Perception of pitch. Importance of pitch: 2. mother hemp horse. scold. Definitions. Why is pitch important? AUDL4007: 11 Feb A. Faulkner.

Similar documents
Perception of pitch. Definitions. Why is pitch important? BSc Audiology/MSc SHS Psychoacoustics wk 5: 12 Feb A. Faulkner.

Perception of pitch. Definitions. Why is pitch important? BSc Audiology/MSc SHS Psychoacoustics wk 4: 7 Feb A. Faulkner.

COM325 Computer Speech and Hearing

Temporal resolution AUDL Domain of temporal resolution. Fine structure and envelope. Modulating a sinusoid. Fine structure and envelope

AUDL GS08/GAV1 Auditory Perception. Envelope and temporal fine structure (TFS)

AUDL GS08/GAV1 Signals, systems, acoustics and the ear. Loudness & Temporal resolution

Acoustics, signals & systems for audiology. Week 9. Basic Psychoacoustic Phenomena: Temporal resolution

Hearing and Deafness 2. Ear as a frequency analyzer. Chris Darwin

You know about adding up waves, e.g. from two loudspeakers. AUDL 4007 Auditory Perception. Week 2½. Mathematical prelude: Adding up levels

HCS 7367 Speech Perception

The psychoacoustics of reverberation

Complex Sounds. Reading: Yost Ch. 4

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007

The role of intrinsic masker fluctuations on the spectral spread of masking

AUDL 4007 Auditory Perception. Week 1. The cochlea & auditory nerve: Obligatory stages of auditory processing

Imagine the cochlea unrolled

Acoustics, signals & systems for audiology. Week 4. Signals through Systems

Psycho-acoustics (Sound characteristics, Masking, and Loudness)

III. Publication III. c 2005 Toni Hirvonen.

Effects of Reverberation on Pitch, Onset/Offset, and Binaural Cues

A102 Signals and Systems for Hearing and Speech: Final exam answers

Binaural Hearing. Reading: Yost Ch. 12

Distortion products and the perceived pitch of harmonic complex tones

Preeti Rao 2 nd CompMusicWorkshop, Istanbul 2012

Signals & Systems for Speech & Hearing. Week 6. Practical spectral analysis. Bandpass filters & filterbanks. Try this out on an old friend

Chapter 12. Preview. Objectives The Production of Sound Waves Frequency of Sound Waves The Doppler Effect. Section 1 Sound Waves

AUDL Final exam page 1/7 Please answer all of the following questions.

Monaural and Binaural Speech Separation

The EarSpring Model for the Loudness Response in Unimpaired Human Hearing

Musical Acoustics, C. Bertulani. Musical Acoustics. Lecture 13 Timbre / Tone quality I

Sound is the human ear s perceived effect of pressure changes in the ambient air. Sound can be modeled as a function of time.

2920 J. Acoust. Soc. Am. 102 (5), Pt. 1, November /97/102(5)/2920/5/$ Acoustical Society of America 2920

Citation for published version (APA): Lijzenga, J. (1997). Discrimination of simplified vowel spectra Groningen: s.n.

Music 171: Amplitude Modulation

Auditory modelling for speech processing in the perceptual domain

Spectro-Temporal Methods in Primary Auditory Cortex David Klein Didier Depireux Jonathan Simon Shihab Shamma

Signals, Sound, and Sensation

An introduction to physics of Sound

Effect of filter spacing and correct tonotopic representation on melody recognition: Implications for cochlear implants

Experiments in two-tone interference

Human Auditory Periphery (HAP)

What is Sound? Part II

SOUND QUALITY EVALUATION OF FAN NOISE BASED ON HEARING-RELATED PARAMETERS SUMMARY INTRODUCTION

Computational Perception. Sound localization 2

Spectral and temporal processing in the human auditory system

Musical Acoustics, C. Bertulani. Musical Acoustics. Lecture 14 Timbre / Tone quality II

AN AUDITORILY MOTIVATED ANALYSIS METHOD FOR ROOM IMPULSE RESPONSES

Structure of Speech. Physical acoustics Time-domain representation Frequency domain representation Sound shaping

Since the advent of the sine wave oscillator

Reduction of Musical Residual Noise Using Harmonic- Adapted-Median Filter

Physics 101. Lecture 21 Doppler Effect Loudness Human Hearing Interference of Sound Waves Reflection & Refraction of Sound

Convention Paper 7024 Presented at the 122th Convention 2007 May 5 8 Vienna, Austria

I R UNDERGRADUATE REPORT. Stereausis: A Binaural Processing Model. by Samuel Jiawei Ng Advisor: P.S. Krishnaprasad UG

6.551j/HST.714j Acoustics of Speech and Hearing: Exam 2

Estimating critical bandwidths of temporal sensitivity to low-frequency amplitude modulation

Feasibility of Vocal Emotion Conversion on Modulation Spectrogram for Simulated Cochlear Implants

ALTERNATING CURRENT (AC)

speech signal S(n). This involves a transformation of S(n) into another signal or a set of signals

Phase and Feedback in the Nonlinear Brain. Malcolm Slaney (IBM and Stanford) Hiroko Shiraiwa-Terasawa (Stanford) Regaip Sen (Stanford)

AUDITORY ILLUSIONS & LAB REPORT FORM

Principles of Musical Acoustics

THE MATLAB IMPLEMENTATION OF BINAURAL PROCESSING MODEL SIMULATING LATERAL POSITION OF TONES WITH INTERAURAL TIME DIFFERENCES

ECE 556 BASICS OF DIGITAL SPEECH PROCESSING. Assıst.Prof.Dr. Selma ÖZAYDIN Spring Term-2017 Lecture 2

IN a natural environment, speech often occurs simultaneously. Monaural Speech Segregation Based on Pitch Tracking and Amplitude Modulation

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

Monaural and binaural processing of fluctuating sounds in the auditory system

Sound/Audio. Slides courtesy of Tay Vaughan Making Multimedia Work

MUS 302 ENGINEERING SECTION

Loudspeaker Distortion Measurement and Perception Part 2: Irregular distortion caused by defects

Data Communication. Chapter 3 Data Transmission

Project 0: Part 2 A second hands-on lab on Speech Processing Frequency-domain processing

Tone-in-noise detection: Observed discrepancies in spectral integration. Nicolas Le Goff a) Technische Universiteit Eindhoven, P.O.

Enhancing and unmasking the harmonics of a complex tone

An unnatural test of a natural model of pitch perception: The tritone paradox and spectral dominance

THE PERCEPTION OF ALL-PASS COMPONENTS IN TRANSFER FUNCTIONS

A cat's cocktail party: Psychophysical, neurophysiological, and computational studies of spatial release from masking

A unitary model of pitch perception Ray Meddis and Lowel O Mard Department of Psychology, Essex University, Colchester CO4 3SQ, United Kingdom

Terminology (1) Chapter 3. Terminology (3) Terminology (2) Transmitter Receiver Medium. Data Transmission. Direct link. Point-to-point.

From Last Time Wave Properties. Description of a Wave. Water waves? Water waves occur on the surface. They are a kind of transverse wave.

INFLUENCE OF FREQUENCY DISTRIBUTION ON INTENSITY FLUCTUATIONS OF NOISE

8.3 Basic Parameters for Audio

Linguistics 401 LECTURE #2. BASIC ACOUSTIC CONCEPTS (A review)

MUSC 316 Sound & Digital Audio Basics Worksheet

A CLOSER LOOK AT THE REPRESENTATION OF INTERAURAL DIFFERENCES IN A BINAURAL MODEL

SGN Audio and Speech Processing

14 fasttest. Multitone Audio Analyzer. Multitone and Synchronous FFT Concepts

TRANSFORMS / WAVELETS

Auditory Based Feature Vectors for Speech Recognition Systems

The quality of the transmission signal The characteristics of the transmission medium. Some type of transmission medium is required for transmission:

Mel Spectrum Analysis of Speech Recognition using Single Microphone

The Association of Loudspeaker Manufacturers & Acoustics International presents

COMPUTATIONAL RHYTHM AND BEAT ANALYSIS Nicholas Berkner. University of Rochester

EC209 - Improving Signal-To-Noise Ratio (SNR) for Optimizing Repeatable Auditory Brainstem Responses

Terminology (1) Chapter 3. Terminology (3) Terminology (2) Transmitter Receiver Medium. Data Transmission. Simplex. Direct link.

Imperfect pitch: Gabor s uncertainty principle and the pitch of extremely brief sounds

A Pole Zero Filter Cascade Provides Good Fits to Human Masking Data and to Basilar Membrane and Neural Data

Modeling auditory processing of amplitude modulation I. Detection and masking with narrow-band carriers Dau, T.; Kollmeier, B.; Kohlrausch, A.G.

the human chapter 1 Traffic lights the human User-centred Design Light Vision part 1 (modified extract for AISD 2005) Information i/o

Signal Characteristics

CEPT/ERC Recommendation ERC E (Funchal 1998)

Transcription:

Perception of pitch AUDL4007: 11 Feb 2010. A. Faulkner. See Moore, BCJ Introduction to the Psychology of Hearing, Chapter 5. Or Plack CJ The Sense of Hearing Lawrence Erlbaum, 2005 Chapter 7 1 Definitions Perception: Pitch is the perceptual property of sound that conveys melody Acoustics: periodicity Pitch is closely related to frequency and Pitch is a perceptual property of periodic and approximately periodic sounds these have spectra that contain harmonics of a common fundamental frequency. Pitch should be distinguished from timbre, which is a perceptual quality relating to the sharpness of dullness of a sound. Timbre is mainly related to spectral shape The pitch of a sound is defined, for the purposes of measurement, as being equivalent to the frequency of a simple sine wave that has the same pitch as the sound. Hence pitch is expressed in Hz. 2 Why is pitch important? Singing voice { In speech Pitch variations signal differences between child, adult male and adult female speakers. Pitch variation conveys intonation, which indicates lexical stress and aspects of syntax. e.g. it s raining? checking question usually shows final pitch rise No I mean the BLUE shirt! emphasis on BLUE would lead to pitch rise In tone languages, pitch movement is lexically contrastive 3 4 Importance of pitch: 2 mother hemp horse Music Separating sources of sound Pitch is rather like a carrier frequency that we can tune in to Much studied in examining roles of spectral and temporal coding and processing in hearing scold 5 6 1

Auditory coding of frequency and pitch Information in spectral/place and time domains Place and time coding of sine-wave frequency Theories of pitch perception have been largely concerned with contrasting the contributions of spectral and temporal cues to the perception of pitch. Place representation - pitch is related to place of basilar membrane vibration Temporal representation - neural firing pattern preserves periodicity of the signal 7 8 Pitch Discrimination for sinewaves Practiced listeners can hear differences of less than 1 Hz for a 200 Hz sinusoid (precision better than 0.5%) At 1000 Hz, differences of 2 Hz can be detected (precision of about 0.2%) NB Scales here chosen to fit data to straight line: square root(f) and threshold frequency difference on a log scale Relative discriminability of pitch Typically pitch discrimination is expressed relative to frequency. Expressed this way the relative Difference Limen for Frequency (DLF) is smallest at 2 khz. 10 Can we account for pure tone discrimination on the basis of place cues? Excitation pattern coding of frequency difference 11 Intensity discrimination thresholds are about 1 db. At 1000 Hz for excitation levels to differ by 1dB requires a frequency difference of about 10 Hz yet we can here a frequency difference of 2 Hz. 12 2

Neural temporal coding A just detectable pitch change at 3 khz and below leads to a change in excitation level that is too small to be detected. Therefore - acuity for pitch differences for low frequency sinusoids cannot be explained by place cues. What other cues are there? 13 Interval histogram from recordings of auditory nerve responses to 1100 Hz sine wave. The common intervals are at 1/1100 seconds, 2/1100 seconds, etc. 14 Synchrony of nerve firing times to sine-wave period: very precise up to about 1.5 khz then declines and is lost at 5 khz and above so timing cues to pitch decline in accuracy above 1.5 khz What about effects of duration? If pitch discrimination is based on time intervals between nerve firings then as more intervals occur, discrimination is likely to be more accurate in a way that depends on the statistics of timing of nerve firing, 15 16 Effects of duration on spectrum But duration also affects spectrum, and hence place coding - width of excitation pattern grows with inverse of duration Effects of duration on sine wave spectrum spectrum spreads at shorter durations which limits place coding of pitch 17 18 3

Effects of signal duration: place vs. temporal coding of sine wave frequency Data from Moore Above 4 khz there are only place cues duration has a relatively small effect which can be explained by the spectral spread arising for shorter tones. Below ~ 4 khz, pitch discrimination for longer signals is too fine to be explained by place (shifts in excitation pattern) Coding pure tone frequency Only by place of excitation above 4 khz Dominated by temporal coding below ~ 1.5 khz Effects of signal duration (different curves) are larger at low frequencies. They cannot be explained by spectral of excitation pattern but can be explained by statistics of temporal coding which depends on number of inter-spike intervals. Between 1.5 and 4 khz both types of cue are available. 20 Pitch of complex sounds A complex harmonic sound such as a pulse train has a pitch that is equivalent to that of a sinusoid at the fundamental frequency (F 0 ) of the pulse signal. This information is present in the acoustic signal both in the spectrum, as the frequency of the component at F 0, and in the time domain, as the period of the pulse train. 21 22 Ohm s other law: Every motion of the air, then, which corresponds to a composite mass of musical tones, is, according to Ohm s Law, capable of being analysed into a sum of simple vibrations, and to each such simple vibration corresponds a simple tone, sensible to the ear, and having a pitch determined by the periodic time of the corresponding motion of the air. (Helmholtz, 1885; On the Sensations of Tone Auditory filter bandwidth increases with frequency (while harmonics are evenly spaced). For F 0 of 200 Hz, bandwidth exceeds harmonic spacing above about 1.6 khz 23 24 4

Cochlear frequency selectivity and resolution of harmonics Excitation patterns: complex sounds AN excitation pattern Resolved Harmonics Unresolved Harmonics Lower harmonics are clearly resolved For 200 Hz F 0, above 1.6 khz filter bandwidth is wider than 200 Hz spacing between harmonics and these higher harmonics are not resolved. Cochlear Filter Bank Similar limits apply at other F 0 s Cochlear Place CF Missing-F0 harmonic complex tone F0 x Harmonic Number (F/F0) 25 26 Classical Place account of pitch Pitch of a complex sound determined by position of peak in excitation pattern due to basilar membrane response to fundamental frequency (F 0 ) component 27 The missing fundamental Schouten (1938, 1940) made a crucial test of the place theory that is based on Ohm s Law He presented a pulse signal, with a complete harmonic series. A place account would claim that the pitch is due to the lowest frequency component, at the fundamental frequency. This signal is compared to a signal modified to remove the fundamental frequency component. According to place theory, the pitch should change 28 Audio demonstration from Audio Demonstrations on Compact Disc (ASA 1989). The first sound is a 200 Hz harmonic complex tone comprising the 1 st 10 harmonics. Succeeding sounds have the 1 st, 1 st and 2 nd, 1 st thru 3 rd, and then 1 st thru 4 th harmonics deleted. For most listeners, pitch is unaffected by deletion of harmonic at fundamental frequency Schouten called this residue pitch attributing the low pitch percept to the periodicity shown in the auditory nerve response to the unresolved higher harmonics 29 Auditory frequency analysis of a pulse train Higher harmonics are closely spaced relative to filter bandwidths and are not resolved. The filter output shows the fundamental periodicity of the pulse train Lower harmonics are completely resolved (1 st 5 to 8 harmonics depending on F 0 ) 30 5

Role of auditory non-linearity? Additional frequency components are introduced when a signal is passed through a non-linear system for harmonic complex tones this could include a distortion component at F 0. Can a component introduced at the fundamental frequency explain The case of the missing fundamental? 31 Is distortion product responsible for low pitch? Patterson (1976) Low frequency noise will mask a distortion component at F 0 (e.g. a difference tone arising from two adjacent harmonics) but LF noise does not mask the low pitch at F 0 therefore the low pitch is not due to distortion Audio demo A simple melody is heard played by a series of sine waves and complex tones comprising 3 higher harmonics with the same F 0 as the sine wave. Both the sine and complex tones sound the same melody. Then a low pass noise is added this masks the sine wave and would mask any auditory distortion product at F 0. The low pitch is still heard from the complex tones. 32 Contributions of resolved and unresolved harmonics The pitch of the residue suggests that higher unresolved harmonics are important in determining the pitch of complex tones. Both Ritsma and Plomp in 1967 published studies that challenged this. Plomp used stimuli in which the higher and lower harmonics were shifted in frequency in opposite directions. E.g., Harmonics 1 to 4 were shifted down by 10% and harmonics 5 upwards were shifted up by 10%. Contributions of resolved and unresolved harmonics Generally, and especially in the speech F 0 range, it is harmonics 4 to 8 that dominate pitch At very high F 0 above 1.5 khz, the fundamental frequency component is dominant. Contributions of unresolved high harmonics never dominate over contributions of resolved harmonics. 33 34 Resolved harmonics produce higher precision of pitch than unresolved harmonics Harmonic complex tone, 12 successive harmonics (Bernstein & Oxenham, 2003) ALSO Pitch discrimination for complex tones generally better than for the sine wave at F 0 (Henning and Grosberg, 1968) Worse Better Resolved Unresolved 35 The filter output shows the fundamental periodicity weak cue to pitch Lower harmonics are completely resolved their frequencies coded in time (at different places) are primary cues to pitch DOMINANT AND MOST PRECISE Harmonic at fundamental frequency not a necessary cue for pitch Where are cues to pitch? 36 6

Primary cues for pitch of complex sounds Pitch is mostly effectively determined by temporallyencoded representations of the frequencies of resolved harmonics (temporal code needed to explain the precision of pitch discrimination) The temporal encoding of F 0 from the unresolved higher harmonics is not a primary cue Nor is the harmonic component at F 0 except when F 0 > 1.5 khz. Pitch without spectral information White noise that is amplitude modulated at rates up to 1000 Hz has a weak pitch (Burns and Viemeister, 1976) The spectrum of the noise is flat, and only temporal cues for the pitch are present E.g, below shows white noise (lower trace) amplitude modulated by half-wave rectified sine wave Purely temporal pitches, although weak, can convey melody information for rates up to 300 or 500 Hz - but very weak above 200 Hz. Monaural temporal pitch is perceived from the temporal nerve firing pattern, which will be affected by amplitude modulation. 37 Unmodulated noise 100 Hz am noise Noise amplitude modulated by sine wave gliding from 40 up to 100 Hz (left) and down from 100 to 40 Hz (right) Also DICHOTIC temporal pitches where a pitch is heard that changes 38 with inter-aural phase. Current theories of pitch perception Pitch perception is based on the pattern of information over a range of frequencies. The major contributing information is the frequencies of the dominant resolved harmonics. This information is conveyed in the temporal firing pattern of the auditory nerve across frequency channels. Pattern processing identifies intervals between nerve firing that are common across frequency channels. For a series of resolved harmonics, nerve firings show a related series of time intervals Periodicity information from higher frequency unresolved harmonics or from the modulation envelope of noise is another source of input to this pattern processing, but is a relatively weak cue. Figure from Moore and Glasberg (1986) 39 Auditory nerve responses to pulse train: nerves responding to resolved harmonics show periodicity of each harmonic 40 Summary: Simple signals While pitch is broadly correlated with period, human pitch processing is complex Sine waves up to a few khz - pitch is temporally coded Sine waves above 4 khz, only place cues are present to code sine wave frequency Summary: Complex signals The period indicated by temporal cues alone from unresolved high harmonics in a single auditory filter can signal pitch at F 0. And a weak pitch can be heard from purely temporal cues with amplitude modulated noise However, pitch of complex tones is dominated by resolved harmonics (range 4 to 8 for F 0 in speech range). Here pitch processing depends on pattern extraction operating on time intervals between nerve firings 41 42 7

How might impaired hearing affect pitch perception? Wider auditory filters due to OHC damage Fewer harmonics resolved Impaired temporal coding Would limit phase-locking and hence temporal coding of frequency Does not seem a major problem in typical SNHL 43 8