Experiment 10. Color. Observe the transmission properties of the three additive primary color filters and the three subtractive primary color filters.

Similar documents
PHY 252 Introductory Physics Laboratory II

In a physical sense, there really is no such thing as color, just light waves of different wavelengths.

excite the cones in the same way.

Chapter 16 Light Waves and Color

CS 565 Computer Vision. Nazar Khan PUCIT Lecture 4: Colour

Conceptual Physics Fundamentals

Lecture 6 6 Color, Waves, and Dispersion Reading Assignment: Read Kipnis Chapter 7 Colors, Section I, II, III 6.1 Overview and History

Color Theory. Additive Color

Light and Applications of Optics

Light waves of different wavelengths or combinations of wavelengths cause the human eye to detect different colors.

Technology and digital images

LAB 11 Color and Light

Conceptual Physics 11 th Edition

Sir Isaac Newton discovered that if he sent white light through a prism, it separated the white light into a spectrum of colors (ROY G BIV).

Chapter 9: Light, Colour and Radiant Energy. Passed a beam of white light through a prism.

Hue Do You Think Hue Are?

Multimedia Systems and Technologies

COLOR. and the human response to light

Colors in images. Color spaces, perception, mixing, printing, manipulating...

COLOR and the human response to light

Understanding Color Theory Excerpt from Fundamental Photoshop by Adele Droblas Greenberg and Seth Greenberg

color & dye chemisty Explore in a scientific way! Learn how and why we see color, and how dye chemically reacts with fabric!

Image and video processing (EBU723U) Colour Images. Dr. Yi-Zhe Song

Slide 1. Slide 2. Slide 3. Light and Colour. Sir Isaac Newton The Founder of Colour Science

Optics Review (Chapters 11, 12, 13)

Light. intensity wavelength. Light is electromagnetic waves Laser is light that contains only a narrow spectrum of frequencies

Exercises The Color Spectrum (pages ) 28.2 Color by Reflection (pages )

Lecture 30 Chapter 26 The Human Eye & Visual Perception. Chapter 27 Color

Experiment P-40 Colors of Light

Multimedia Systems Color Space Mahdi Amiri March 2012 Sharif University of Technology

Longitudinal No, Mechanical wave ~340 m/s (in air) 1,100 feet per second More elastic/denser medium = Greater speed of sound

Additive. Subtractive

Colors in Images & Video

Color Image Processing. Gonzales & Woods: Chapter 6

color basics theory & application Fall 2013 Ahmed Ansari Communication Design Fundamentals

Mahdi Amiri. March Sharif University of Technology

Reading. Foley, Computer graphics, Chapter 13. Optional. Color. Brian Wandell. Foundations of Vision. Sinauer Associates, Sunderland, MA 1995.

Test 1: Example #2. Paul Avery PHY 3400 Feb. 15, Note: * indicates the correct answer.

This paper describes the construction and use

Life Science Chapter 2 Study Guide

Light, Color, Spectra 05/30/2006. Lecture 17 1

Color. Chapter 6. (colour) Digital Multimedia, 2nd edition

Introduction. The Spectral Basis for Color

Mastery. Chapter Content. What is light? CHAPTER 11 LESSON 1 C A

skip chap. 8 for now Chap. 9 Color (continued) Lecture 19 Tuesday, October 26

Physics 1230: Light and Color. If you do not have a telescope, please come get the parts on front table. Useful for Written_HW12.

Myth #1. Blue, cyan, green, yellow, red, and magenta are seen in the rainbow.

10.2 Color and Vision

LIGHT BOX & OPTICAL SET CAT NO. PH0615

Color Studies for Kids

LECTURE 07 COLORS IN IMAGES & VIDEO

Additive Color Synthesis

Wright Field Scale Modelers. Color Mixing: Everything you thought you knew about color is wrong.

Digital Image Processing. Lecture # 8 Color Processing

Computer Graphics Si Lu Fall /27/2016

The Principles of Chromatics

Observing a colour and a spectrum of light mixed by a digital projector

LECTURE III: COLOR IN IMAGE & VIDEO DR. OUIEM BCHIR

TEACH THE CORRECT COLOR THEORY SCHOOL

Visual Imaging and the Electronic Age Color Science

Color Science. What light is. Measuring light. CS 4620 Lecture 15. Salient property is the spectral power distribution (SPD)

Form 4: Integrated Science Notes TOPIC NATURAL AND ARTIFICIAL LIGHTING

The Photoelectric Effect

Shimadzu RF-5301 Fluorimeter operation guide for students

Unit 8: Color Image Processing

Notes: Light and Optics. Reflection. Refraction. Law of Reflection. Light goes straight 12/13/2012

What Eyes Can See How Do You See What You See?

Psy 280 Fall 2000: Color Vision (Part 1) Oct 23, Announcements

Basics of Colors in Graphics Denbigh Starkey

Vision. The eye. Image formation. Eye defects & corrective lenses. Visual acuity. Colour vision. Lecture 3.5

Digital Image Processing (DIP)

Colour. Cunliffe & Elliott, Chapter 8 Chapman & Chapman, Digital Multimedia, Chapter 5. Autumn 2016 University of Stirling

In order to manage and correct color photos, you need to understand a few

NAME SECTION PERFORMANCE TASK # 3. Part I. Qualitative Relationships

Thermo Scientific SPECTRONIC 200 Education

UNIT 12 LIGHT and OPTICS

It s a Colorful Life

Reflection and Color

For a long time I limited myself to one color as a form of discipline. Pablo Picasso. Color Image Processing

Figure 1: Energy Distributions for light

Colour. Why/How do we perceive colours? Electromagnetic Spectrum (1: visible is very small part 2: not all colours are present in the rainbow!

Light waves. VCE Physics.com. Light waves - 2

A Colorful Lab in a Bag

28 Color. The colors of the objects depend on the color of the light that illuminates them.

Digital Image Processing COSC 6380/4393. Lecture 20 Oct 25 th, 2018 Pranav Mantini

Digital Image Processing

LIGHT AND LIGHTING FUNDAMENTALS. Prepared by Engr. John Paul Timola

Colour. Electromagnetic Spectrum (1: visible is very small part 2: not all colours are present in the rainbow!) Colour Lecture!

Thin Lenses. Physics 227 Lab. Introduction:

Thursday, May 19, 16. Color Theory

Chapter 11. Preparing a Document for Prepress and Printing Delmar, Cengage Learning

Color & Graphics. Color & Vision. The complete display system is: We'll talk about: Model Frame Buffer Screen Eye Brain

COLOR. Diandra Leslie-Pelecky Edited by Anne Starace. Abstract. Keywords: color mixing, additive color mixing, subtractive color mixing

Chapter: Sound and Light

Digital Image Processing Color Models &Processing

Hello, welcome to the video lecture series on Digital image processing. (Refer Slide Time: 00:30)

Vernier SpectroVis Plus Spectrophotometer (Order Code: SVIS-PL)

Physics 4C Chabot College Scott Hildreth

Bettina Selig. Centre for Image Analysis. Swedish University of Agricultural Sciences Uppsala University

Additive and Subtractive Color Lab On Line PreAP

Transcription:

Experiment 10 Color 10.1 Objectives Observe the transmission properties of the three additive primary color filters and the three subtractive primary color filters. Observe and interpret the color sensations resulting from mixing additive primary colors and mixing subtractive primary colors. Be able to explain qualitatively the di erence between additive and subtractive color mixing. 10.2 Introduction Color is something we often take for granted (unless we are artists). Grass is green, the sky is blue (well, maybe not in the winter). But how are these colors formed? How can I mix two colors of paint and end up with a third color? I can hear two di erent sounds at the same time, but why does nothing look like two di erent colors at the same time? Color is a complicated subject because it s a combination of physics (wavelengths, frequencies, atomic spectra, light, etc.), the physiology of color as perceived by humans, and history. It s somewhat muddled because through the history of painting and early attempts by Goethe and Newton to craft theories of color, some of the their language has stuck. 189

10. Color 10.3 Key Concepts As always, you can find a summary online at Hyperphysics 1. Look for keywords: light and vision, color, color vision, additive color mixing. 10.4 Theory How do we see color? As you experienced in last week s lab, white light is composed of light from all wavelengths in the visible range (400 700 nm) but why do we see di erent wavelengths as di erent colors? A picture (made using a beam of electrons) of a human retina is shown in Fig. 10.1. There are two types of cells in the retina: rods (shown in green) and cones (shown in blue). The rod cells are sensitive to light and dark while our color vision is due to the cones. There are 3 types of cones and the relative response to the di erent cones is interpreted by your brain as light of a particular color. One kind of cone is most sensitive to red; another is most sensitive to green; and the third to blue. These three colors (red, green and blue) are called the additive primaries, as they are typically combined together (positively) to create other colors. Each type of cone (or color receptor) is actually sensitive to a range of wavelengths and therefore colors. For example the blue cone responds to light with wavelengths between 400 to 550 nm, or colors ranging from violet to indigo to blue. Fig. 10.2 shows which wavelengths of light each type of cone is sensitive to and how sensitive they are. Notice that the human eye has less sensitivity to blue than red. This is one reason that stop signs are red and not blue. The exact color we see is dependent on how much each type of cone is stimulated with respect to the others. For example, when green and red cones are simultaneously stimulated, we can see orange or yellow, depending on how much more intense the red is with respect to the green. By mixing the three additive primary colors (R, G and B) with di erent intensities, we can generate all possible colors. For example, you can convince yourself that red and green make yellow by squinting at Fig. 10.3. In order for us to see anything at all, the light has to enter our eyes. The light can come directly from the light source, or it can be reflected from an 1 http://hyperphysics.phy-astr.gsu.edu/hbase/hph.html 190 Last updated October 14, 2013

10.4. Theory Figure 10.1: A picture of the human retina showing the rods (in green) and cones (in blue). Figure 10.2: A plot showing the sensitivity of the 3 types of cones (red, green and blue) in a human eye. Last updated October 14, 2013 191

10. Color Figure 10.3: Squint at this and you ll see yellow, yet no actual yellow color is in the picture. This is Ferris Bueller s moment with M. Seurat...and how comic books work. object. The red light at the top of a tra csignalisredbecausethelight source is red. On the other hand, the red stop sign is red because it reflects red light, and absorbs all other colors. These examples represent two kinds of color mixing, additive and subtractive, respectively. Additive color mixing In the case of additive color mixing, we are adding colors from more than one light emitter. For example, mixing a red light and a green light with equal intensities will result in yellow light. Additive color mixing is used to form color images on the screen of older television and computer screens, called CRTs ( cathode ray tube ). The primaries used are red, green, and blue (from this point on, we ll call them R, G, and B). You start from black and add in the R, G and B colors to make the others. You cannot create black with the additive primaries, rather you can create white. Fig. 10.4 shows the additive color primaries at work. (You will mix these colors in the lab.) The color wheel that you see on your computer, as in Fig. 10.5, shows the whole color spectrum. Notice that red, green, and blue are equidistant around the edges. You will play with additive colors by creating mixtures of them in a light projection box. Subtractive color mixing The earliest thinking about color came from trying to understand painting. Rather than the adding light colors like in our (older) TVs, they had to contend with how to make particular colors on a canvas. This is a subtractive 192 Last updated October 14, 2013

10.4. Theory Figure 10.4: Colors adding together in a light projection box. Figure 10.5: RGB color selection on a computer appropriate for viewing on a screen (additive). process: light from a source, like the sun, falls on the surface of an object (or set of pigments) and is reflected. But not all wavelengths are reflected; just some reach our eyes which we interpret as the color of that object as in Fig. 10.4. The painter s job is to mix the right pigments together in order to cause other humans to see the color he or she desired. Said more specifically, the painter chooses the pigments necessary in order to take out the wrong colors from light that reflect from the surface, leaving the desired color. So color is not an attribute of just the object: it s a combination of the reflection or absorption of light (atomic physics) and our interpretation of that light through our highly-evolved eyeballs (physiology). The subtractive primaries are a convention following a long history of painting and printing. They are now usually Cyan, Magenta, and Yellow (from this point on, we ll call them C, M, and Y). Painters like them because Last updated October 14, 2013 193

10. Color Figure 10.6: This is another way to make yellow: all colors fall on the surface of the banana and are absorbed except the yellow. Figure 10.7: You ve seen this on your computer as well. selection appropriate for printing (subtractive). It s the color 194 Last updated October 14, 2013

10.4. Theory you can get the truest black using these three colors (which you ll do). 2 Filters A filter is a semi-transparent film which passes some wavelengths and not others. Let s deal with the Additive Primaries (R, B, G) and the Subtractive Primaries (C, Y, M) only. Remember: White light is a mixture of all of the colors, a controversial fact first worked out by Isaac Newton. So if you pass white light through a filter that removes all wavelengths but R then you d call that a Red Filter. Likewise, for B and G. Filters are not perfect: a red filter doesn t pass only a single wavelength, but rather a band of wavelengths which are reddish. You ll measure these bands in this lab. Let s picture the e ects of filters on the Additive and Subtractive Primaries in Figs. 10.8 10.9. In each picture, white light is incident from the left, passes through a filter, and only particular wavelengths of light emerge on the right. The little spectrum window (on the far right) shows the e ects on the spectrum of visible light. Fig. 10.8 shows what happens when white light is passed through filters that are the additive primary colors (R, G, B). Notice that if you pass white light through a red filter only red (or the reddish wavelengths of) light is transmitted. In addition it might not be too surprising that if you pass red light through a red filter, all you get is red light out. But what happens if you pass red light through a blue filter? The blue filter only transmits light with wavelengths around 400-500 nm, but red light has wavelengths around 600-700 nm. Does any of the red light make it through a blue filter? The Subtractive Primary colors (C, M, Y) can also be fashioned into filters, but here something di erent happens because both the physics and our perception is di erent. Fig. 10.9 shows the results when white light enters from the left and passes through:... a cyan filter toproducecyancoloredlight. Itdoesthatbyremoving the longest wavelengths (reddish) leaving the rest, which is represented in the top picture as green and blue arrows. (Look at the color wheel: the cyan filter removes its complementary color on the opposite side of the wheel, i.e. red.) 2 Sometimes you see printers using CMYK, where K stands for key, which is not black, per se, but a printer-specific designation for the black key plate that prints the detail and is, in fact, black. Last updated October 14, 2013 195

10. Color Figure 10.8: White light is incident on red (top), green (middle), or blue (bottom) filters. 196 Last updated October 14, 2013

10.4. Theory... a magenta filter toproducemagentalight. Itdoesthisbyremoving the middle wavelengths (greenish) leaving the rest which is represented in the middle picture as red and blue arrows. It too removes its complementary color on the opposite side of the wheel.... a yellow filter to produce yellow light. It does this by removing the shortest wavelengths (bluish) leaving the rest which is represented in the bottom picture as red and green arrows. Likewise, it removes its complementary color from the opposite site of the wheel. A table that will be very useful for answering the questions at the end of this lab is shown in Table 10.1. Remember that white light is made by combining red, green and blue light (the addition of the primary colors). In the table, each row is a subtractive primary color (C, M, Y) and the columns are the additive primary colors (R, G, B). The table can be used to understand both subtractive and additive color mixing. A few examples are given here: The table shows that each subtractive primary (C, M, Y) absorbs one additive primary color (R, G or B), as indicated by the color that is shaded. For example, cyan absorbs red but transmits (or reflects) green and blue. You can get one additive primary color by combining two subtractive primary colors. For example, a mixture of magenta and yellow would absorb both green and blue, allowing only red to be seen. You can add two additive primary colors together to get one of the subtractive primary colors. For example, if you want to make the color cyan you can add green and blue together. This e ect is how you see yellow in Fig. 10.3, notice that the bottom row in the table tells you that red plus green will make yellow. Notice that the subtractive primary colors can be thought of as adding two additive primary colors together or subtracting one additive primary from white light. For example, magenta can be made by adding red and blue together (additive color mixing) or by absorbing red from white light (subtractive color mixing). Last updated October 14, 2013 197

10. Color Figure 10.9: White light is incident on cyan (top), magenta (middle), or yellow (bottom) filters. 198 Last updated October 14, 2013

10.4. Theory white light red green blue (contains all wavelengths) long medium short subtractive primary: cyan (absorbs red) red green blue magenta (absorbs green) red green blue yellow (absorbs blue) red green blue Table 10.1: For a given subtractive primary color that subtracts from white light, this table shows which colors are absorbed and which are reflected/transmitted. Colors with a gray background and in bold are absorbed. Van Gogh was the master of complementary colors, especially yellows with blues. One of the things about complementaries is that we see stark contrasts between them and we perceive a sense of stability. No physics here, it s physiology and psychology artistic genius. The Café Terrace on the Place du Forum, Arles, at Night by Vincent van Gogh (1888) Last updated October 14, 2013 199

10. Color 10.5 In today s lab In this experiment, we will use subtractive color mixing by filters rather than by pigments, since filters are more easily manipulated in the laboratory. You will measure the bands of light that the filters allow through (transmit). 10.6 Equipment Digital spectrometer from the previous lab, but with an absorptometer with integrated sampling system that creates light internally and passes it through insertable filters for digitization (Ocean Optics USB650 Red Tide, see Fig. 10.10) Computer with Logger Pro installed One empty cuvette 3 for calibration (the clear tube in Fig. 10.10(a)) Set of 3 additive primary (R,G,B) filters each in their own cuvettes, 3 subtractive primary (C,M,Y) color filters in theirs, an empty cuvette for calibration and one cuvette with two filters in the same tube (there should be a total of 8 cuvettes at your bench). Do not open the cuvettes! Light projection box at the front of the room LED desk lamp 3 A cuvette is a glass or plastic holder designed to hold objects destined for spectroscopic analysis. It s pronounced coo-vette as in corvette. 200 Last updated October 14, 2013

10.7. Procedure (a) Cuvette (clear box) sitting on top (b) Cuvette inserted. Figure 10.10: Digital spectrometer with integrated sampling system, shown with cuvette both uninserted and inserted. 10.7 Procedure Setup 1. Start the data-collection program Logger Pro and choose New from the File menu. 2. Make sure the power supply for the fan is plugged into the part of the digital spectrometer that is labeled USB-ISS-UV-VIS. 3. Connect the spectrometer to the USB port of the computer. Wait a few seconds for the light and fan to come on inside the spectrometer (you will hear a click as the shutter opens and then the fan should come on). If you find that nothing appears on the computer screen when you try to collect data then unplug and plug back in the USB cable to the spectrometer with Logger Pro already running. 4. Calibrate the spectrometer: a) Place the empty cuvette in the square hole in the top of the spectrometer (see Fig. 10.10); make sure to align the cuvette so that the frosted sides are parallel with the long edge of the whole device (this ensures that the clear sides are facing the light source of the spectrometer). Last updated October 14, 2013 201

10. Color b) In Logger Pro, from the drop-down menus, choose Experiment I Calibrate I Spectrometer: 1. c) When the warmup period is complete, select Finish Calibration. d) Select OK. Absorption spectra of filters For each of the additive primary color filters (R, G, B): 1. Insert the cuvette with the desired filter into the sample holder, press the Collect button in Logger Pro, and observe the spectrum that results. If the spectrum is not visible or is cut o at the top of the graph, right click on the y-axis label Absorbance, select Autoscale I Autoscale. Note that the plot is an absorption spectrum. The larger the absorption value the more that wavelength is absorbed by the filter and NOT detected by the spectrometer. A value close to zero means that the wavelength was nearly totally transmitted. Notice that this is the opposite of what you did in the last lab where you were looking at emission spectra. In this experiment apeakmeansthatthatwavelengthismissing(itwasabsorbed) and a zero value means it can be seen (it was transmitted). Keep this in mind when you fill in the table in Question 1. 2. Write down your observations for each filter in the table under Question 1. Describe which colors are transmitted and record the wavelength ranges of the resulting absorption spectra. Note that you may see a continuous band of colors (the main band), then a gap, and a narrower range of colors. 3. Print out the curves from the R, G and B filters all on 1 graph. You can do this by hitting collect when starting the next filter and choosing the option to keep the previous result in the dialog box. 4. Label each curve by going to Insert I Text Annotation. A text box will appear and you can grab the end of the line with the mouse and point it at the curve that you ve referenced. 202 Last updated October 14, 2013

10.7. Procedure 5. Answer Questions 2 3. 6. Repeat steps 1 4 from above for each of the subtractive primary color filters (C, M, Y) and print their curves on 1 graph. For this part of the lab you will turn in 2 graphs taken with the spectrometer: one for the additive primaries (R, G, and B) and one for the subtractive primaries (C, M, and Y). Make sure to label all of the curves. Additive color mixing In this part of the experiment you will use the light projection box to observe additive color mixing. The projection box is the large black box located in the front of the room. It contains three di erent independent light sources. The knobs on the sides let you adjust the intensity of each of the lights independently. For example, by adjusting the knobs so that the blue light is o and the red and green lights are of equal intensity, you can see what color is produced where they overlap. You can make accurate predictions of what colors to expect using Table 10.1. When answering the questions for this section: make your predictions first, then observe the result using the projection box. Record both in the table given in Question 4 and then answer Question 5. Subtractive color mixing In this section you will experience subtractive color mixing and understand how it di ers from additive color mixing. Here you will use the LED desk lamp (which is approximately white light) on each table and di erent colored filters (which can be found at the front of the room in manilla envelopes). First, write down the expected (theoretical) color for each filter combination in Question 6. (There is only one correct answer for each theoretical color, which can be determined by using Table 10.1 plus Figure 10.8 and Figure 10.9.) After writing down the expected color, then observe what is the resultant color by stacking several filters together and letting light from the desk lamp pass through them. You will need a few pieces of each color as some of the filters are not very e cient (as you saw earlier in the lab). For example, when completing the first line of the table try stacking Last updated October 14, 2013 203

10. Color two red and two blue filters together. Answer Questions 7 12. For Question 10 you will use the cuvette with 2 filters in it and print out the graph from the spectrometer. 204 Last updated October 14, 2013

10.8. Questions 10.8 Questions 1. Record your observations below: filter colors transmitted (note gaps) range transmitted (main band) red min wavelength (nm) max green blue cyan magenta yellow Last updated October 14, 2013 205

10. Color 2. If you had an ideal red filter, what colors would be absorbed? 3. How well do the R, G and B filters match the colors you expected? Would you say that the filters are ideal? 206 Last updated October 14, 2013

10.8. Questions Additive color mixing 4. Record your predictions and observations in the following table. light mixture predicted color observed color red + green red + blue green + blue red + green + blue 5. How well did your predictions agree with your results? Explain any di erences. Last updated October 14, 2013 207

10. Color Subtractive color mixing 6. First record the expected theoretical color (using Table 10.1 plus Figures 10.8 and 10.9) and then your observations in the following table. filter mixture theoretical color observed color red + blue blue + yellow cyan + magenta cyan + yellow magenta + yellow cyan + magenta + yellow 208 Last updated October 14, 2013

10.8. Questions 7. Why does red + blue give di erent results in this part of the experiment compared to the part with the projector box? Explain what caused the results for red + blue to be di erent in each case (that is, explain how each case, additive vs. subtractive, works). 8. Explain the results for cyan + yellow. Last updated October 14, 2013 209

10. Color 9. For blue + yellow, did the color you observe match your prediction? If it didn t, then why not? What wavelengths of light must the filters let through? 10. Check this with the spectrometer by using the cuvette that has two filters (a blue and a yellow) in it. Did you accurately estimate which wavelengths the filters would let through? If not, which wavelengths did the filters let through? Print out the graph from the spectrometer. 210 Last updated October 14, 2013

10.8. Questions 11. Give a practical example from everyday life of additive and subtractive color mixing. (You must give a di erent example than the stop sign and stop light from the write-up.) 12. Why is it harder to think of examples of additive color mixing? Last updated October 14, 2013 211