Multi-format receiver for non-return-to-zero binary-phase-shift-keyed and non-return-to-zero amplitude-shit-keyed signals

Similar documents
Optical Fiber Technology

A WDM passive optical network enabling multicasting with color-free ONUs

SCIENCE CHINA Technological Sciences. A flexible multi-16qam transmitter based on cascaded dual-parallel Mach-Zehnder modulator and phase modulator

π code 0 Changchun,130000,China Key Laboratory of National Defense.Changchun,130000,China Keywords:DPSK; CSRZ; atmospheric channel

Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

A HIGH SPEED WDM PON FOR DOWNSTREAM DPSK ASK SIGNALS AND UPSTREAM OOK SIGNAL WITH BROADCAST CAPABILTY

A bidirectional radio over fiber system with multiband-signal generation using one singledrive

Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration

40Gb/s Optical Transmission System Testbed

SHF Communication Technologies AG

Proposal of A Star-16QAM System Based on Intersymbol Interference (ISI) Suppression and Coherent Detection

Utilizing Self-Seeding RSOA with Faraday Rotator Mirror for Colorless Access Network

Slow light on Gbit/s differential-phase-shiftkeying

Theoretical study of all-optical RZ-OOK to NRZ-OOK format conversion in uniform FBG for mixed line-rate DWDM systems

Simultaneous Four-Wave Mixing and Cross-Gain Modulation for Implementing All Optical Full Adder without Assist Light

Performance Analysis Of Hybrid Optical OFDM System With High Order Dispersion Compensation

Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source

Phase Modulator for Higher Order Dispersion Compensation in Optical OFDM System

Dynamic gain-tilt compensation using electronic variable optical attenuators and a thin film filter spectral tilt monitor

Wavelength Interleaving Based Dispersion Tolerant RoF System with Double Sideband Carrier Suppression

All-Optical Signal Processing and Optical Regeneration

Free spectral range optimization of return-tozero differential phase shift keyed demodulation in the presence of chromatic dispersion

DESIGN METHODOLOGIES FOR 25 GHz SPACED RZ-DPSK SYSTEMS OVER CONVENTIONAL NZ-DSF SUBMARINE CABLE

Performance Analysis of Direct Detection-Based Modulation Formats for WDM Long-Haul Transmission Systems Abstract 1.0 Introduction

SIMULATIVE INVESTIGATION OF SINGLE-TONE ROF SYSTEM USING VARIOUS DUOBINARY MODULATION FORMATS

Comparative Analysis Of Different Dispersion Compensation Techniques On 40 Gbps Dwdm System

Spectrally Compact Optical Subcarrier Multiplexing with 42.6 Gbit/s AM-PSK Payload and 2.5Gbit/s NRZ Labels

Eye-Diagram-Based Evaluation of RZ and NRZ Modulation Methods in a 10-Gb/s Single-Channel and a 160-Gb/s WDM Optical Networks

Performance Analysis of Chromatic Dispersion Compensation of a Chirped Fiber Grating on a Differential Phase-shift-keyed Transmission

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender

International Journal of Advancements in Research & Technology, Volume 2, Issue 11, November ISSN

Joint Fiber and SOA Impairment Compensation Using Digital Backward Propagation

Experimental demonstration of both inverted and non-inverted wavelength conversion based on transient cross phase modulation of SOA

Optical Complex Spectrum Analyzer (OCSA)

SOA-BASED NOISE SUPPRESSION IN SPECTRUM-SLICED PONs: IMPACT OF BIT-RATE AND SOA GAIN RECOVERY TIME

Bit error rate and cross talk performance in optical cross connect with wavelength converter

Research on the Modulation Performance in GPON System

Performance Analysis of Optical Time Division Multiplexing Using RZ Pulse Generator

Optimisation of DSF and SOA based Phase Conjugators. by Incorporating Noise-Suppressing Fibre Gratings

Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian

Power margin improvement for OFDMA-PON using hierarchical modulation

Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion

Optical Fiber Technology. Using 10 Gb/s remodulation DPSK signal in self-restored colorless WDM-PON system

Improved slow-light performance of 10 Gb/s NRZ, PSBT and DPSK signals in fiber broadband SBS

Simultaneous Wavelength Preserving and Wavelength Converting Regeneration of NRZ DPSK Signal Using FWM in SOA

80 GBPS DOWNSTREAM TRANSMISSION USING DQPSK AND 40 GBPS UPSTREAM TRANSMISSION USING IRZ/OOK MODULATION IN BIDIRECTIONAL WDM-PON

Suppression of Four Wave Mixing Based on the Pairing Combinations of Differently Linear-Polarized Optical Signals in WDM System

Implementation and analysis of 2 Tbps MDRZ DWDM system at ultra narrow channel spacing

DESIGN OF BIDIRECTIONAL PASSIVE OPTICAL NETWORK USING DIFFERENT MODULATIONS

32-Channel DWDM System Design and Simulation by Using EDFA with DCF and Raman Amplifiers

Increasing input power dynamic range of SOA by shifting the transparent wavelength of tunable optical filter

Fiber-wireless links supporting high-capacity W-band channels

Multi-format all-optical-3r-regeneration technology

Design and Implementation of All-optical Demultiplexer using Four-Wave Mixing (FWM) in a Highly Nonlinear Fiber (HNLF)

Electro-Optic Crosstalk in Parallel Silicon Photonic Mach-Zehnder Modulators

Simultaneous chromatic dispersion, polarizationmode-dispersion. 40Gbit/s

All-Optical Signal Processing. Technologies for Network. Applications. Prof. Paul Prucnal. Department of Electrical Engineering PRINCETON UNIVERSITY

40Gb/s & 100Gb/s Transport in the WAN Dr. Olga Vassilieva Fujitsu Laboratories of America, Inc. Richardson, Texas

Rectangular QPSK for generation of optical eight-ary phase-shift keying

High bit-rate combined FSK/IM modulated optical signal generation by using GCSR tunable laser sources

Implementation of All-Optical Logic AND Gate using XGM based on Semiconductor Optical Amplifiers

All-optical NRZ to RZ format and wavelength converter by dual-wavelength injection locking

Prabhjeet Singh a, Narwant Singh b, Amandeep Singh c

Department of Electrical and Computer Systems Engineering

1.6 Tbps High Speed Long Reach DWDM System by incorporating Modified Duobinary Modulation Scheme

20-Gb/s Transmission Over 25-km in Wavelength Division Multiplexing Passive Optical Network with Centralized Light Source

A proposal for two-input arbitrary Boolean logic gates using single semiconductor optical amplifier by picosecond pulse injection

The optimized schemes of optical labels about DB and PPM over POLMUX-CSRZ-DQPSK payload in 100Gb/s OLS network

RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE

SHF Communication Technologies AG

REDUCTION OF CROSSTALK IN WAVELENGTH DIVISION MULTIPLEXED FIBER OPTIC COMMUNICATION SYSTEMS

Design of Ultra High Capacity DWDM System with Different Modulation Formats

SPM mitigation in 16-ary amplitude-anddifferential-phase. transmission systems

Available online at ScienceDirect. Procedia Computer Science 93 (2016 )

Chalmers Publication Library. Copyright Notice. (Article begins on next page)

Performance of A Multicast DWDM Network Applied to the Yemen Universities Network using Quality Check Algorithm

Next-Generation Optical Fiber Network Communication

Implementing of High Capacity Tbps DWDM System Optical Network

Photoneco white papers: Single-modulator RZ-DQPSK transmitter Description of the prior art

Technical Feasibility of 4x25 Gb/s PMD for 40km at 1310nm using SOAs

CHAPTER 4 RESULTS. 4.1 Introduction

Performance Comparison of Pre-, Post-, and Symmetrical Dispersion Compensation for 96 x 40 Gb/s DWDM System using DCF

Performance Analysis of 112 Gb/s PDM- DQPSK Optical System with Frequency Swept Coherent Detected Spectral Amplitude Labels

Compact, flexible and versatile photonic differentiator using silicon Mach-Zehnder interferometers

All-optical AND gate with improved extinction ratio using signal induced nonlinearities in a bulk semiconductor optical amplifier

CHAPTER 3 PERFORMANCE OF MODULATION FORMATS ON DWDM OPTICAL SYSTEMS

Background-free millimeter-wave ultrawideband. Mach-Zehnder modulator

Performance Investigation of RAMAN-EDFA HOA for DWDM System (Received 17 September, 2016 Accepted 02 October, 2016)

FWM Suppression in WDM Systems Using Advanced Modulation Formats

50-Gb/s silicon optical modulator with travelingwave

A Full-duplex OSSB Modulated ROF System with Centralized Light Source by Optical Sideband Reuse

Emerging Subsea Networks

THE INVESTIGATION OF SUITABILITY OF VARIOUS LINE CODING TECHNIQUES FOR FIBER-OPTIC COMMUNICATION

Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian

1.25-Gb/s Millimeter-Wave Band Wired/Wireless Radio-over-Fiber System based on RSOA using an Injection-Locked FP-Laser

Implementation of Dense Wavelength Division Multiplexing FBG

Optical performance monitoring technique using software-based synchronous amplitude histograms

All-VCSEL based digital coherent detection link for multi Gbit/s WDM passive optical networks

Analysis Modulation Formats in DWDM Transmission System

Transcription:

Multi-format receiver for non-return-to-zero binary-phase-shift-keyed and non-return-to-zero amplitude-shit-keyed signals Zhixin Liu, Shilin Xiao *, Lei Cai, and Zheng Liang State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China * Corresponding author: slxiao@sjtu.edu.cn Abstract: A Multi-format receiver for both non-return-to-zero binaryphase-shift-keyed (NRZ-BPSK) signal and non-return-to-zero amplitudeshift-keyed (NRZ-ASK) signal is demonstrated. Multi-format signal detection is based on incoherent BPSK demodulation and ASK-BPSK format conversion. Incoherent BPSK demodulation is realized by a Mach- Zehnder delay interferometer (MZDI) and a feedback decoder. Transmission experiments validate the feasibility of multi-format receiver. This receiver has potential to serve as a useful terminal block for all-optical wavelength division-multiplexed (WDM) networks. 2008 Optical Society of America OCIS codes: (230.0230) Optical devices; (230.0040) Detectors References and links 1. A. H. Gnauck, S. Chandrasekhar, J. Leuthold, and L. Stulz, Demonstration of 42.7-Gb/s DPSK receiver with 45 photons/bit sensitivity, IEEE Photon. Technol. Lett. 15, 99 101 (2003). 2. A. H. Gnauck, G. Raybon, S. Chandrasekhar, J. Leuthold, C. Doerr, L. Stulz, and E. Burrows, 25 40- Gb/s copolarized DPSK transmission over 12 100-km NZDF with 50-GHz channel spacing, IEEE Photon. Technol. Lett. 15, 467 469 (2003). 3. T. Mizuochi, K. Ishida, T. Kobayashi, J. Abe, K. Kinjo, K. Motoshima, and K. Kasahara, A comparative study of DPSK and OOK WDM transmission over transoceanic distances and their performance degradations due to nonlinear phase noise, J. Lightwave Technol. 21, 1933 1943 (2003). 4. K. Mishina, A. Maruta, S. Mitani, T. Miyahara, K. Ishida, K. Shimizu, T. Hatta, K. Motoshima, and K. Kitayama, NRZ-OOK-to-RZ-BPSK modulation-format conversion using SOA-MZI wavelength converter, J. Lightwave Technol. 24, 3751-3758 (2006). 5. C. Yan, Y. Su, L. Yi, L. Feng, X. Tian, X. Xu, and Y. Tian, All-optical format conversion from NRZ to BPSK using a single saturated SOA, IEEE Photon. Technol. Lett. 18, 2368-2370 (2006). 6. W. Astar and G. M. Carter, 10 Gb/s RZ-OOK to BPSK format conversion by cross-phase modulation in single semiconductor optical amplifier, Electron. Lett. 42, 1472-1474 (2006). 7. S. H. Lee, K. K. Chow, C. Shu, and C. Lin, All optical ASK to DPSK format conversion using crossphase modulation in a nonlinear photonic crystal fiber, in Conference on Lasers and Electro-Optics (2005), Paper CFJ2-5. 8. Huan Jiang, He Wen, Liuyan Han, Yili Guo, and Hanyi Zhang, All-optical NRZ-OOK to BPSK format conversion in an SOA-based nonlinear polarization switch, IEEE Photon. Technol. Lett. 19, 1985-1987 (2007). 9. Y. Lu, F. Liu, M. Qiu, and Y. Su, "All-optical format conversions from NRZ to BPSK and QPSK based on nonlinear responses in silicon microring resonators," Opt. Express 15, 14275-14282 (2007) 10. D. Norte, E. Park, and A. E. Willner, All-optical TDM-to-WDM data format conversion in a dynamically reconfigurable WDM network, IEEE Photon. Technol. Lett. 7, 920 922 (1995). 11. K. Inoue, Experimental study on channel crosstalk due to fiber four-wave mixing around the zerodispersion wavelength, J. Lightwave Technol. 12, 1023 1028, Jun. 1994. 12. Adel A. M. Saleh and Jane M. Simmons, Architectural Principles of Optical Regional and Metropolitan Access Networks, J. Lightwave Technol. 17, 2431 2448 (1999). 13. H. Leib, Data-aided incoherent demodulation of DPSK, IEEE Trans. Commun. 43, 722 725 (1995). 14. A. H. Gnauck and P. J. Winzer, "Optical Phase-Shift-Keyed Transmission," J. Lightwave Technol. 23, 115-130 (2005). (C) 2009 OSA 16 February 2009 / Vol. 17, No. 4 / OPTICS EXPRESS 2918

15. Xing Wei,Yikai Su, Xiang Liu, Juerg Leuthold, and S. Chandrasekhar,"10-Gb/s RZ-DPSK Transmitter Using a Saturated SOA as a Power Booster and Limiting Amplifier," IEEE Photon. Technol. Lett. 16, 1582-1584 ( 2004). 16. IEEE 802.3-2005, Section Five, &58.4.1 Transmitter optical specifications, 63-64. 17. L. Cai, S.L. Xiao, Z.X. Liu, R.Y. Li, M. Zhu and W.S. Hu Cost-effective WDM-PON for simultaneously transmitting unicast and broadcast/multicast data by superimposing IRZ signal onto NRZ signal in 34th European Conference on Optical Communication (ECOC), (2008), Paper Th.1.F.4. 1. Introduction Future optical networks will employ different modulation formats according to different network scales and applications. For example, amplitude-shift-keyed (ASK) signal and phaseshift-keyed (PSK) signal may be simultaneously used in networks, because the former is costeffective for metro area networks while the latter shows improved receiver sensitivity and enhanced tolerance to fiber nonlinearity in long-haul transmission systems [1-3]. Some format conversion methods from ASK to binary-phase-shift-keying (BPSK) have been proposed to solve the format mismatch between metro networks and long-haul backbone networks. Format conversion from ASK to BPSK has been realized by cross-phase modulation (XPM) or self-phase modulation (SPM) in either a semiconductor optical amplifier (SOA) [4-6] or an optical fiber [7]. Nonlinear polarization rotation (NPR) effect in semiconductor optical amplifiers (SOAs) [8] and nonlinear phase shift in cascaded microring resonators (CMRR) [9] are also used for this format conversion. In all these schemes, logical 1 in ASK signal is converted into π-phase in BPSK signal, while logical 0 leads to a 0-phase. In wavelength division-multiplexed (WDM) networks integrated with format conversion, the converters at edge nodes are expected to implement format conversion of different wavelength channels simultaneously [10]. In the case of multi-wavelength operation, most nonlinear optical signal processing schemes will inevitably suffer from crosstalk produced by the undesirable nonlinear effect such as XPM and four-wave mixing (FWM), which cannot be removed at the output [11]. One method to realize multi-wavelength format conversion is to demultiplex the wavelengths, implement format conversion for each wavelength separately, and then multiplex the converted signals of different wavelengths. This technique requires one convertor for each wavelength and increases the costs remarkably. Fig. 1. WDM networks with different signal format. Multi-format transmitters and receivers are used in the aggregation nodes. ASK signal is used in access and metro networks. Signal transmitted in core networks is BPSK format. A possible solution to format mismatch in WDM networks is to use multi-format transceiver. The network architecture and multi-format transmission scheme are shown in Fig. 1. Optical networks can be divided into core networks, metro networks, and access networks [12]. Aggregation nodes link metro networks and access networks, while edge nodes link metro networks and core networks. Multi-format transmitters and receivers at aggregation nodes are able to transmit and detect both ASK and BPSK signals. Transmitters choose signal format for transmission according to the distance between two terminals. Multi-format (C) 2009 OSA 16 February 2009 / Vol. 17, No. 4 / OPTICS EXPRESS 2919

receivers detect the incoming signals regardless of signal format. In metro and access networks with transmission distances varying from a few meters to a few hundred kilometers, the low-cost ASK format is preferred. In long haul transmission, the aggregation nodes transmit signals in BPSK format. Since multi-format transmission is realized by multi-format transceivers, format converters at edge nodes are no longer required. The elimination of format converters can increase network efficiency and make the WDM networks more costeffective. This paper presents a multi-format receiver for non-return-to-zero BPSK (NRZ-BPSK) and non-return-to-zero ASK (NRZ-ASK) signals. The signal demodulation is based on incoherent BPSK demodulation and NRZ-ASK to NRZ-BPSK format conversion. Incoherent BPSK demodulation is realized by using a Mach-Zehnder delay interferometer (MZDI) and feedback decoder. NRZ-ASK to NRZ-BPSK format conversion is realized by using saturated semiconductor optical amplifier (SOA). Mach-Zehnder modulator (MZM) is used as multiformat transmitter to generate both ASK and BPSK signals. The rest of the paper is organized as follows. In Section II, we introduce the principle of multi-format detection, especially the principle of incoherent BPSK demodulation. Then the experimental setup is illustrated in Section III. Results and discussion are provided in the final section. Fig. 2. (a) Structure of multi-format receiver, (b) Illustration of the demodulation of NRZ-ASK signal using multi-format receiver. 2. Principle The principle of multi-format detection is explained in this section. The multi-format receiver consists of a saturated SOA, a MZDI, a photodetector, and a feedback decoder. Fig. 2(a) shows the structure of the proposed multi-format receiver and Fig. 2(b) shows the principle of NRZ-ASK signal demodulation by using multi-format receiver. In NRZ-ASK signal demodulation, the incoming NRZ-ASK format signal is firstly converted into NRZ-BPSK format by a SOA. When the SOA is operated in the saturation regime, the 0 bit achieve higher power gain than the 1 bit. By adjusting the input power to proper values, an NRZ- ASK signal with finite extinction ratio (ER) can be converted to NRZ-BPSK format with approximately constant amplitude and a phase difference of π between 0 s and 1 s. [5] After format conversion, the NRZ-BPSK signal is demodulated incoherently. Let a(k), b(k), c(k), and d(k) represent the data logic at A, B, C, and D positions in Fig. 2, respectively. The saturated SOA converts the incoming intensity modulated signal to phase (C) 2009 OSA 16 February 2009 / Vol. 17, No. 4 / OPTICS EXPRESS 2920

modulated signal and leaves phase modulated signal unchanged. SOA does not change the data logic, therefore: b(k) = a(k) (1) As shown in Fig. 2(a), incoherent BPSK detection is realized by using a MZDI and a feedback decoder. Since the MZDI implements opposite logic operation at different ports, the data restoration circuit should be designed according to the chosen output port of the MZDI. The outputs at destructive port and constructive port are given by: ck ( ) des = bk ( ) bk ( 1) output at destructive port (2) and ck ( ) con = bk ( ) bk ( 1) output at constructive port (3) When destructive port is chosen, XOR gate should be used in the feedback decoder to restore data. The output of the feedback decoder can be deduced as follow: d( k) = c( k) d( k 1) = b( k) b( k 1) d( k 1) (3) where d(k-1) can be expressed as: dk ( 1) = ck ( 1) dk ( 2) = bk ( 1) bk ( 2) dk ( 2) (4) Substituting Eq. (4) into Eq. (3) yields: dk ( ) = bk ( ) bk ( 2) dk ( 2) (5) After iterative computation, the output of feedback decoder can be represented as: d ( k) = b( k) b(0) d(0) = b( k) a(0) d(0) (6) Therefore when d(0) = a(0), we have d(k) = a(k) at position D. Similarly, when constructive port is used, XNOR gate is needed to recover the data. The output of the feedback decoder is: d( k) = b( k) a(0) d(0) (7) and d(k)=b(k) can be obtained only when d(0) = a(0). Equation (6) and Eq. (7) indicate that the data restoration depends on the relationship between d(0) and a(0). d(0) represents initial logic state of the output of the feedback decoder and a(0) represents the first bit of the incoming data. For instance, in a XOR based feedback decoder, when the initial state at D in Fig. 2 is the same as the first bit of transmitted data, the restored data is positive. Otherwise the restored data is reversed. This kind of receiver is also known as data-aided incoherent demodulator [13]. It needs partial knowledge (in this case the first bit) of the transmitted signal. Fig. 3. Experimental setup. MZDI is 1-bit-delay Mach-Zehnder delay interferometer; PC is polarizer controller; OBPF is optical bandpass filter; MZM is Mach Zehnder modulator; EDFA is erbium-doped fiber amplifier; VOA is variable optical attenuator; PD is photodetector; con is constructive port; des is destructive port; SOA is semiconductor optical amplifier; DCF is dispersion compensation fiber (C) 2009 OSA 16 February 2009 / Vol. 17, No. 4 / OPTICS EXPRESS 2921

3. Realization of multi-format receiver Figure 3 shows the block diagram of experimental setup and the configuration of the proposed multi-format receiver. Both NRZ-ASK and NRZ-BPSK signals at 1551.83 nm are generated by a LiNbO 3 MZM driven by a 4-Gb/s pseudorandom bit sequence (PRBS). For both NRZ- BPSK and NRZ-ASK signals, the signal power fed into the single mode fiber (SMF) is 0 dbm. BPSK signal is transmitted over 100-km SMF and 17-km dispersion compensation fiber (DCF). NRZ-ASK signal is transmitted over 25-km SMF. The 100-km SMF and 17-km DCF are used to emulate the core network, and the 25-km SMF is used to emulate the metro or access network. After transmission, an erbium-doped fiber amplifier (EDFA) amplifies the signals to 10 dbm. An optical band pass filter (OBPF) with a bandwidth of 0.4 nm suppresses amplified spontaneous emission (ASE) noise, and a variable optical attenuator (VOA) is used to adjust the power to proper level. The SOA used in the multi-format receiver is biased at 240 ma with a gain recovery time of approximately 100 ps and a saturation power of 6 dbm. Eye diagrams of NRZ-BPSK and NRZ-ASK demodulation at positions A, B, C, and D (see in Fig. 3) are shown in Fig. 4. Fig. 4. Experimental results of multi-format detection. (a), (b), and (c) Optical eye diagrams at positions A, B, and C in Fig. 3 for NRZ-BPSK demodulation. (d) Electrical eye diagram of the demodulated NZR-BPSK signal; (e), (f), and (g) Optical eye diagrams at positions A, B, and C in Fig. 3 for NRZ-ASK demodulation. (h) Electrical eye diagram of the demodulated NRZ- ASK signal. Fig. 5. Waveforms of a typical pattern. (a), (b), and (c) Waveforms at positions A, B, and C in Fig.3 for NRZ-BPSK demodulation. (d) Waveform of the demodulated NRZ-BPSK signal; (e), (f), and (g) Waveforms at positions A, B, and C in Fig.3 for NRZ-ASK demodulation. (h) Waveform of the demodulated NRZ-ASK signal. A.U.: arbitrary unit. (C) 2009 OSA 16 February 2009 / Vol. 17, No. 4 / OPTICS EXPRESS 2922

3.1 NRZ-BPSK signal detection NRZ-BPSK signal is generated by using a MZM biased at its transmission null. Since the optical power of BPSK signal is constant, the phase shift caused by SOA is almost the same. The information is maintained because the phase difference between adjacent bits does not vary. The eye diagrams and waveforms of NRZ-BPSK signals before and after the SOA are shown as (a), (b) in Fig. 4, and (a), (b) in Fig. 5, respectively. The following MZDI with a 1- bit delay converts the incoming BPSK signal into intensity-modulated signals at its two output ports. The output at destructive port is illustrated as (c) in Fig. 5. This signal is then detected by a photodetector and restored to the original data through feedback decoding. The functionality of the feedback decoder is established by connecting the output of the XOR gate to another input port after 1-bit delay. The original data can be restored by doing logical XOR operation between the output data and the present data. The restored data is shown as (d) in Fig. 5. 3.2 NRZ-ASK signal detection The MZM is biased at quadrature point in its transmission curve for NRZ-ASK modulation. In the multi-format receiver, the input NRZ-ASK signal is firstly converted into NRZ-BPSK format. The quality of the converted NRZ-BPSK signal depends on the ER of the input NRZ- ASK signal. NRZ-ASK signal with input power of 2.2 dbm and ER of 6.8 db is used to achieve exact π phase difference between 1 s and 0 s. After the SOA, 1 s and 0 s of NRZ-ASK signal are amplified to almost the same level according to different gains. The waveforms of original NRZ-ASK binary data and its converted NRZ-BPSK signal are shown as (e) and (f) in Fig. 5. The demodulation in the rest part of the receiver is the same as the NRZ-BPSK demodulation illustrated in section 3.1. Waveforms at the positions C and D are shown as (g) and (h) in Fig. 5. Fig. 6. (a) BER results for two different PRBS pattern lengths, (b) BER results before and after transmissions. 4. Results and discussion The experimental demonstration utilizes different PRBS pattern lengths to evaluate the performance of the multi-format receiver. Fig. 6(a) shows the bit error rate (BER) measurement results for back-to-back (B2B), using PRBS pattern sequence with the lengths 2 7-1 and 2 31-1. When the pattern length is 2 7-1, the receiver sensitivities for NRZ-BPSK signal and NRZ-ASK signal at BER of 10-9 are -20.1 dbm and -20.8 dbm, respectively. When the pattern length is 2 31-1, the sensitivities decrease to -19.8 dbm and -20.3 dbm, respectively. When PRBS sequence length changing from 2 7-1 to 2 31-1, the pattern dependence in terms of (C) 2009 OSA 16 February 2009 / Vol. 17, No. 4 / OPTICS EXPRESS 2923

receiver sensitivities at BER 10-9 are 0.5 db for NRZ-ASK signal and 0.3 db for NRZ-BPSK signal, respectively. Fig. 6(b) shows BER performance of NRZ-ASK and NRZ-BPSK signals using a 2 31-1 PRBS pattern for back-to-back and after transmissions. First we measured the BER performance for NRZ-ASK signal. After transmitted over 25-km SMF, the power penalty is 0.9 db at BER of 10-9. Then we connected the 100-km transmission fiber and its matching DCF. It is shown that the power penalty for BPSK signal is 1.3 db after 117-km transmission. The measured sensitivity of NRZ-ASK signal in Fig. 6 is superior to the NRZ-BPSK signal. That is because the NRZ-BPSK signal generated by MZM has some residual amplitude modulation at the transition of two bits, which results in intensity dips. And there is also some amplitude variation that results from the drive-waveform overshoots and limited rise times of drive-signal [14]. After the SOA, the residual amplitude and variation lead to phase noise for NRZ-BPSK signal, and the phase difference between 0 and 1 is no longer exactly π [15]. However, in the NRZ-ASK signal detection, we set the ER of the NRZ-ASK signal to 6.8 db and adjusted the input power to 2.2 dbm in order to achieve an exact differential phase of π between 0 and 1. Therefore after the MZDI, the NRZ-ASK signal has better performance than NRZ-BPSK signal. Fig. 7. BER results for traditional receivers and multi-format receiver To compare the effectiveness of the multi-format receiver with traditional receivers, the back-to-back BER curves of NRZ-ASK and NRZ-BPSK signals using traditional detection methods are measured. As shown in Fig. 7, triangle symbols show the BER results of NRZ- ASK signal using single photodetector. The diamond symbols show the BER results of NRZ- BPSK signal using MZDI and single photodetector. The data sequences used in the measurements are PRBS with the length of 2 31-1. Since differential encoding of a PRBS pattern only delays the pattern, the differential encoder is eliminated in our BPSK measurement. The photodetectors used in traditional detection methods are the same as the one used in the multi-format receiver. Compared with NRZ-ASK signal detected by single photodetector, a -3.3 db power penalty of NRZ-ASK signal detection using multi-format receiver is measured. This sensitivity improvement is due to the ER enhancement after MZDI in the multi-format receiver. An extra 3dB sensitivity improvement could also be expected by using balanced photodetector. [1] Compared with detection method using interferometric demodulation and direct detection for NRZ-BPSK signal, there is a 0.9 db sensitivity degradation for NRZ-BPSK signal detection using the multi-format receiver. This sensitivity (C) 2009 OSA 16 February 2009 / Vol. 17, No. 4 / OPTICS EXPRESS 2924

degradation is caused by spontaneous noise emitted by SOA. In the multi-format receiver, the performance of the receiver is mainly limited by the recovery time of the SOA. In our experiment, the data rate is limited by the slow recovery time of the used SOA. SOA with shorter response time would achieve better quality and higher data rate for NRZ-ASK detection. In [5], 8 Gbit/s intensity modulation to phase modulation conversion is demonstrated using SOA with gain recovery time of 45 ps. Commercial SOA with gain recovery time of 25 ps is also available. In NRZ-ASK detection, the ER of the input NRZ-ASK signal is limited to 6.8 db to achieve converted NRZ-BPSK signal of high quality from the SOA. NRZ-ASK signal with finite ER can be used in access networks, optical Ethernets, and metro networks [16-17]. 5. Conclusion We have presented a practical multi-format receiver, which is successfully implemented for both NRZ-ASK and NRZ-BPSK signals in our experiments. In NRZ-ASK detection, the proposed receiver provides 3.3 db better performance than traditional receiver using single photodetector. Moreover, compared with NRZ-BPSK signal detection using interferometric demodulation and direct detection, a 0.9 db power penalty is obtained with the use of multiformat receiver. The multi-format receiver enables detection of signals in different formats by means of the same device. It is able to offer good flexibility for various format-related application scenarios. Acknowledgments This work is jointly supported by the National Nature Science Fund of China (No. 60632010 and No. 60572029) and the National 863 Hi-tech Project of China. (C) 2009 OSA 16 February 2009 / Vol. 17, No. 4 / OPTICS EXPRESS 2925