ISO INTERNATIONAL STANDARD. Mechanical vibration and shock Signal processing Part 4: Shock-response spectrum analysis

Similar documents
ISO 216 INTERNATIONAL STANDARD. Writing paper and certain classes of printed matter Trimmed sizes A and B series, and indication of machine direction

ISO INTERNATIONAL STANDARD

ISO INTERNATIONAL STANDARD. Optics and photonics Minimum requirements for stereomicroscopes Part 2: High performance microscopes

ISO INTERNATIONAL STANDARD. Motorcycle tyres and rims (metric series) Part 3: Range of approved rim contours

ISO INTERNATIONAL STANDARD

ISO INTERNATIONAL STANDARD. Mechanical vibration and shock Signal processing Part 2: Time domain windows for Fourier Transform analysis

ISO INTERNATIONAL STANDARD

ISO INTERNATIONAL STANDARD. Paints and varnishes Drying tests Part 1: Determination of through-dry state and through-dry time

ISO INTERNATIONAL STANDARD. Rubber Tolerances for products Part 2: Geometrical tolerances

ISO 216 INTERNATIONAL STANDARD. Writing paper and certain classes of printed matter Trimmed sizes A and B series, and indication of machine direction

ISO INTERNATIONAL STANDARD. Tool holders with cylindrical shank Part 1: Cylindrical shank, location bore Technical delivery conditions

ISO INTERNATIONAL STANDARD. Technical drawings General principles of presentation Part 44: Sections on mechanical engineering drawings

ISO INTERNATIONAL STANDARD. Optics and optical instruments Specifications for telescopic sights Part 1: General-purpose instruments

ISO INTERNATIONAL STANDARD. Collets with 8 setting angle for tool shanks Collets, nuts and fitting dimensions

ISO INTERNATIONAL STANDARD. Countersinks for countersunk head screws with head configuration in accordance with ISO 7721

ISO INTERNATIONAL STANDARD. Metallic materials Knoop hardness test Part 3: Calibration of reference blocks

ISO INTERNATIONAL STANDARD. Mechanical vibration and shock Coupling forces at the man-machine interface for hand-transmitted vibration

ISO INTERNATIONAL STANDARD. Optics and photonics Optical coatings Part 3: Environmental durability

ISO INTERNATIONAL STANDARD. Photography Electronic scanners for photographic images Dynamic range measurements

ISO INTERNATIONAL STANDARD. Photography Electronic scanners for photographic images Dynamic range measurements

ISO 897 INTERNATIONAL STANDARD. Photography Roll films, 126, 110 and 135-size films Identification of the image-bearing side

ISO INTERNATIONAL STANDARD

ISO INTERNATIONAL STANDARD

ISO INTERNATIONAL STANDARD. Paper and board Determination of bending resistance Part 1: Constant rate of deflection

ISO INTERNATIONAL STANDARD. Textiles Determination of spirality after laundering Part 3: Woven and knitted garments

ISO INTERNATIONAL STANDARD. Ophthalmic instruments Fundus cameras. Instruments ophtalmiques Appareils photographiques du fond de l'œil

ISO INTERNATIONAL STANDARD. Road vehicles 50 Ω impedance radio frequency connection system interface Part 2: Test procedures

ISO 8752 INTERNATIONAL STANDARD. Spring-type straight pins Slotted, heavy duty

INTERNATIONAL STANDARD

ISO INTERNATIONAL STANDARD

ISO INTERNATIONAL STANDARD. Paints and varnishes Determination of volatile organic compound (VOC) content Part 1: Difference method

INTERNATIONAL STANDARD

ISO INTERNATIONAL STANDARD. Ceramic tiles Part 16: Determination of small colour differences

ISO INTERNATIONAL STANDARD. Textile machinery and accessories Beams for winding Part 5: Sectional beams for warp knitting machines

Provläsningsexemplar / Preview INTERNATIONAL STANDARD. Rolling bearings Balls Part 1: Steel balls

ISO INTERNATIONAL STANDARD. Technical product documentation Lettering Part 6: Cyrillic alphabet

ISO INTERNATIONAL STANDARD. Cinematography Spectral response of photographic audio reproducers for analog dye sound tracks on 35 mm film

ISO 3040 INTERNATIONAL STANDARD. Geometrical product specifications (GPS) Dimensioning and tolerancing Cones

ISO INTERNATIONAL STANDARD. Earth-moving machinery Lighting, signalling and marking lights, and reflexreflector

ISO INTERNATIONAL STANDARD. Rolling bearings Sleeve type linear ball bearings Boundary dimensions and tolerances

ISO 2490 INTERNATIONAL STANDARD. Solid (monobloc) gear hobs with tenon drive or axial keyway, 0,5 to 40 module Nominal dimensions

ISO INTERNATIONAL STANDARD. Technical product documentation Lettering Part 3: Greek alphabet

ISO INTERNATIONAL STANDARD. Internal combustion engines Piston rings Part 1: Rectangular rings made of cast iron

ISO INTERNATIONAL STANDARD

ISO 2836 INTERNATIONAL STANDARD. Graphic technology Prints and printing inks Assessment of resistance to various agents

ISO 860 INTERNATIONAL STANDARD. Terminology work Harmonization of concepts and terms. Travaux terminologiques Harmonisation des concepts et des termes

ISO INTERNATIONAL STANDARD. Textiles Determination of resistance to water penetration Impact penetration test

ISO INTERNATIONAL STANDARD

ISO INTERNATIONAL STANDARD. Textile floor coverings Laboratory cleaning procedure using spray extraction

ISO INTERNATIONAL STANDARD. Textiles Water resistance Rain tests: exposure to a horizontal water spray

ISO INTERNATIONAL STANDARD. Textile machinery Weaving machine temples Part 2: Full-width temples

ISO INTERNATIONAL STANDARD. Hexalobular socket pan head screws. Vis à métaux à tête cylindrique bombée large à six lobes internes

INTERNATIONAL STANDARD

ISO INTERNATIONAL STANDARD

ISO 3334 INTERNATIONAL STANDARD. Micrographics ISO resolution test chart No. 2 Description and use

INTERNATIONAL STANDARD

ISO INTERNATIONAL STANDARD

ISO INTERNATIONAL STANDARD

ISO/TR TECHNICAL REPORT. Natural gas Hydrocarbon dew point and hydrocarbon content

ISO INTERNATIONAL STANDARD. Rolling bearings Sleeve type linear ball bearings Boundary dimensions and tolerances

ISO INTERNATIONAL STANDARD

ISO INTERNATIONAL STANDARD. Hexagon bolts with flange Small series Product grade A

ISO INTERNATIONAL STANDARD

ISO INTERNATIONAL STANDARD

ISO INTERNATIONAL STANDARD. Timber structures Dowel-type fasteners Part 1: Determination of yield moment

ISO INTERNATIONAL STANDARD

ISO INTERNATIONAL STANDARD. Hexalobular internal driving feature for bolts and screws. Empreinte à six lobes internes pour vis

INTERNATIONAL STANDARD

ISO INTERNATIONAL STANDARD

ISO INTERNATIONAL STANDARD. Paper and board Determination of roughness/smoothness (air leak methods) Part 4: Print-surf method

ISO INTERNATIONAL STANDARD

ISO INTERNATIONAL STANDARD

ISO 3213 INTERNATIONAL STANDARD. Polypropylene (PP) pipes Effect of time and temperature on the expected strength

ISO INTERNATIONAL STANDARD

ISO INTERNATIONAL STANDARD

ISO INTERNATIONAL STANDARD. Hexagon socket head cap screws with metric fine pitch thread. Vis à tête cylindrique à six pans creux à pas fin

ISO INTERNATIONAL STANDARD

ISO 463 INTERNATIONAL STANDARD

ISO 1519 INTERNATIONAL STANDARD. Paints and varnishes Bend test (cylindrical mandrel) Peintures et vernis Essai de pliage sur mandrin cylindrique

INTERNATIONAL STANDARD

ISO INTERNATIONAL STANDARD

ISO INTERNATIONAL STANDARD. Ships and marine technology Lubricating oil systems Guidance for grades of cleanliness and flushing

ISO 841 INTERNATIONAL STANDARD. Industrial automation systems and integration Numerical control of machines Coordinate system and motion nomenclature

ISO INTERNATIONAL STANDARD. Rubber- or plastics-coated fabrics Determination of abrasion resistance Part 2: Martindale abrader

ISO INTERNATIONAL STANDARD. Horology Water-resistant watches. Horlogerie Montres étanches. First edition

ISO INTERNATIONAL STANDARD. Gel ink ball pens and refills Part 2: Documentary use (DOC)

ISO INTERNATIONAL STANDARD

ISO INTERNATIONAL STANDARD. Natural gas Correlation between water content and water dew point

ISO INTERNATIONAL STANDARD. Dentistry Powered polymerization activators Part 2: Light-emitting diode (LED) lamps

ISO INTERNATIONAL STANDARD

ISO INTERNATIONAL STANDARD. Paints and varnishes Determination of the volatile organic compound content of low-voc emulsion paints (in-can VOC)

ISO INTERNATIONAL STANDARD. Natural gas Correlation between water content and water dew point

ISO INTERNATIONAL STANDARD. Ships and marine technology Marine magnetic compasses, binnacles and azimuth reading devices

ISO INTERNATIONAL STANDARD. Pulps Preparation of laboratory sheets for physical testing Part 2: Rapid-Köthen method

ISO INTERNATIONAL STANDARD. Graphic technology Colour and transparency of printing ink sets for fourcolour

ISO INTERNATIONAL STANDARD

ISO INTERNATIONAL STANDARD. Fasteners Torque/clamp force testing. Éléments de fixation Essais couple/tension. First edition

INTERNATIONAL STANDARD

ISO 5496 INTERNATIONAL STANDARD. Sensory analysis Methodology Initiation and training of assessors in the detection and recognition of odours

ISO INTERNATIONAL STANDARD. Ergonomic design for the safety of machinery Part 3: Anthropometric data

Transcription:

INTERNATIONAL STANDARD ISO 18431-4 First edition 2007-02-01 Mechanical vibration and shock Signal processing Part 4: Shock-response spectrum analysis Vibrations et chocs mécaniques Traitement du signal Partie 4: Analyse du spectre de réponse aux chocs Reference number ISO 18431-4:2007(E) ISO 2007

PDF disclaimer This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area. Adobe is a trademark of Adobe Systems Incorporated. Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below. ISO 2007 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland ii ISO 2007 All rights reserved

Contents Page Foreword... iv Introduction... v 1 Scope... 1 2 Normative references... 1 3 Terms and definitions... 1 4 Symbols and abbreviated terms... 2 5 Shock-response spectrum fundamentals... 2 6 Shock-response spectrum calculation... 7 7 Sampling frequency considerations... 12 Bibliography... 16 ISO 2007 All rights reserved iii

Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. ISO 18431-4 was prepared by Technical Committee ISO/TC 108, Mechanical vibration, shock and condition monitoring. ISO 18431 consists of the following parts, under the general title Mechanical vibration and shock Signal processing: Part 1: General introduction Part 2: Time domain windows for Fourier Transform analysis Part 4: Shock-response spectrum analysis The following parts are under preparation: a part 3, dealing with bilinear methods for joint time-frequency analysis a part 5, dealing with methods for time-scale analysis iv ISO 2007 All rights reserved

Introduction In the recent past, nearly all data analysis has been accomplished through mathematical operations on digitized data. This state of affairs has been accomplished through the widespread use of digital signalacquisition systems and computerized data processing equipment. The analysis of data is, therefore, primarily a digital signal-processing task. The analysis of experimental vibration and shock data should be thought of as a part of the process of experimental mechanics that includes all steps from experimental design through data evaluation and understanding. ISO 18431 (all parts) assumes that the data have been sufficiently reduced so that the effects of instrument sensitivity have been included. The data covered in ISO 18431 (all parts) are considered to be a sequence of time samples of acceleration describing vibration or shock. Experimental methods for obtaining the data are outside the scope of ISO 18431 (all parts). This part of ISO 18431 is concerned with methods for the digital calculation of a shock-response spectrum. The analysis is by no means restricted to signals that can be characterized as shocks. On the contrary, it is, in a strict sense, meaningless to analyze a shock according to the definition in ISO 2041, where a shock is defined as a sudden event, taking place in a time that is short compared with the fundamental periods of concern. Such a shock has no frequency characteristics in the frequency range of concern. It is only characterized by its time integral, the impulse, corresponding to constant frequency content. The notation shock-response spectrum has been kept, however, although a better term would be maximum-response spectrum. Historically, the shock-response spectrum was initially used to describe transient phenomena, at the time called shocks. Response analysis in general is a method to characterize a vibration or shock when other frequency analysis methods are inadequate. This can be the case, for instance, when different kinds of vibration are compared. Spectrum analysis based on the Fourier Transform produces spectra that are incompatible when the signals analyzed are of different kinds, such as periodic, random or transient. The typical use of a shock-response spectrum is to characterize a dynamic mechanical environment. The vibration (or shock) characterized is recorded in digital form, commonly as acceleration. The data are analyzed into a shock-response spectrum. This spectrum can then be used to define a test for equipment that is required to endure the environment in question. There exist International Standards that describe how to design tests from given shock-response spectrum specifications, for example IEC 60068-2-81. (See the bibliography for additional information.) When measurements to characterize a vibration and/or shock environment are performed, it is necessary to take certain measures, for instance to ascertain a proper dynamic load in the measurement points. These measures are beyond the scope of this part of ISO 18431. There are many good handbooks and recommended practices that are helpful in this area [1],[2]. ISO 2007 All rights reserved v

INTERNATIONAL STANDARD ISO 18431-4:2007(E) Mechanical vibration and shock Signal processing Part 4: Shock-response spectrum analysis 1 Scope This part of ISO 18431 specifies methods for the digital calculation of a shock-response spectrum (SRS) given an acceleration input, by means of digital filters. The filter coefficients for different types of shock-response spectra are given together with recommendations for adequate sampling frequency. NOTE The definition of a shock-response spectrum given in ISO 2041, implies that a shock-response spectrum can be defined in terms of an acceleration, velocity or displacement transfer function. This part of ISO 18431 deals only with acceleration input. 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 2041, Vibration and shock Vocabulary 3 Terms and definitions For the purposes of this document, the terms and definitions given in ISO 2041 and the following apply. 3.1 maximax shock-response spectrum SRS where the maximum absolute value of the response is taken 3.2 negative shock-response spectrum SRS where the maximum value is taken in the negative direction of the response 3.3 positive shock-response spectrum SRS where the maximum value is taken in the positive direction of the response 3.4 primary shock-response spectrum SRS where the maximum value is taken during the duration of the input 3.5 residual shock-response spectrum SRS where the maximum value is taken after the duration of the input ISO 2007 All rights reserved 1