Simulation and Modeling of Capacitive Coupling Interconnection For 3D Integration

Similar documents
A Capacitive Coupling Interface with High Sensitivity for Wireless Wafer Testing

A 0.95mW/1.0Gbps Spiral-Inductor Based Wireless Chip-Interconnect with Asynchronous Communication Scheme

Wafer-scale 3D integration of silicon-on-insulator RF amplifiers

A COMPACT WIDEBAND MATCHING 0.18-µM CMOS UWB LOW-NOISE AMPLIFIER USING ACTIVE FEED- BACK TECHNIQUE

Capacitive Inter-Chip Data and Power Transfer for 3-D VLSI

An Asynchronous High-Throughput Control Circuit For Proximity Communication Justin Schauer

MULTIFUNCTION and high-performance LSI systems

Signal Integrity Modeling and Simulation for IC/Package Co-Design

ABSTRACT. XU, JIAN. AC Coupled Interconnect for Inter-chip Communications. (Under the direction of Prof. Paul D. Franzon.)

/$ IEEE

Multi-Gb/s Bit-by-Bit Receiver Architectures for 1 D Partial Response Channels

ABSTRACT. As data frequency increases beyond several Gbps range, low power chip to chip

Miniature 3-D Inductors in Standard CMOS Process

Multi-Gb/s Bit-by-Bit Receiver Architectures for 1-D Partial-Response Channels Masum Hossain and Anthony Chan Carusone, Senior Member, IEEE

A passive circuit based RF optimization methodology for wireless sensor network nodes. Article (peer-reviewed)

/14/$ IEEE 470

BLUETOOTH devices operate in the MHz

ULTRA-WIDEBAND (UWB) radio technology has been

A MINIATURIZED OPEN-LOOP RESONATOR FILTER CONSTRUCTED WITH FLOATING PLATE OVERLAYS

NEW WIRELESS applications are emerging where

A 6 : 1 UNEQUAL WILKINSON POWER DIVIDER WITH EBG CPW

Source: Nanju Na Jean Audet David R Stauffer IBM Systems and Technology Group

Parallel vs. Serial Inter-plane communication using TSVs

Subminiature Multi-stage Band-Pass Filter Based on LTCC Technology Research

An MNG-TL Loop Antenna for UHF Near-Field RFID Applications

ISSCC 2004 / SESSION 26 / OPTICAL AND FAST I/O / 26.8

I.INTRODUCTION. Research Volume 6 Issue 4 - October 31, 2008 [

5Gbps Serial Link Transmitter with Pre-emphasis

Zhongshan Rd., Taiping Dist., Taichung 41170, Taiwan R.O.C. Wen-Hua Rd., Taichung, 40724, Taiwan R.O.C.

A 600 GHz Varactor Doubler using CMOS 65nm process

Design and Analysis of Novel Compact Inductor Resonator Filter

THE reference spur for a phase-locked loop (PLL) is generated

OPTIMIZED FRACTAL INDUCTOR FOR RF APPLICATIONS

Session 4: Mixed Signal RF

WIDE-BAND circuits are now in demand as wide-band

Realization of Transmission Zeros in Combline Filters Using an Auxiliary Inductively Coupled Ground Plane

Design of a Low Noise Amplifier using 0.18µm CMOS technology

Design and Implementation of a Low Power Successive Approximation ADC. Xin HUANG, Xiao-ning XIN, Jian REN* and Xin-lei CHEN

Manufacture and Performance of a Z-interconnect HDI Circuit Card Abstract Introduction

H.-W. Wu Department of Computer and Communication Kun Shan University No. 949, Dawan Road, Yongkang City, Tainan County 710, Taiwan

PHASE-LOCKED loops (PLLs) are widely used in many

DESIGN OF A 500MHZ, 4-BIT LOW POWER ADC FOR UWB APPLICATION

Inductor Modeling of Integrated Passive Device for RF Applications

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016

insert link to the published version of your paper

Capabilities of Flip Chip Defects Inspection Method by Using Laser Techniques

ISSCC 2006 / SESSION 17 / RFID AND RF DIRECTIONS / 17.4

Synthesis of Optimal On-Chip Baluns

A wide-range all-digital duty-cycle corrector with output clock phase alignment in 65 nm CMOS technology

ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.8

Fast-lock all-digital DLL and digitally-controlled phase shifter for DDR controller applications

An 8-Gb/s Inductorless Adaptive Passive Equalizer in µm CMOS Technology

Chapter 4. Problems. 1 Chapter 4 Problem Set

ALTHOUGH zero-if and low-if architectures have been

CMOS Instrumentation Amplifier with Offset Cancellation Circuitry for Biomedical Application

Microelectronic sensors for impedance measurements and analysis

PARALLEL coupled-line filters are widely used in microwave

E LECTROOPTICAL(EO)modulatorsarekeydevicesinoptical

On Chip Active Decoupling Capacitors for Supply Noise Reduction for Power Gating and Dynamic Dual Vdd Circuits in Digital VLSI

Flip chip Assembly with Sub-micron 3D Re-alignment via Solder Surface Tension

High-Speed Differential Interconnection Design for Flip-Chip BGA Packages

A CMOS UWB Transmitter for Intra/Inter-chip Wireless Communication

3D IC-Package-Board Co-analysis using 3D EM Simulation for Mobile Applications

WITH the rapid proliferation of numerous multimedia

Analysis of On-Chip Spiral Inductors Using the Distributed Capacitance Model

Silicon Interposers enable high performance capacitors

FDTD SPICE Analysis of High-Speed Cells in Silicon Integrated Circuits

Efficient Electromagnetic Analysis of Spiral Inductor Patterned Ground Shields

Substrate Coupling in RF Analog/Mixed Signal IC Design: A Review

Broadband Methodology for Power Distribution System Analysis of Chip, Package and Board for High Speed IO Design

Design & Analysis Of An Inverted-T Shaped Antenna With DGS For Wireless Communication

ISSCC 2006 / SESSION 10 / mm-wave AND BEYOND / 10.1

Progress In Electromagnetics Research, Vol. 107, , 2010

Analytical Modeling and Characterization of TSV for Three Dimensional Integrated Circuits

Broadband analog phase shifter based on multi-stage all-pass networks

An Equivalent Circuit Model for On-chip Inductors with Gradual Changed Structure

Ultra-high-speed Interconnect Technology for Processor Communication

Delay-Locked Loop Using 4 Cell Delay Line with Extended Inverters

AS THE semiconductor process is scaled down, the thickness

Reduction of Mutual Coupling between Cavity-Backed Slot Antenna Elements

Microcircuit Electrical Issues

L/S-Band 0.18 µm CMOS 6-bit Digital Phase Shifter Design

Low Thermal Resistance Flip-Chip Bonding of 850nm 2-D VCSEL Arrays Capable of 10 Gbit/s/ch Operation

Active Pixel Sensors Fabricated in a Standard 0.18 um CMOS Technology

DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY

THIS paper deals with the generation of multi-phase clocks,

On-chip antenna integration for single-chip millimeterwave FMCW radars Adela, B.B.; Pual, P.T.M; Smolders, A.B.

Chapter 2. Inductor Design for RFIC Applications

A TUNABLE GHz BANDPASS FILTER BASED ON SINGLE MODE

Optical Proximity Communication for a Silicon Photonic Macrochip

A Miniaturized Multi-Channel TR Module Design Based on Silicon Substrate

Acounter-basedall-digital spread-spectrum clock generatorwithhighemi reductionin65nmcmos

364 IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 29, NO. 2, MAY Nansen Chen, Hongchin Lin, Member, IEEE, and Jeng-Yuan Lai

Reflectarray with Variable-patch-and-slot Size

DESIGN OF COMPACT MICROSTRIP LOW-PASS FIL- TER WITH ULTRA-WIDE STOPBAND USING SIRS

Progress In Electromagnetics Research Letters, Vol. 23, , 2011

ISSCC 2004 / SESSION 26 / OPTICAL AND FAST I/O / 26.6

A NOVEL BIASED ANTI-PARALLEL SCHOTTKY DIODE STRUCTURE FOR SUBHARMONIC

Analysis signal transitions characteristics of BGA-via multi-chip module Baolin Zhou1,a, Dejian Zhou1,b

TODAY S electronic systems are becoming more complex

Transcription:

2012 4th International Conference on Computer Modeling and Simulation (ICCMS 2012) IPCSIT vol.22 (2012) (2012) IACSIT Press, Singapore Simulation and Modeling of Capacitive Coupling Interconnection For 3D Integration Kai-Jen Liu 1, Chun-Wei Huang 1, Yu-Jung Huang 1,Ming-Kun Chen 2 and Yi-Lung Lin 2 1 Department of Electrical Engineering, I-Shou University, No.1, Sec. 1, Syuecheng Rd., Dashu Township, Kaohsiung, Taiwan 840 Taiwan, R.O.C. 2 Advanced Semiconductor Engineering Test RD, 10 West 5th Street, Nantze Export Processing Zone, Kaohsiung, Taiwan 811, ROC yjhuang@isu.edu.tw,mkc_chen@aseglobal.com Abstract. This study presents the simulation and modelling of a capacitive coupling interconnection circuit for three-dimensional (3D) system integration. The potential benefits of 3D integration provide an alternative to scaling when it comes to cramming more functionality in a smaller space. It could also enable an increase in performance by shortening signal paths. The proximity data link is performed via capacitive couplings between the top facing dies for 3D system integration. In the study, based on 3D electromagnetic (EM) simulations of High Frequency Structure Simulator (HFSS) for the capacitive pad between two pads of dies have been simulated. The simulation results show that the effect of cross-coupling between adjacent channels is dependence on substrate characteristic and pads arrangement. In addition, the HSPICE simulation results show that the data rate up to 2 gigabit per second (Gbps) can be achieve using TSMC 0.18um 1P6M CMOS technology. Keywords: Proximity data link, electromagnetic (EM), HSPICE, capacitive coupling 1. Introduction More and more functionality has been integrated into single chips leading eventually to system-on-chip (SoC) implementations [1]. However, a SoC may not always be the optimum solution due to extensive die size, number of interconnects and problems with technology compatibility and migration. A comparison of 3D integration to SOC approaches shows SoC will take time and often require substantial resources but will eventually yield positive returns at least for high-end or long-running applications. However, for other products having a relatively short life cycle, 3D die stacking or package stacking will have a decisive advantage in both time and economics. For a three-dimensional integrated circuit (3DIC)-implementation the difficulty of handling the increased amount of interconnects between separate chips arises. Traditional wire bonding methods suffer from poor area efficiency. As bonding pads are situated in the perimeter of the die, the integration density of wire bonding does not increase at the same rate with the complexity of a single chip. The use of solder bumps (flip-chip) provides a solution for the low density of traditional bond pads. However, this approach requires additional, and therefore costly, process steps. Also the achievable yield of the product is lower due to these extra manufacturing steps. The feasibility of connections based on interconnects of capacitive coupling [2-10] has been reported by several papers. They studies can achieve high-bandwidth communication links with high integration density. This makes it possible to stack the chips thus leading to a smaller footprint. Also extra manufacturing steps can be avoided, if the communication between the chips is done using a wireless method. The capacitive interconnects two stacked chips is presented in Figure 1. 198

Chip 1 T x R x R x T x Chip 2 Figure 1. Cross-section of chip-to-chip capacitive interconnection. Capacitive coupling interconnection is based on the observation that faster, lower-cost communication is possible over shorter distances. Placing the transmitter and receiver in extremely close proximity, with only microns of separation between them should therefore lower overall communication costs. This can be done by placing two chips face-to-face in a manner that aligns the transmitter circuits of one chip with the receiver circuits of the other. Only partially overlapping the two chips grants access to the rest of the chips surfaces for power delivery [2]. The rest of the paper is organized as follows. Section 2 presents a brief description of the capacitive coupling interconnect mechanism and the coupling pad modelling. The simulation results of a capacitive coupling interconnection circuit are provided in Section 3. Finally, we conclude our paper in Section 4. 2. Capacitive Coupling Interconnects 2.1 Capacitance Effects Any two objects that are capable of being electrically charged and which are separated by some dielectric material 1 will form a capacitor. This relationship is described mathematically in Equation (1), where Q is the charge (measured in Coulombs), C is the capacitance (Farads), and V is the voltage (Volts). Larger capacitances lead to greater accumulation of charge for a given voltage difference. [11] Q = CV [Coulombs] (1) Capacitance can be produced between objects of any shape. The capacitances of concern in this project occur between coupling pads which, as we shall see, can be fairly accurately modelled as parallel-plate capacitors. For parallel-plate capacitors, the capacitance is given, WL C = ε [Farads] (3) d where W is the width of the parallel plates (meters), L is the length of the plates (meters), d is the distance between the plates (meters), and ε = ε 0 ε r (Farads/meter) where ε 0 is the permittivity of free space (8.854 * 10-6 pf/m) and ε r is the relative dielectric constant of the material between the plates[11]. The main problem in capacitive interconnects is the need for accurate alignment between the chips [8]. Misalignment leads to weaker links and larger cross-talk between the adjacent channels, thus increasing the bit error rate (BER). Sensitivity to alignment mismatch can be decreased by increasing the size of the capacitor plates, but those results in smaller integration density. The other approach is to use an electronic alignment correction technique [9], in which the capacitors are divided to a large number of smaller capacitors. The data in the transmitting channel is switched to those capacitors that are best aligned with the receiver side. The values of the link capacitances are small, in the order of femtofarads (ff), due to a large separation distance between the plates compared to their area. This large distance also leads to larger fringe capacitance in relation to the link capacitance. In designing a capacitive interconnects system; the problem of correctly modelling the link capacitance arises. As other circuit components have an electrical model, it would be beneficial if the interconnects themselves would also have a circuit representation. Since the capacitor plate dimensions are on the same scale as their distance, separate EM-simulators are needed to accurately model the link. The output data of these simulators is usually in form of S-parameters. The following section describes a method of acquiring a lumped circuit model representation from the S-parameter data of an EMsimulator. 2.2 Coupling Pad Modelling 199

The following approach to create the link model has been undertaken. First, a substrate definition has been created in HFSS software, reflecting the substrate, metallization, vias and oxide layers of the CMOS stack. The physical dimensions (e.g., a thickness of each layer) and parameters (e.g., contact resistances, permittivity of isolation materials) have been chosen according to the fabrication process documentation. The process used was a 0.18 um 1P6M standard CMOS process. A mirrored (vertically flipped) copy of this stack has been placed above, creating a flip-chip arrangement with an air gap between the chips. Then, a layout for two adjacent channel data-link-couplings has been drawn. The link-coupling structures in both chips included a connection for the top metal layer. The plate size could be enlarged to 100um 100um without sacrificing the underlying layout density. The resulting structure is sketched in Figure 2. Figure 2. Structure representing coupling channels in top-faced CMOS stacks for parallel type and butterfly difference type. When the 4-port structure representing two adjacent capacitive coupling interconnection channels was ready, a set of 3D full-wave electromagnetic field simulations has been performed using High Frequency Structure Simulation (HFSS) full wave solver from Ansoft to consider the silicon substrate loss of coupling chip. The system was analysed for a frequency range of 1GHz to 10GHz with adjacent channel space of 2 um and chips gap value of 4 um. An example of S-parameters simulation results is shown in Figure 3, in which a signal transfer of a data-link-coupling and cross-coupling are plotted versus frequency. The obtained sets of S-parameters were converted into Z-parameters, which later were used for the extraction of component values in the lumped circuit model. Figure 3. Example of S-parameters simulation results for parallel difference type and butterfly difference type. The frequency response of varying substrate for a 100 um diameter coupling pad with separation 4 um is shown in Figure 4 and 5. Figure 6 show the difference size of the transfer coupling simulation resulting. The data-link coupling is quite dependent of the pads size. 200

Transfer (db) 0.00-10.00 Transfer Coupling (db) 0.00-5.00-10.00 Isolation -20.00-15.00-30.00 Air -40.00 BT Expoxy -50.00 Glass Silicon nitrade Water -60.00 1 2 3 4 5 6 7 8 9 10 Frequency (GHz) -20.00-25.00 Air -30.00 BT Expoxy -35.00 Glass -40.00 Silicon nitrade Water -45.00 1 2 3 4 5 6 7 8 9 10 Frequency (GHz) Figure 4. The comparison of the S-parameters simulation resulting for parallel type substrate. Figure 5. The comparison of the S-parameters simulation resulting for difference type substrate. Figure 6. The difference size of the transfer coupling simulation resulting for parallel type and butterfly difference type. 3. Coupling Interconnect Circuit Simulation In designing a capacitive interconnection system; the problem of correctly modelling the link capacitance arises. As other circuit components have an electrical model, it would be beneficial if the interconnections themselves would also have a circuit representation. The transmission circuit is buffered by an an inverter. The receiver inverter is connected through a feedback loop for signal amplification at the receiving end Rx. Then, another two inverters are designed at the rear tandem O1 for signal integrity and to restore full signal amplification. Figure 7 shows the circuit diagram. Fig. 7 Transmission circuit of capacitive coupling. 201

The inverter and feedback inverter at the receiving end can be used to control the effect of the signal amplification. HSPICE simulations are performed to observe the effects of capacitative coupling interconnection. The simulation is based on TSMC 0.18 um library. The input signal through Tx and the coupling capacitor transmitted to the Rx and recover back to its original signals. The simulation results at different nodes to show the waveform are shown in Figure 8. V in T x Rx O 1 O 2 O 3 Fig. 8 HSPICE simulation results for capacitive coupling interconnection. The eye diagram provides visual information that can be useful in the evaluation of system performance and can offer insight into the nature of channel imperfections. The simulated eye diagram shown in Figure 9 indicates the signal transmission quality is good for the present capacitive coupling circuit at 2 GHz operation region. 4. Conclusions Fig. 9 Simulated eye diagram waveform. The simulation and modelling for a capacitive coupling interconnection is demonstrated using HFSS and HSPICE simulation tool. It provides an understanding of how the physical parameters affect the design. The S-parameter simulation results show the butterfly difference signal type is good for parallel difference signal type. This leads to optimal sizing of the link capacitors and the design of transmitter/receiver. The HSPICE simulation results indicate the capacitive coupling interconnection for TSMC 0.18μm 1p6M process can operate up to 2 GHz. 202

5. Acknowledgments This work was supported in part by National Science Council, R. O. C under Grant NSC100-2221-E-214-052. 6. References [1] Michael Keating,David Flynn,Rob Aitken,Kaijian Shi, Low Power Methodology Manual For System-on-Chip Design. Springer, 2007. [2] R. J. Drost, R. D. Hopkins, R. Ho, and I. E. Sutherland, Proximity communication, IEEE J. Solid-State Circuits [J], 2004. 9, PP 1529 1535. [3] A. Fazzi, L. Magagni, M. Mirandola, R. Canegallo, S. Schmitz, and R. Guerrieri, A 0.14 mw/gbps high-density capacitive interface for 3-D system integration, in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2005, PP 101 104. [4] Sheng-Feng Hsiao, Ming-Kun Chen, Yi-Lung Lin, Yu-Jung Huang, Shen-Li Fu, "Co-Simulation of Capacitive Coupling Pads Assignment for Capacitive Coupling Interconnection Applications", IMPACT 2011, NTUH International Convention Center, Taipei, Taiwan, Oct. 2011. [5] K. Kanda, D. D. Antono, K. Ishida, H. Kawaguchi, T. Kuroda, and T. Sakurai, 1.27 Gb/s/pin 3 mw/pin wireless superconnect (WSC) interface scheme, in IEEE Int. Solid-State Circuits Conf. (ISSCC) 2005 Dig. Tech. Papers, 2003. 2, PP 186-187. [6] S. Mick, J. Wilson, L. Luo, and P. Franzon, Buried bump and AC coupled interconnection technology, IEEE Transaction Advance Packaging [J], 2005. 2, PP 121 125. [7] L. Luo, J. M.Wilson, S. E. Mick, J. Xu, L. Zhang, and P. D. Franzon, 3 Gb/s AC-coupled chip-to-chip communication using low-swing pulse receiver, in IEEE Int. Solid-State Circuits Conf. (ISSCC) 2005 Dig. Tech. Papers, 2005. 2, PP 522 523. [8] L. Luo, J. M.Wilson, S. E. Mick, J. Xu, L. Zhang, and P. D. Franzon, 3 Gb/s AC coupled chip-to-chip communication using a low swing pulse receiver, IEEE J. Solid-State Circuits [J], 2006. 1, PP 287 296. [9] Fazzi A., Canegallo R., Ciccarelli L., Magagni L., Natali F., Jung E., Rolandi P.; Guerrieri R., 3D Capacitive Interconnections with Mono- and Bi-Directional Capabilities, in IEEE Int. Solid-State Circuits Conf. (ISSCC) 2007 Dig. Tech. Papers, 2007. 2, PP 356-357. [10] David Hopkins, Alex Chow, Robert Bosnyak, Bill Coates, Jo Ebergen, Scott Fairbanks, Jon Gainsley, Ron Ho, Jon Lexau, Frankie Liu, Tarik Ono, Justin Schauer, Ivan Sutherland, Robert Drost, Circuit Techniques to Enable 430Gb/s/mm2 Proximity Communication, I in IEEE Int. Solid-State Circuits Conf. (ISSCC) 2007 Dig. Tech. Papers, 2007. 2, PP 368-369. [11] David Halliday and Robert Resnick. Physics, Part II. John Wiley & Sons, Inc., New York, NY, third edition, 1978. 203