Characteristics of absorption and dispersion for rubidium D 2 lines with the modulation transfer spectrum

Similar documents
레이저의주파수안정화방법및그응용 박상언 ( 한국표준과학연구원, 길이시간센터 )

Modulation transfer spectroscopy in atomic rubidium arxiv: v3 [physics.atom-ph] 24 Jun 2008

Zeeman Shifted Modulation Transfer Spectroscopy in Atomic Cesium

Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers

Laser Locking with Doppler-free Saturated Absorption Spectroscopy

Direct frequency comb saturation spectroscopy with an ultradense tooth spacing of 100 Hz D. A. Long, 1,* A. J. Fleisher, 1 and J. T.

High-resolution frequency standard at 1030 nm for Yb:YAG solid-state lasers

Two-Mode Frequency Stabilization of an Internal-Mirror 612 nm He-Ne Laser

Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking

Carrier frequency modulation of an acousto-optic modulator for laser stabilization

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT

Anomalous dispersion and negative group velocity in a coherence-free cold atomic medium

Quantum frequency standard Priority: Filing: Grant: Publication: Description

USING LASER DIODE INSTABILITIES FOR CHIP- SCALE STABLE FREQUENCY REFERENCES

Supplementary Materials for

Magnetic field modulation spectroscopy of rubidium atoms

Diode Laser Control Electronics. Diode Laser Locking and Linewidth Narrowing. Rudolf Neuhaus, Ph.D. TOPTICA Photonics AG

THERE has been increasingly strong support in the optical

21.0 Quantum Optics and Photonics

taccor Optional features Overview Turn-key GHz femtosecond laser

Simple System for Active Frequency Stabilization of a Diode Laser in an External Cavity

EXPERIMENTAL STUDY OF THE LASER DIODE PUMPED RUBIDIUM MASER

A Narrow-Band Tunable Diode Laser System with Grating Feedback

DIRECT MODULATION WITH SIDE-MODE INJECTION IN OPTICAL CATV TRANSPORT SYSTEMS

Optical phase-coherent link between an optical atomic clock. and 1550 nm mode-locked lasers

Frequency stability at the kilohertz level of a rubidium-locked diode laser at THz

Ultra stable laser sources based on molecular acetylene

R. J. Jones College of Optical Sciences OPTI 511L Fall 2017

Timing Noise Measurement of High-Repetition-Rate Optical Pulses

Spectrometer using a tunable diode laser

All-Optical Clock Division Using Period-one Oscillation of Optically Injected Semiconductor Laser

Laser frequency stabilization and large detuning by Doppler-free dichroic lock technique: Application to atom cooling

RECENTLY we have developed a new frequency modulation

Biomedical Research 2017; Special Issue: ISSN X

Measure the roll-off frequency of an acousto-optic modulator

Development of high-sensitivity magnetometer for EDM experiment with 129 Xe spin oscillator

Quantum measurements with an amplitude-squeezed-light beam splitter

New Focus FM Spectroscopy with Tunable Diode Lasers

Observation of Rb Two-Photon Absorption Directly Excited by an. Erbium-Fiber-Laser-Based Optical Frequency. Comb via Spectral Control

RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE

Coherent power combination of two Masteroscillator-power-amplifier. semiconductor lasers using optical phase lock loops

Electromagnetically induced transparency in modulated laser fields

A NOVEL SCHEME FOR OPTICAL MILLIMETER WAVE GENERATION USING MZM

FREQUENCY COMPARISON AT 633 NM WAVELENGTH: DETERMINATION OF DIAGONAL ELEMENTS OF MATRIX MEASUREMENTS BY USING A MASTER-SLAVE He-Ne LASER SYSTEM

Frequency stability and reproducibility of iodine stabilised He-Ne laser at 633 nm

High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals

DIODE LASER SPECTROSCOPY (160309)

Chapter 3 Experimental study and optimization of OPLLs

Photonic Microwave Harmonic Generator driven by an Optoelectronic Ring Oscillator

Nd: YAG LASER FREQUENCY STABILIZED FOR SPACE APPLICATIONS

Transfer Cavity Stabilization Using the Pound-Drever-Hall Technique with Noise Cancellation

High-frequency tuning of high-powered DFB MOPA system with diffraction limited power up to 1.5W

This is a brief report of the measurements I have done in these 2 months.

Tera-Hz Radiation Source by Deference Frequency Generation (DFG) and TPO with All Solid State Lasers

Installation and Characterization of the Advanced LIGO 200 Watt PSL

Rubidium 5S 1/2 7S 1/2 two-photon transition. Ming-Sheng Ko National Tsing Hua University

An improved optical costas loop PSK receiver: Simulation analysis

Lecture 17. Temperature Lidar (6) Na Resonance-Doppler Lidar Instrumentation

Measuring of small AC signals using lock-in amplifiers. Narrow band selective amplifiers + amplitude detector. Lock-in amplifiers

Stability of a Fiber-Fed Heterodyne Interferometer

An Auto-Locked Diode Laser System for Precision Metrology

Investigation of Squeezed Light with an Injection Locked Laser

Phase-locked laser system for use in atomic coherence experiments

Nd:YSO resonator array Transmission spectrum (a. u.) Supplementary Figure 1. An array of nano-beam resonators fabricated in Nd:YSO.

PHASE TO AMPLITUDE MODULATION CONVERSION USING BRILLOUIN SELECTIVE SIDEBAND AMPLIFICATION. Steve Yao

Effect of frequency modulation amplitude on Iodine stabilized He-Ne Laser, at λ 633nm

A heated vapor cell unit for DAVLL in atomic. rubidium

Doppler-Free Spetroscopy of Rubidium

SUPPLEMENTARY INFORMATION DOI: /NPHOTON

The Chip-Scale Atomic Clock Recent Development Progress

BROAD-BAND rare-earth-doped fiber sources have been

The Theta Laser A Low Noise Chirped Pulse Laser. Dimitrios Mandridis

Controlled dense coding for continuous variables using three-particle entangled states

R. J. Jones Optical Sciences OPTI 511L Fall 2017

A transportable optical frequency comb based on a mode-locked fibre laser

Femtosecond-stability delivery of synchronized RFsignals to the klystron gallery over 1-km optical fibers

arxiv: v2 [physics.optics] 7 Oct 2009

Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback

LIGO Photodiode Development and Optical Platform for LIGO Photodetectors Testing

Optical Pumping Control Unit

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber

Thulium-Doped Fiber Amplifier Development for Power Scaling the 2 Micron Coherent Laser Absorption Instrument for ASCENDS

Pound-Drever-Hall Locking of a Chip External Cavity Laser to a High-Finesse Cavity Using Vescent Photonics Lasers & Locking Electronics

Extending the Offset Frequency Range of the D2-135 Offset Phase Lock Servo by Indirect Locking

Supplementary Materials for

Measuring of small AC signals using lock-in amplifiers. Narrow band selective amplifiers + amplitude detector. Lock-in amplifiers

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

Synchronization in Chaotic Vertical-Cavity Surface-Emitting Semiconductor Lasers

Demonstration of a Tunable-Bandwidth White Light Interferometer using Anomalous Dispersion in Atomic Vapor

Differential Phase Shift Spectroscopy in a Thallium Atomic Beam

A frequency stabilization method for diode lasers utilizing low-field Faraday polarimetry

An Auto-Locked Diode Laser System for Precision Metrology

Measuring of small AC signals using lock-in amplifiers. Narrow band selective amplifiers + amplitude detector. Lock-in amplifiers

Doppler-free Fourier transform spectroscopy

High stability multiplexed fibre interferometer and its application on absolute displacement measurement and on-line surface metrology

Spurious-Mode Suppression in Optoelectronic Oscillators

Photonic Magnetometry at a (Short) Distance

A review of Pound-Drever-Hall laser frequency locking

arxiv: v1 [physics.optics] 19 May 2016

Frequency Stabilization of Diode Lasers for Ion Interferometry. Jarom S. Jackson

Transcription:

Characteristics of absorption and dispersion for rubidium D 2 lines with the modulation transfer spectrum Jing Zhang, Dong Wei, Changde Xie, and Kunchi Peng The State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taguan 36, China jzhang74@yahoo.com Abstract: Absorption and dispersion signals of D 2 lines of rubidium atoms in a vapor cell have been experimentally investigated with the modulation transfer spectrum (MTS). Normal dispersion was observed at the transitions of F g F e = F g 1 and F g F e = F g ; anomalous dispersion, at transitions of F g F e = F g + 1; and crossover resonance, by the transitions of F g F e = F g 1 and F g F e = F g. The signal lineshape of the MTS and the detector phase are addressed accurately. 23 Optical Society of America OCIS codes: (2.167) Coherent optical effects; (2.293) Hyperfine structure. References and links 1. J. H. Shirley, Modulation transfer processes in optical heterodyne saturation spectroscopy, Opt. Lett. 7, 537-539 (1982). 2. G. Camy, Ch. Borde, and M. Ducloy, Hererodyne saturation spectroscopy through frequency modulation of the saturating beam, Opt. Commun. 41, 325 (1982). 3. M. Ducloy and D. Bloch, Polarization properties of phase-conjugate mirrors: angular dependence and disorienting collision effects in resonant backward four-wave mixing for Doppler-broadened degenerate transitions, Phys. Rev. A 3, 317-3122 (1984). 4. L. S. Ma and J. L. Hall, Optical hererodyne spectroscopy enhanced by an external optical cavity toward improved working standards, IEEE J. Quantum Electron. 26, 26-212 (199). 5. E. Jaatinen, Theoretical determination of maximum signal levels obtainable with modulation transfer spectroscopy, Opt. Commun. 12, 91-97 (1995). 6. M. L. Eickhoff and J. L. Hall, Optical frequency standard at 532nm, IEEE Trans. Instrum. Meas. 44, 155-158 (1995). 7. J. Ye, L. Robertsson, S. Picard, L. S. Ma, and J. L. Hall, Absolute frequency atlas of molecular I-2 lines at 532 nm, IEEE Trans. Instrum. Meas. 48, 544-549 (1999). 8. F. L. Hong, J. Ishikawa, J. Yoda, J. Ye, L. S. Ma, and J. L. Hall, Frequency comparison of I-127(2)-stabilized Nd:YAG lasers, IEEE Trans. Instrum. Meas. 48, 532-536 (1999). 9. F. L. Hong, J. Ishikawa, Z. Y. Bi, J. Zhang, K. Seta, A. Onae, J. Yoda, and H. Matsumoto, Portable I-2-stabilized Nd : YAG laser for international comparisons, IEEE Trans. Instrum. Meas. 5, 486-489 (21). 1. N. Ito, Doppler-free modulation transfer spectroscopy of rubidium 5 2 S 1/2-6 2 P 1/2 transitions using a frequencydoubled diode laser blue-light source, Rev. Sci. Instrum. 71, 2655-2662 (2). 11. F. Bertinetto, P. Cordiale, and G. Galzerano, Frequency stabilization of DBR diode laser against Cs absorption lines at 852nm using the modulation transfer method, IEEE Trans. Instrum. Meas. 5, 49-492 (21). 12. O. Schmidt, K. M. Knaak, R. Wynands, and D. Meschede, Cesium saturation spectroscopy revisited how to reverse peaks and observe narrow resonances, Appl. Phys. B 59, 167-178 (1994). 13. K. B. Im, H. Y. Jung, C. H. Oh, S. H. Song, P. S. Kim, and H. S. Lee, Saturated absorption signals for the Cs D2 line, Phys. Rev. A 63, 3451 (21). 14. A. M. Akulshin, S. Barreiro, and A. Lezama, Steep anomalous dispersion in coherently prepared Rb vapor, Phys. Rev. Lett. 83, 4277-428 (1999). (C) 23 OSA 2 June 23 / Vol. 11, No. 11 / OPTICS EXPRESS 1338

15. A. Lezama, S. Barreiro, and A. M. Akulshin, Electromagnetically induced absorption, Phys. Rev. A. 59, 4732-4735 (1999). With the modulation transfer spectrum (MTS), the modulation of a pump beam can be transferred to a counterpropagating (and originally unmodulated) probe beam in a nonlinear medium [1] [5]. Modulation transfer occurs because the probe and two frequency components of the modulated pump, such as the carrier and one sideband, undergo four-wave mixing as a result of the nonlinear susceptibility of the medium. If the susceptibility is sufficiently strong, this interaction produces a fourth beam, which, in the case of counterpropagating pump and probe beams, is a sideband for the probe. The sidebands generated in the probe field and the probe field itself produce a photocurrent at the modulation frequency in a photodetector. By use of a phase-sensitive detection scheme, it is therefore possible to recover the dispersion and absorption components of the subresonance related to the in-phase and quadrature-demodulated components, respectively. These signals are odd functions of the frequency detuning between the laser frequency and the resonance frequency. Because modulation transfer is a purely nonlinear phenomenon, it is insensitive to the background absorption of the medium and is consequently particularly well suited to applications in which one wishes to lock a laser to a well-defined frequency reference. The applicability of the MTS in the laser frequency standards has been well demonstrated during the past couple of years in frequency-doubled YAG lasers, which are precisely stabilized to the molecular iodine transitions [6], [9]. The MTS method has also been used on the Rb [1] and Cs [11] atomic species for applications in metrology. It has been pointed that the intensity relationship of the signals obtained by the MTS in different transitions is different from that in the absorption spectrum signals [1], [11], but this phenomenon has not been explained so far. The usual technology in the MTS via saturated absorption centers on using frequency modulation (FM) to produce the sidebands on the pump beam. This is primarily because in practice it is relatively simple to frequency modulate a beam at high frequencies with electro-optic modulators. High frequencies are desirable because the laser amplitude noise is reduced, which allows better signal-to-noise ratios. However, when the modulation frequency is lower than the sub-doppler linewidth, both the absorption and the dispersion signals have a high slope which crossed the center of the resonance (frequency discriminator) and can therefore obtain optimum signals for laser frequency locking to the resonance center. In this paper, we experimentally investigate the absorption and dispersion signals of Rb D 2 lines in a vapor cell with the MTS. The pump-saturating beam is frequency shifted by 11 MHz and, at the same time, is frequency modulated (1 khz) with an acousto-optic modulator (AOM). A lock-in amplifier is employed to demodulate the signal of the MTS accurately at different detector phases. The anomalous and normal dispersions in coherently prepared degenerate two-level atomic transitions has been observed. The maximum signals of the MTS as well as the corresponding detector phases are given. To the best of our knowledge, this is the first experiment using the MTS to investigate the characteristic of absorption and dispersion of Rb. The signal strength of the MTS at different atomic transitions is also analyzed. The MTS is generally observed by means of detecting the beat between the probe field and the induced sidebands with a phase sensitive detector. When a frequency-modulated pump beam is used, the beat signal on the detector is of the form [1] signal = 1 Γ J n (β)j n 1 (β) 2 + ωm 2 n= [C(L (n+1)/2 + L (n 2)/2 )cos(ω m t + φ) +B(D (n+1)/2 D (n 2)/2 )sin(ω m t + φ)], (1) (C) 23 OSA 2 June 23 / Vol. 11, No. 11 / OPTICS EXPRESS 1339

a b -1.M -5.M. 5.M 1.M Frequency Detuning (Hz) Fig. 1. Absorption X (curve a) and dispersion Y (curve b) lineshapes of the MTS for ω m < Γ,β < 1. Γ = 5 MHz and ω m = 2 MHz. where L n = Γ 2 Γ 2 +(ω ω + /2+nω m ) 2 is the Lorentzian function describing the absorption and D n = Γ(ω ω + /2+nω m ) Γ 2 +(ω ω + /2+nω m ) 2. Here J n is the nth-order Bessel function, β is the modulation index (the ratio of the modulation depth to the modulation frequency), Γ is the natural line width, ω m is the modulation frequency, is the frequency shift between pump and probe beams, ω ω is the frequency detuning from line center, and φ is the detector phase with respect to the modulation field applied to the pump beam. C and B are constants that depend on the properties of atomic transitions. When the modulation frequency ω m is lower than the sub-doppler linewidth Γ, the absorption lineshape (in-phase component) of the MTS is a dispersion-like signal that is proportional to the derivative of the original absorption lineshape of the driven two-level atomic transitions versus the frequency, and the dispersion lineshape (in-quadrature component) is just the original dispersion lineshape of the atomic transitions as shown Fig. 1. Both the absorption and dispersion signals show the same lineshape and have a high slope crossing the center of the resonance. Thus Eq. (1) is simplified to signal = X cos(ω m t + φ) +Y sin(ω m t + φ). (2) From Eq. (2), the maximum signal amplitude is obtained at tan(φ) = Y /X. Phase angle φ may be adjusted accurately owing to use of the lock-in amplifier in our experiment, so in-phase component X and in-quadrature component Y may be measured, respectively. The experimental setup for the MTS is illustrated in Fig. 2. Two Faraday isolators (4 db) in series are placed in the output of a master-oscillator power amplifier (MOPA) semiconductor laser system (TuiOptics TA1) in order to avoid optical feedback. A small percentage (B 2 ) of the output beam ( 1 mw) is picked off by a beam splitter (BS) for the MTS, which is then is separated by a polarizing beam splitter (PBS1) into parts 1 and 2. The beam 1 (.3 mw) and beam 2 ( 5 µw) serve as the pump and probe lights for the MTS of Rb atoms, respectively. The two beams collinearly counterpropagate in a 3-cm-long Rb glass cell. The Rb cell is magnet-shielded with a µ-metal shielding. To reduce the disturbance of the optical feedback from the photodetector to the MTS, the pump beam is frequency shifted by 11 MHz with an AOM (Crystal Technology, Inc., Model 311). Unlike ordinary MTS technology in which the pump beam is phase modulated by means of an EOM, in our scheme the frequency modula- (C) 23 OSA 2 June 23 / Vol. 11, No. 11 / OPTICS EXPRESS 134

tion is also implemented with the same AOM. The voltage-controlled oscillator (VCO) with the dc offset control voltage is used to produce the rf output at 11 MHz. A small (6 mv, 1 khz) sinusoidal oscillation is added on the VCO control voltage, which forms a frequency modulation of ±18 khz on the pump beam. The sidebands generated in the probe field and the probe field itself are detected by a PIN photodiode detector (PD) after passing through the polarized beam splitter (PBS2). A lock-in amplifier (Stanford Research Systems Model: SR83 DSP) phase-sensitively demodulates this beat signal to provide dispersion-shaped MTS signal. The saturated absorption signal is observed simultaneously by means of dividing a part of the photocurrent from the detector on an oscilloscope. Figure 3 shows the recorded spectra on the oscilloscope when the frequency of the laser diode is scanned over the transition F g = 3 F e of the D 2 line of 85 Rb (78nm) for the different polarizations (9, 6, and 4 with respect to the polarization of the pump light) of the probe beam, in which the saturated absorption signal and the in-phase and in-quadrature components of the MTS are simultaneously recorded. From comparison among the upper traces of Figs. 3(a) 3(c) it can be seen that the saturated absorption signal of F g = 3 F e = 4 is changed from positive peak (enhanced transmission) to negative peak (enhanced absorption) when the angle between probe and pump beam polarizations are changed from orthogonal to parallel. Similar peculiarities in the saturated absorption lineshapes have been studied in previous papers [12], [13]. Optical pumping of the pump beam increases the dipole coupling strength of probe beam with the same polarization and is therefore responsible for the increase in absorption. Conversely, the probe beam orthogonal to that of pump beam counteracts this pump process, leading to a decrease of the effective dipole moment and hence an increase in transmission. The middle traces of Figs. 3(a) 3(c) are the in-phase component X of the MTS whose amplitude and sign for the transition F g = 3 F e = 4 sensitively depended on the saturated absorption signal. Oscilloscope Loop filter Frequency modulation Lock-in Amplifier To PZT Diode Laser TA1 Optical Isolator BS Frequency Mod Input B 2 1 B 1 VCO Frequency Offset RF out PD BPF 2 PBS1 AOM Attenuator PBS2 λ/2 Rb Cell Fig. 2. Experimental setup for the MTS of Rb. BPF, bandpass filter; BS, beam splitter; PBS, polarizing beam splitter; VCO, voltage-controlled oscillator; AOM, acousto-optic modulator; PD, photodiode. (C) 23 OSA 2 June 23 / Vol. 11, No. 11 / OPTICS EXPRESS 1341

85 Rb (F g=3->f e) Saturated Absorption Signal F e=2 CO 3-4 CO 2-4 CO 2-3 F e=3 F e=4 In-quadrature Amplitude (a.u.) (a) In-quadrature (b) In-quadrature Frequency Detuning (c) Fig. 3. Spectra when the laser-diode frequency is scanned over the transition F g = 3 F e of the D 2 line of 85 Rb for various polarizations of the probe beam. The linear polarization of pump beam is in the vertical direction. (a) Linear polarization of the probe beam is perpendicular with that of pump light. (b) Linear polarization of the probe beam is at 6 with respect to that of pump beam. (c) Linear polarization of the probe beam is at 4 with respect to that of pump beam. The transitions are identified at the top of diagram (a): CO3-4 for the crossover resonance between the 3 3 and the 3 4 transitions. (C) 23 OSA 2 June 23 / Vol. 11, No. 11 / OPTICS EXPRESS 1342

Saturated Absorption Signal 85 Rb (F g=2->f e) CO 1-2 CO 2-3 CO 1-3 F e=2 F e=1 F e=3 In-quadrature Frequency Detuning Fig. 4. Spectra when the laser-diode frequency is scanned over the transition F g = 2 F e of the D 2 line of 85 Rb. The linear polarizations of the probe beam are perpendicular to those of pump beam. The in-quadrature (dispersion) components Y of the MTS in Figs. 3(a) 3(c) are independent on the saturated absorption signal. The closed transition F g = 3 F e = 4 has larger anomalous dispersion than the open transition F g = 3 F e = 2 and F e = 3. Although the steep anomalous dispersion in a coherently prepared degenerate F g = 3 F e = 4 two-level 85 Rb atomic system were given with a model recently used to study subnatural electromagnetically induced absorption (EIA) resonances [14],[15], our experimental results demonstrate this characteristic in a different way. The crossover resonance CO2-3 by the transition F g = 3 F e = 2 and F e = 3 also has anomalous dispersion with low strength. The spectra of the transition F g = 2 F e of the D 2 line of 85 Rb for the probe beam with the linear polarization perpendicular to that of pump beam are shown in Fig. 4. The saturated absorption signal of the closed F g = 2 F e = 1 transition is a negative peak, thus the inphase component X of the MTS is the negative sign. Because of the normal dispersion of the F g = 2 F e = 1 and F e = 2 transitions [14], [15], the in-quadrature components Y have a positive sign. However, the crossover resonance CO1-2 has larger anomalous dispersion, and its in-quadrature components Y have a negative sign. In a case similar to that of the D 2 line of 85 Rb, the D 2 line of 87 Rb has the same experimental results. When we know the strength and sign of the in-phase X and in-quadrature components Y, the maximum signal strength of the MTS and the corresponding detector phase can be determined exactly. In summary, we have experimentally investigated the absorption and dispersion signals of Rb D 2 lines in a vapor cell with the modulation transfer spectrum (MTS). When the modulation frequency is lower than the sub-doppler linewidth, the strength and sign for the in-phase component of the MTS depend on the shape profile of the original absorption signal and for the in-quadrature component on the dispersion of the degenerate two-level atomic transitions. The normal dispersion was observed at the transitions of F g F e = F g 1 and F g F e = F g ; the anomalous dispersions, at transitions of F g F e = F g + 1; and the crossover resonance, by the transitions of F g F e = F g 1 and F g F e = F g. For the closed transitions the dispersion signal is larger. It was pointed out in Ref. [1] that the intensity relationship in the signal obtained (C) 23 OSA 2 June 23 / Vol. 11, No. 11 / OPTICS EXPRESS 1343

by the MTS is somewhat different from that in the original absorption signal, and the authors did not present a reasonable explanation for this. From above analyses we deem that this is because, as discussed in Ref. [9], the detector phase and dispersion of the degenerate two-level atomic transitions was not considered. Our experiments shows that the transition of F g = 4 F e = 5 of Cs is a closed transition and has large anomalous dispersion, which results in the MTS lineshape signal of F g = 4 F e = 5 with an enhanced efficiency as observed in Ref. [11]. In our experiment, we use a single-passed AOM for providing the pump-beam modulation. This modulation introduces the amplitude modulation that results from pointing fluctuations of the beam. It has been observed that dispersion-shaped MTS signals are unsymmetrical as shown in Figs. 3 and 4 [5]. However, addressing the signal lineshape of the MTS accurately is important for frequency-locking applications in our research. Acknowledgments This research was supported by the National Fundamental Research Program (No. 21CB3934), the National Natural Science Foundation of China (Approval Nos. 617812 and 62381), and the Shanxi Province Young Science Foundation (No. 22114). (C) 23 OSA 2 June 23 / Vol. 11, No. 11 / OPTICS EXPRESS 1344