Proceedings Analysis of Bluetooth-Based Wireless Sensor Networks Performance in Hospital Environments

Similar documents
Radio Propagation Analysis for ZigBee Based Indoor Dog Monitoring System

Proceedings Statistical Evaluation of the Positioning Error in Sequential Localization Techniques for Sensor Networks

Characterization of Near-Ground Radio Propagation Channel for Wireless Sensor Network with Application in Smart Agriculture

Proceedings Characterization of Radio Propagation Channel in Urban Vehicle to Infrastructure Environments to Support WSNs

Study of the Architecture of a Smart City

Characterization of Wireless Channel Impact on Wireless Sensor Network Performance in Public Transportation Buses

A Compact Dual-Mode Wearable Antenna for Body-Centric Wireless Communications

Analysis of Wireless Sensor Network Topology and Estimation of Optimal Network Deployment by Deterministic Radio Channel Characterization

Industrial Wireless Systems

Application Note AN041

Development of a Low Mobility IEEE Compliant VANET System for Urban Environments

Ultra Wideband Signals and Systems in Communication Engineering

Deployment scenarios and interference analysis using V-band beam-steering antennas

Ray-Tracing Analysis of an Indoor Passive Localization System

WiFi Network Planning and Intra-Network Interference Issues in Large Industrial Warehouses

Wireless Network Pricing Chapter 2: Wireless Communications Basics

Characterization and Validation of Telemetric Digital based on Hall Effect Sensor

Multi-antenna Cell Constellations for Interference Management in Dense Urban Areas

Planning Your Wireless Transportation Infrastructure. Presented By: Jeremy Hiebert

REGULATORY GUILDELINES FOR DEPLOYMENT OF BROADBAND SERVICES ON THE GHz BAND

ZigBee Propagation Testing

NIST Activities in Wireless Coexistence

Internet of Things Cognitive Radio Technologies

CHAPTER 10 CONCLUSIONS AND FUTURE WORK 10.1 Conclusions

[Raghuwanshi*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

Peio López Iturri, Juan Antonio Nazábal, Leire Azpilicueta, Pablo Rodriguez, Miguel Beruete, Carlos Fernández-Valdivielso and Francisco Falcone *

Prediction of LOS based Path-Loss in Urban Wireless Sensor Network Environments

Wireless communication for Smart Buildings

Vehicle Networks. Wireless communication basics. Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl

Co-existence. DECT/CAT-iq vs. other wireless technologies from a HW perspective

RF Considerations for Wireless Systems Design. Frank Jimenez Manager, Technical Support & Service

Aerospace Structure Health Monitoring using Wireless Sensors Network

CSNT 180 Wireless Networking. Chapter 4 Radio Frequency (RF) Fundamentals for Wireless LAN Technology

This is a repository copy of A simulation based distributed MIMO network optimisation using channel map.

Recent Developments in Indoor Radiowave Propagation

Wi-Fi Predictive Heat Map Report

Investigation of WI-Fi indoor signals under LOS and NLOS conditions

A Performance Study of Deployment Factors in Wireless Mesh

techtip How to Configure Miracast Wireless Display Implementations for Maximum Performance

MULTI-HOP RADIO ACCESS CELLULAR CONCEPT FOR FOURTH-GENERATION MOBILE COMMUNICATION SYSTEMS

Partial overlapping channels are not damaging

International Journal of Engineering & Computer Science IJECS-IJENS Vol:13 No:03 1

LOG-a-TEC testbed applications in TVWS

Digi-Wave Technology Williams Sound Digi-Wave White Paper

Smart Meter connectivity solutions

Computer Networks II Advanced Features (T )

best practice guide Ruckus SPoT Best Practices SOLUTION OVERVIEW AND BEST PRACTICES FOR DEPLOYMENT

Performance review of Pico base station in Indoor Environments

AN0509 swarm API Country Settings

DECT ARCHITECTURE PROPOSAL FOR A CONSTRUCTION SITE

IoT. Indoor Positioning with BLE Beacons. Author: Uday Agarwal

Mark Niehus, RCDD DAS Simplified

Cross-layer Network Design for Quality of Services in Wireless Local Area Networks: Optimal Access Point Placement and Frequency Channel Assignment

Wireless RF Solutions

Outdoor-to-Indoor Propagation Characteristics of 850 MHz and 1900 MHz Bands in Macro - Cellular Environments


Methods for Interference Management in Medical Wireless Sensor Networks

Interference Scenarios and Capacity Performances for Femtocell Networks

System Level Performance of Millimeter-wave Access Link for Outdoor Coverage

Redline Communications Inc. Combining Fixed and Mobile WiMAX Networks Supporting the Advanced Communication Services of Tomorrow.

Comparison between Preamble Sampling and Wake-Up Receivers in Wireless Sensor Networks

IOT GEOLOCATION NEW TECHNICAL AND ECONOMICAL OPPORTUNITIES

Channel-based Optimization of Transmit-Receive Parameters for Accurate Ranging in UWB Sensor Networks

Introduction. Our comments:

Wireless replacement for cables in CAN Network Pros and Cons. by Derek Sum

Open Access AOA and TDOA-Based a Novel Three Dimensional Location Algorithm in Wireless Sensor Network

EITN85, FREDRIK TUFVESSON, JOHAN KÅREDAL ELECTRICAL AND INFORMATION TECHNOLOGY. Why do we need UWB channel models?

5G Antenna Design & Network Planning

Development of a Wireless Communications Planning Tool for Optimizing Indoor Coverage Areas

Signal Propagation Measurements with Wireless Sensor Nodes

RAPS, radio propagation simulator for CBTC system

Engr 1202 ECE. Clean Room Project

Overcoming Interference is Critical to Success in a Wireless IoT World

Wireless Sensor Networks for Aerospace Applications

Small and Low Side Lobe Beam-forming Antenna Composed of Narrow Spaced Patch Antennas for Wireless Sensor Networks

Adaptive Transmission Scheme for Vehicle Communication System

LATERATION TECHNIQUE FOR WIRELESS INDOOR POSITIONING IN SINGLE-STOREY AND MULTI-STOREY SCENARIOS

EXPOSURE OPTIMIZATION IN INDOOR WIRELESS NETWORKS BY HEURISTIC NETWORK PLANNING

Chutima Prommak and Boriboon Deeka. Proceedings of the World Congress on Engineering 2007 Vol II WCE 2007, July 2-4, 2007, London, U.K.

Overview. Key Facts. TSP Transmitter. TRANSCOM Cellular Network Measurement

Before the FEDERAL COMMUNICATIONS COMMISSION Washington, DC 20554

Direct Link Communication II: Wireless Media. Current Trend

Predicting data rate coverage using the Sabine Method in multiple-source hospitals today and tomorrow

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /TWC.2004.

Physical layer authentication of Internet of Things wireless devices through permutation and dispersion entropy

Wireless Intro : Computer Networking. Wireless Challenges. Overview

(some) Device Localization, Mobility Management and 5G RAN Perspectives

Multiband NFC for High-Throughput Wireless Computer Vision Sensor Network

PROPAGATION OF UWB SIGNAL OVER CONVEX SURFACE MEASUREMENTS AND SIMULATIONS

Planning a Microwave Radio Link

Influence of Antenna Characteristics on Elevation Dependence of Building Penetration Loss for High Elevation Links

LTE-U Forum: Alcatel-Lucent, Ericsson, Qualcomm Technologies Inc., Samsung Electronics & Verizon. LTE-U SDL Coexistence Specifications V1.

Wireless Ad hoc and Sensor Network Underground with Sensor Data in Real-Time

Wireless In Vivo Communications and Networking

Base-station Antenna Pattern Design for Maximizing Average Channel Capacity in Indoor MIMO System

Guidelines for communication system of smart meters PLC, RF, cellular network (3G/4G) CENTRAL ELECTRICITY AUTHORITY

ELEC-E7120 Wireless Systems Weekly Exercise Problems 5

January doc.: thz_THz_Wireless_Communications_Challenges_and_Opportunities

Communication Networks. Braunschweiger Verkehrskolloquium

Smart Antenna Techniques and Their Application to Wireless Ad Hoc Networks. Plenary Talk at: Jack H. Winters. September 13, 2005

Transcription:

Proceedings Analysis of Bluetooth-Based Wireless Sensor Networks Performance in Hospital Environments Peio Lopez-Iturri 1, Santiago Led 1, Erik Aguirre 1, Leyre Azpilicueta 2, Luis Serrano 1 and Francisco Falcone 1, * 1 Electrical and Electronic Engineering Department, Public University of Navarre, Pamplona 31006, Spain; peio.lopez@unavarra.es (P.L.-I.); santiago.led@unavarra.es (S.L.); erik.aguirre@unavarra.es (E.A.); lserrano@unavarra.es (L.S.) 2 School of Engineering and Sciences, Tecnologico de Monterrey, Campus Monterrey, Monterrey, NL 64849, Mexico; leyre.azpilicueta@itesm.mx * Correspondence: francisco.falcone@unavarra.es; Tel.: +34-948-169-741 Presented at the 3rd International Electronic Conference on Sensors and Applications, 15 30 November 2016; Available online: https://sciforum.net/conference/ecsa-3. Published: 14 November 2016 Abstract: In this work, a method to analyze the performance of Bluetooth-based Wireless Sensor Networks (WSN) deployed within hospital environments is presented. Due to the complexity that this kind of scenarios exhibit in terms of radio propagation and coexistence with other wireless communication systems and other potential interference sources, the deployment of WSNs becomes a complex task which requires an in-depth radio planning analysis. For that purpose, simulation results obtained with the aid of an in-house developed 3D Ray Launching code are presented. The scenarios under analysis are located at the Hospital of Navarre Complex (HNC), in the city of Pamplona. As hospitals have a wide variety of scenarios, the analysis has been carried out in different zones such as Boxes, where different medical sensors based on Bluetooth communication protocol have been deployed. The simulation results obtained have been validated with measurements within the scenario under analysis, exhibiting Bluetooth-based WSNs performance within hospital environments in terms of coverage/capacity relations. The proposed methodology can aid in obtaining optimal network configuration and hence performance of Bluetooth-based WSNs within medical/health service provision environments. Keywords: Ray Launching; Bluetooth; Wireless Sensor Networks; hospital environment; Interference 1. Introduction Information and Communication Technologies are key elements in the evolution of health provision. In this way, multiple elements can enhance health system efficiency as well as improving quality of service and hence citizen s quality of life, such as electronic health recorded, tele-medicine, mobile/wearable devices for remote diagnostics or the paradigm of Smart Health, as the provision of health services in the context of Smart City/Smart Region environments [1]. Several properties are desirable in the implementation of such context aware environments, such as high degree of mobility and interactivity or user-centric operation and interoperability capabilities, to name a few. One of the key elements within this framework are wireless communication systems, which in the majority of cases are the primary enablers in order to achieve mobility and service ubiquity, which is usually obtained by the combined use of multiple wireless systems (such as Body Area Networks, Wireless Local Area Networks and Public Land Mobile Networks, among others). This combined wireless system operation, capable of providing optimal quality of service as a function of user density and required transmission rate, leads to the concept of Heterogeneous Network, HetNet, and operation. In order to provide adequate service levels to each user, coverage/capacity relations must be Proceedings 2017, 1, 3; doi:10.3390/ecsa-3-d001 www.mdpi.com/journal/proceedings

Proceedings 2017, 1, 3 2 of 6 considered, in which overall interference level is the main limiting factor [2]. Interference levels are given by intra-system users, inter-system users and external sources. It is worth noting that one of the most employed solutions is to deploy compact body area networks, based on WBAN/WLAN standards, with inherent energy limitations as well as available transmission power constraints [3]. Taking into account these limitations as well as the large variability in transceiver location and adverse wireless channel operation (given by non-line of sight operation and potentially large absorption losses), device and network planning and design is compulsory in order to guarantee adequate service levels whilst simplifying overall network architecture. In the specific case of hospital environments, several factors such as constructive complexity (given by the existence of multiple scatterers as well as enclosed environments) and potential interferences (given by the co-existence of multiple medical instruments and diagnostic elements, such as MRI), must be considered in order to estimate coverage/capacity relations specifically applied to low power compact devices. In this work, the operation of WSNs employing Bluetooth devices is analyzed in the specific context of health services, with the aid of deterministic channel modelling based on in-house 3D Ray Launching code, enabling the consideration of scenario complexity and the influence of material properties within the scenario. 2. Experiments A 3D Ray Launching algorithm has been used for the analysis of Bluetooth-based WSNs within hospital environments. This 3D Ray Launching algorithm is a deterministic methodology that has been implemented in-house and it is based on Geometrical Optics (GO) and Geometrical Theory of Diffraction (GTD), with its extension the Uniform Theory of Diffraction (UTD). The principle of the algorithm is that the considered whole 3D scenario, in this case the hospital environment, is divided into a grid of cuboids and each cuboid stores the information of the radio propagation analysis when rays are launched from the different transceivers. Parameters such as frequency of operation, transmitter power, number of reflections considered, considering diffraction or not, and the location of the transceivers are input parameters in the algorithm. The detailed description of the algorithm can be found in [4]. Moreover, it has been validated for different environments, such as indoor environments [5] and large complex environments [6]. Simulations have been carried out in different areas of the Emergency-department of the Hospital of Navarre, in the city of Pamplona. As an illustrative example, in Figure 1 the Boxes room zone scenario created for the 3D Ray Launching simulations is shown. The scenario has a size of 37 m 13.4 m 3 m and it is represents an area of the ground floor of the Emergency building of the HCN. The scenario consist of 12 rooms, called Boxes, where different medical staff cares for patients. This rooms are very similar and they have tables, chairs and shelves, in addition to the required medical stuff and devices. The constitutive materials of all the elements within the scenarios have been taken into account, introducing their dielectric properties in the simulator with the aim of obtaining accurate radio propagation estimations at the frequency of operation. Figure 1. Representation of the created Boxes room scenario for the 3D Ray Launching simulations.

Proceedings 2017, 1, 3 3 of 6 Once the scenario under analysis has been created for simulations, the wireless transceivers are placed within the scenario in order to obtain radio propagation estimations, which will be dependent on the morphology of the scenario as well as on the position of the transceiver itself and its radio characteristics such as transmitted power level and antenna type. For the study presented in this work, the medical devices based on Bluetooth wireless communication present on the Intelligent Point-of-Care (ipoc) of LQTAI. The ipoc include devices such as ECG, blood pressure monitor, thermometer, glucose meter, pulsioximeter, peak-flow, weight scale and a smart phone with Bluetooth 2.0. Figure 2 shows the ipoc of LQTAI. Figure 2. ipoc medical device set. For the simulations, the blood pressure monitor, the thermometer, the pulsioximeter and the glucose meter have been placed within each room, since they are common medical devices usually present in the real environment under analysis. The placement of the devices is depicted in Figure 3, where some devices are on the tables and others on the medical stretcher. An extra device (represented as a green point) has been placed within the aisle, which corresponds to a device used to validate the simulation results within this kind of environments. The main radio characteristics of the used Bluetooth devices both for simulations and validation measurements are summarized in Table 1. Figure 3. Localization of Bluetooth devices within the scenario under analysis.

Proceedings 2017, 1, 3 4 of 6 Table 1. Radio characteristics for Bluetooth simulations. Parameter Antenna type Antenna gain Frequency Transmitted power level Value Chip 1 dbi 2.44 GHz 3 dbm 3. Results Firstly, in order to validate the simulation results obtained by the 3D Ray Launching algorithm employed in this study, a specific simulation has been carried out to compare their results with measurements within the scenario under analysis. This simulation corresponds to the transmitter represented as a green dot in Figure 3. The white dashed line of the picture shows the linear path where measurements have been taken. Figure 4 shows the comparison between measurements and estimated results by means of the 3D Ray Launching method. The graph shows the typical variations of received RF power level due to multipath propagation, which is the most significant radio propagation phenomenon within complex indoor scenarios. The obtained results show good agreement between simulations and measurements. -40 Received Power (dbm) -45-50 -55-60 -65 Measurements 3D Ray Launching results -70 0 5 10 15 20 25 30 Distance from the source (m) Figure 4. Measurements vs. 3D Ray Launching simulation results comparison. Then, the rest of simulations have been performed. As an example, the bi-dimensional plane at height 1.5 m of the device #6 is depicted in Figure 5a, where the RF power distribution throughout the whole scenario can be seen. As one of the aims of this work is to study the performance of Bluetooth-based WSNs within this kind of environments, an important issue is the coexistence of several Bluetooth piconets and devices operating within the scenario. For that purpose, other three deployed devices (#31 and #48) have been chosen to consider them as interference to the communicating device #6. Note that this will happen only when a collision with the signal sent by the selected 2 devices happens. Figure 5b shows the RF power distribution for the 2 interfering devices for the height of 1.5 m. In order to show the effect of such potential interference, Figure 5c shows if the obtained SNR requirements are fulfilled for the situations of an asynchronous 8DQPSK communication at 2178 Kbps (red area), which corresponds to a high Bluetooth data rate, and for an asynchronous GFSK communication at 57.6 Kbps (extended green area). The required SNR values have been calculated by means of the well-known Shannon formula and they are 5.47 db and 13.9 db respectively. The dark blue colored area does not meet the requirements for a successful Bluetooth communication at those data rates.

Proceedings 2017, 1, 3 5 of 6 (a) (b) (c) Figure 5. (a) RF power distribution for device #6; (b) Interference level produced by devices #31 and #48; (c) Bluetooth device #6 s coverage depending on different SNR value threshold. 4. Discussion The results show that interference analysis in such environments where many Bluetooth devices could be deployed is a key issue, and mandatory for an optimized radio planning duties, since the interference will limit the performance of the deployed WSNs in terms of achievable data rates, coverage and power consumption (directly related to the transmission power level of devices). The presented Bluetooth interference analysis method by the 3D Ray Launching simulation algorithm is a novel accurate and useful tool for such analysis within complex hospital environments. 5. Conclusions Non-desired interferences can affect negatively Bluetooth communications at ISM 2.4 GHz band, both for inter-system coexistence (such as Wi-Fi) and for intra-system coexistence. The results and the interference analysis methodology used in this work show the importance that this kind of analysis will have for the deployment of Bluetooth-based devices in such complex and critical environments like hospitals, more taking into account that the number of wirelessly connected medical devices and sensors is expected to grow exponentially with the advent of IoT and the development of Smart Health services. Acknowledgments: The authors wish to acknowledge the financial support of project TEC2013-45585-C2-1-R, funded by the Spanish Ministry of Economy and Competiveness. Author Contributions: Peio Lopez-Iturri, Erik Aguirre, Leyre Azpilicueta and Francisco Falcone conducted the characterization of wireless propagation mechanisms in the scenario by the 3D Ray Launching algorithm, as well as the campaign of measurements. Santiago Led and Luis Serrano participated in the development of the ipoc and the corresponding Bluetooth inter-communication of the devices. Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Proceedings 2017, 1, 3 6 of 6 Abbreviations The following abbreviations are used in this manuscript: WSN ipoc GO GTD UTD RF SNR DQPSK IoT Wireless Sensor Network Intelligent Point-of-Care Geometrical Optics Geometrical Theory of Diffraction Uniform Theory of Diffraction Radio Frequency Signal to Noise Ratio Differential Quadrature Phase Shift Keying Internet of Things References 1. Solanas, A.; Patsakis, C.; Conti, M.; Vlachos, I.S.; Ramos, V.; Falcone, F.; Postolache, O.; Perez-Martınez, P.A.; di Pietro, R.; Perrea, D.N.; et al. Smart Health: A Context-Aware Health Paradigm within Smart Cities. IEEE Commun. Mag. 2014, 52, 74 81. 2. Aguirre, E.; Lopez-Iturri, P.; Azpilicueta, L.; Astrain, J.J.; Villadangos, J.; Falcone, F. Analysis of Wireless Sensor Network Topology and Estimation of Optimal Network Deployment by Deterministic Radio Channel Characterization. Sensors 2015, 15, 3766 3788. 3. Hellbruck, H.; Esemann, T. Limitations of Frequency Hopping in 2.4 GHz ISM-Band for Medical Applications due to Interference. In Proceedings of the 2011 IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, 9 12 January 2011; pp. 242 246. 4. Azpilicueta, L.; Rawat, M.; Rawat, K.; Ghannouchi, F.; Falcone, F. Convergence analysis in deterministic 3D ray launching radio channel estimation in complex environments. Appl. Comput. Electromagn. Soc. J. 2014, 29, 256 271. 5. Aguirre, E.; Lopez-Iturri, P.; Azpilicueta, L.; Astrain, J.J.; Villadangos, J.; Falcone, F. Analysis of Wireless Sensor Network Topology and Estimation of Optimal Network Deployment by Deterministic Radio Channel Characterization. Sensors 2015, 15, 3766 3788. 6. Sesma, I.; Azpilicueta, L.; Astráin, J.J.; Villadangos, J.; Falcone, F. Analysis of challenges in the application of deterministic Wireless channel modeling in the implementation of WLAN-based indoor location system in large complex scenarios. Int. J. Ad Hoc Ubiquitous Comput. 2014, 15, 171 184. 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).