.02-0.08 0.06-0.2 4 8 170 to 500 0.01-0.03-0.02-0.06 3.3 Fine Gain (On front panel, labelled GAIN) A screwdriver-adjusted, 25-turn potentiometer providing a 4:1 adjustment of gain, interpolating between the ranges set by the GAIN RANGE switch. 3.4 Coarse Zero A 5-way toggle switch, SW2, (toggle 6 see section 3.5) provides output zero shifts of about 1V per step (with Fine Gain at minimum up to 4V at maximum). When used with FINE ZERO will suppress any output (up to 5V) to zero. All toggles OFF is normal, ie no suppression applied. Switching toggle 1 ON with toggles 3, 4 or 5 will suppress positive outputs. Switching toggle 2 ON with toggles 3, 4 or 5 will suppress negative outputs. The suppression increases when toggles 3, 4 or 5 are switched ON. 8

3.5 Zero Input SW2 toggle 6 which, when switched to ON, zero s the signal, input voltage to the amplifier irrespective of transducer position. This enables a true amplifier zero to be realised. 3.6 Fine Zero (On front panel, labelled ZERO) A screwdriver-adjusted, 25-turn potentiometer allowing adjustment of output zero by ±1v to ±4v depending on Fine Gain setting. Used with 3.3 will provide up to 100% suppression. 3.7 Over-Range Indicator A red lamp that indicates when the demodulator input exceeds the linear range. 3.8 Excitation Voltage Units are normally supplied with 1V excitation. This can be changed to 3V by changing J3 to B-C. 3.9 Excitation Frequency Fig 4. Excitation Frequency 3kHz 5kHz (Factory setting) If necessary, excitation frequency can be changed by moving J1 as shown. Figure 2 shows the location of J1. Other excitation frequencies are available if stated when ordering. 3.10 Master/Slave The unit may be configured as a master oscillator or slave oscillator by the setting of J2. For Master oscillator (Factory Default) link J2 B-C For Slave units link J2 A-D See Fig 2 for the location of J2 Link terminal 6 on the MASTER unit with terminal 7 on the SLAVES and link terminal 8 on all units as shown below: Fig 5. Master/Slave Connections MASTER SLAVE (S) 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8 9

4.0 SETTING UP PROCEDURES 4.1 LVDT & Half Bridge (Differential Inductance) Transducers 4.1.1 Determine the transducer full scale output from the manufacturer's data sheet and set the Coarse Gain control as shown in Sections 3. 4.1.2 Connect the transducer to the 4-way connector as detailed in Section 2. Switch ON power and allow a 15-minute warm-up period (for maximum accuracy). 4.1.3 Switch on the ZERO INPUT switch (SW2 toggle 6) and adjust the ZERO controls on the DR7AC for either 0 volts or 12 ma output (depending on which output is being used). Switch off the ZERO INPUT switch. 4.1.4 Adjust the transducer armature for either 0 volts or 12 ma output from the DR7AC. The FINE ZERO control may be used to obtain an absolute zero indication if the armature adjustment is too coarse. Now proceed with either 4.1.5 or 4.1.6 according to application. 4.1.5 Bipolar Operation (e.g. ±5V or 4-20mA) (a) Move the transducer armature by a precise amount (e.g. 5mm for a D6/05000 transducer) and adjust the FINE GAIN control for the desired output, e.g. 5v, or 20mA. (b) Relocate the transducer armature at the centre of the stroke and check that the output is zero. Re-adjust the FINE ZERO control if necessary. Repeat (a) and (b) for consistent results. (c) Move the armature to the full-scale position in the opposite direction and check for example -5v or 4mA output. 4.1.6 Unipolar Operation (e.g. 0 to 10V) If it is required that the transducer be used over its entire working range in the one direction, e.g. 0 to 10mm for a D6/05000 transducer, then the zero controls are used to "back-off" the signal equivalent to 5mm, then:- (a) (b) (c) Set up as in 4.1.5, i.e. ±5V output for ±5mm using a D6/05000. Move the armature by exactly 5mm(for a D6/05000transducer) and then adjust the ZERO controls to back off this signal to zero. Now move the armature back 10mm and adjust the FINE GAIN control for the required output. Repeat (b) until consistent results are obtained. If, for any reason, the coarse gain is changed, restart the whole procedure. 10

5. SPECIFICATION Supply Voltage Output Current Output- Oscillator Output Oscillator Temperature Coefficient Demodulation Amplifier Gain Zero Range Linearity Input Resistance 9 to 36 V DC 250 ma max (Isolated from output) ±10V into 2k 4-20mA into 100/550 max. Overload internally limited to 30mA max. This is an active output that should not be connected to any external power supply as this will damage unit. 1V rms. at 5kHz standard. 25mA maximum. 3Vrms and 3 khz also available. 0.005%/ c typical Synchronous X0.07 to x500 in 8 ranges with fine control interpolation ±5V minimum 0.05% of full scale 130k ohm differential Zero Stability Gain Stability Bandwidth Voltage Output Current Output Voltage Output Current Output 0.002% of FS typical/ C (optimum at ±10V o/p) 0.005% of FS typical/ C 0.005% of FS typical/ C (optimum at ±10V o/p) 0.01% of FS typical / C DC to 250Hz (flat) Noise -Voltage Output Current Output EMC Specification Temperature Range Dimensions Weight Seals 5mV RMS 20µA RMS typical When subjected to radiated electro-magnetic energy (as EN61000-4-3) an additional error can occur at certain frequencies: Field Strength 10V/m 1.5% 3V/m 0.1% -10 C to +60 C 114.5 x 99 x 22.5 mm 125 g IP20 specification Typical Maximum Error 11

6 WARRANTY AND SERVICE WARRANTY. R.D.P. Electronics products are warranted against defects in materials or workmanship. This warranty applies for one year from the date of delivery. We will repair or replace products that prove to be defective during the warranty period provided they are returned to R.D.P. Electronics. This warranty is in lieu of all other warranties, expressed or implied, including the implied warranty of fitness for a particular purpose to the original purchaser or to any other person. R.D.P. Electronics shall not be liable for consequential damages of any kind. If the instrument is to be returned to R.D.P. Electronics for repair under warranty, it is essential that the type and serial number be quoted, together with full details of any fault. SERVICE. We maintain comprehensive after-sales facilities and the instrument can, if necessary be returned to our factory for servicing. Equipment returned to us for servicing, other than under warranty, must be accompanied by an official order as all repairs and investigations are subject to at least the minimum charge prevailing at the date of return. The type and serial number of the instrument should always be quoted, together with full details of any fault and services required. IMPORTANT NOTES. 1.No service work should be undertaken by the customer while the unit is under warranty except with the authorisation of RDP Electronics. 2.If the instrument is to be returned to R.D.P. Electronics for repair, (including repair under warranty) it is essential that it is suitably packed and that carriage is insured and prepaid. R.D.P. Electronics can accept no liability whatsoever for damage sustained during transit. 3.It is regretted that the above warranty only covers repairs carried out at our factory. Should the instrument have been incorporated into other equipment that requires our engineers to perform the repair on site, a charge will be made for the engineer's time to and from the site, plus any expenses incurred. The aforementioned provisions do not extend the original warranty period of any product that has been either repaired or replaced by R.D.P. Electronics. THIS WARRANTY MAY BE NULL AND VOID SHOULD THE CUSTOMER FAIL TO MEET OUR TERMS OF PAYMENT. 12