Research Article Integrated Filtering Microstrip Duplex Antenna Array with High Isolation

Similar documents
Research Article Harmonic-Rejection Compact Bandpass Filter Using Defected Ground Structure for GPS Application

Research Article A Design of Wide Band and Wide Beam Cavity-Backed Slot Antenna Array with Slant Polarization

Research Article Multiband Planar Monopole Antenna for LTE MIMO Systems

Research Article A New Kind of Circular Polarization Leaky-Wave Antenna Based on Substrate Integrated Waveguide

Research Article A Wide-Bandwidth Monopolar Patch Antenna with Dual-Ring Couplers

Research Article Modified Dual-Band Stacked Circularly Polarized Microstrip Antenna

Research Article Compact Dual-Band Dipole Antenna with Asymmetric Arms for WLAN Applications

Research Article A High-Isolation Dual-Polarization Substrate-Integrated Fabry-Pérot Cavity Antenna

Research Article A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection

Research Article Cross-Slot Antenna with U-Shaped Tuning Stub for Ultra-Wideband Applications

Research Article CPW-Fed Wideband Circular Polarized Antenna for UHF RFID Applications

Research Article A Compact CPW-Fed UWB Antenna with Dual Band-Notched Characteristics

Research Article A Miniaturized Triple Band Monopole Antenna for WLAN and WiMAX Applications

Research Article Wideband Microstrip 90 Hybrid Coupler Using High Pass Network

Research Article Bandwidth Extension of a Printed Square Monopole Antenna Loaded with Periodic Parallel-Plate Lines

Research Article Analysis and Design of Leaky-Wave Antenna with Low SLL Based on Half-Mode SIW Structure

Research Article Design of a Broadband Band-Pass Filter with Notch-Band Using New Models of Coupled Transmission Lines

Research Article A Miniaturized Meandered Dipole UHF RFID Tag Antenna for Flexible Application

Research Article Novel Design of Microstrip Antenna with Improved Bandwidth

Research Article A Parallel-Strip Balun for Wideband Frequency Doubler

Research Article Ka-Band Slot-Microstrip-Covered and Waveguide-Cavity-Backed Monopulse Antenna Array

Research Article Small-Size Meandered Loop Antenna for WLAN Dongle Devices

Research Article Yagi Array of Microstrip Quarter-Wave Patch Antennas with Microstrip Lines Coupling

Research Article Circularly Polarized Microstrip Yagi Array Antenna with Wide Beamwidth and High Front-to-Back Ratio

Research Article CPW-Fed Slot Antenna for Wideband Applications

Research Article Compact Antenna with Frequency Reconfigurability for GPS/LTE/WWAN Mobile Handset Applications

Research Article Miniaturized Circularly Polarized Microstrip RFID Antenna Using Fractal Metamaterial

Research Article Compact Multiantenna

Research Article Compact and Wideband Parallel-Strip 180 Hybrid Coupler with Arbitrary Power Division Ratios

Research Article Theoretical and Experimental Results of Substrate Effects on Microstrip Power Divider Designs

Research Article Very Compact and Broadband Active Antenna for VHF Band Applications

First-Order Minkowski Fractal Circularly Polarized Slot Loop Antenna with Simple Feeding Network for UHF RFID Reader

SINGLE-FEEDING CIRCULARLY POLARIZED TM 21 - MODE ANNULAR-RING MICROSTRIP ANTENNA FOR MOBILE SATELLITE COMMUNICATION

A Compact Dual Band-Notched Ultrawideband Antenna with λ/4 Stub and Open Slots

Research Article A Multibeam Antenna Array Based on Printed Rotman Lens

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

Research Article High Efficiency and Broadband Microstrip Leaky-Wave Antenna

Bandpass-Response Power Divider with High Isolation

Research Article A MIMO Reversed Antenna Array Design for gsm1800/td-scdma/lte/wi-max/wilan/wifi

Research Article Suppression of Cross-Polarization of the Microstrip Integrated Balun-Fed Printed Dipole Antenna

Research Article A Broadband Circularly Polarized Stacked Probe-Fed Patch Antenna for UHF RFID Applications

Research Article Embedded Spiral Microstrip Implantable Antenna

Low-Profile Wideband Circularly Polarized Patch Antenna Using Asymmetric Feeding

Research Article A Broadband Single-Feed Circularly Polarized Patch Antenna with Wide Beamwidth

A NOVEL DUAL-BAND PATCH ANTENNA FOR WLAN COMMUNICATION. E. Wang Information Engineering College of NCUT China

Research Article Study on Millimeter-Wave Vivaldi Rectenna and Arrays with High Conversion Efficiency

Application Article Improved Low-Profile Helical Antenna Design for INMARSAT Applications

Research Article Quad Band Handset Antenna for LTE MIMO and WLAN Application

Broadband low cross-polarization patch antenna

Wideband Double-Layered Dielectric-Loaded Dual-Polarized Magneto-Electric Dipole Antenna

Design and Development of a 2 1 Array of Slotted Microstrip Line Fed Shorted Patch Antenna for DCS Mobile Communication System

Research Article A UWB Band-Pass Antenna with Triple-Notched Band Using Common Direction Rectangular Complementary Split-Ring Resonators

Jae-Hyun Kim Boo-Gyoun Kim * Abstract

A Compact Dual-Polarized Antenna for Base Station Application

Compact Microstrip UWB Power Divider with Dual Notched Bands Using Dual-Mode Resonator

Research Article Novel Notched UWB Filter Using Stepped Impedance Stub Loaded Microstrip Resonator and Spurlines

DUAL-BAND LOW PROFILE DIRECTIONAL ANTENNA WITH HIGH IMPEDANCE SURFACE REFLECTOR

Research Article A Novel SIW H-Plane Horn Antenna Based on Parabolic Reflector

A Compact Band-selective Filter and Antenna for UWB Application

Research Article BCB-Si Based Wide Band Millimeter Wave Antenna Fed by Substrate Integrated Waveguide

High gain W-shaped microstrip patch antenna

NEW DESIGN OF COMPACT SHORTED ANNULAR STACKED PATCH ANTENNA FOR GLOBAL NAVIGA- TION SATELLITE SYSTEM APPLICATION

Design of Duplexers for Microwave Communication Systems Using Open-loop Square Microstrip Resonators

Research Article Design of a Compact Quad-Band Slot Antenna for Integrated Mobile Devices

COMPACT WIDE-SLOT TRI-BAND ANTENNA FOR WLAN/WIMAX APPLICATIONS

Broadband and Gain Enhanced Bowtie Antenna with AMC Ground

Research Article Multiband Printed Asymmetric Dipole Antenna for LTE/WLAN Applications

A Wideband Dual-polarized Modified Bowtie Antenna for 2G/3G/LTE Base-station Applications

Research Article Design of Compact 4 4 UWB-MIMO Antenna with WLAN Band Rejection

A Compact Quadruple-Mode Ultra-Wideband Bandpass Filter with a Broad Upper Stopband Based on Transversal-Signal Interaction Concepts

A Beam Switching Planar Yagi-patch Array for Automotive Applications

Research Article Design and Analysis of Printed Yagi-Uda Antenna and Two-Element Array for WLAN Applications

A Phase Diversity Printed-Dipole Antenna Element for Patterns Selectivity Array Application

Design of Broadband Transition Structure from Microstrip to Slotline with Band Notched Characteristic

Design of a Compact and High Selectivity Tri-Band Bandpass Filter Using Asymmetric Stepped-impedance Resonators (SIRs)

Progress In Electromagnetics Research, Vol. 107, , 2010

COMPACT DUAL-BAND CIRCULARLY-POLARIZED AN- TENNA WITH C-SLOTS FOR CNSS APPLICATION. Education, Shenzhen University, Shenzhen, Guangdong , China

A Compact Wideband Circularly Polarized L-Slot Antenna Edge-Fed by a Microstrip Feedline for C-Band Applications

A COMPACT UWB MONOPOLE ANTENNA WITH WIMAX AND WLAN BAND REJECTIONS

Research Article A Compact Experimental Planar Antenna with a USB Connector for Mobile Phone Application

Broadband Dual Polarized Space-Fed Antenna Arrays with High Isolation

A NOVEL COUPLING METHOD TO DESIGN A MI- CROSTRIP BANDPASS FILER WITH A WIDE REJEC- TION BAND

Research Article Design of a Novel UWB Omnidirectional Antenna Using Particle Swarm Optimization

Research Article UWB Directive Triangular Patch Antenna

Multi-Band Microstrip Antenna Design for Wireless Energy Harvesting

COMPACT MICROSTRIP BANDPASS FILTERS USING TRIPLE-MODE RESONATOR

NOVEL IN-LINE MICROSTRIP COUPLED-LINE BAND- STOP FILTER WITH SHARP SKIRT SELECTIVITY

A Pair Dipole Antenna with Double Tapered Microstrip Balun for Wireless Communications

Broadband Balanced Microstrip Antenna Fed by a Waveguide Coupler

MICROSTRIP PHASE INVERTER USING INTERDIGI- TAL STRIP LINES AND DEFECTED GROUND

New Design of CPW-Fed Rectangular Slot Antenna for Ultra Wideband Applications

DESIGN AND TESTING OF HIGH-PERFORMANCE ANTENNA ARRAY WITH A NOVEL FEED NETWORK

Performance Analysis of Different Ultra Wideband Planar Monopole Antennas as EMI sensors

Compact Circularly Polarized Patch Antenna Using a Composite Right/Left-Handed Transmission Line Unit-Cell

A Broadband Dual-Polarized Magneto-Electric Dipole Antenna for 2G/3G/LTE/WiMAX Applications

A Folded SIR Cross Coupled WLAN Dual-Band Filter

A Compact Wideband Slot Antenna for Universal UHF RFID Reader

Research Article Low-Profile Repeater Antenna with Parasitic Elements for On-On-Off WBAN Applications

DESIGN OF OMNIDIRECTIONAL HIGH-GAIN AN- TENNA WITH BROADBAND RADIANT LOAD IN C WAVE BAND

Research Article A Novel CP Horn Antenna with Switchable Polarization by Single Port Feeding

Transcription:

Hindawi Antennas and Propagation Volume 217, Article ID 4127943, 8 pages https://doi.org/1.1155/217/4127943 Research Article Integrated Filtering Microstrip Duplex Antenna Array with High Isolation Xian-Jing Lin, Ze-Ming Xie, and Pei-Sheng Zhang School of Electronic and Information Engineering, South China University of Technology, Guangzhou, China Correspondence should be addressed to Xian-Jing Lin; eexjlin@mail.scut.edu.cn Received 27 November 216; Accepted 23 January 217; Published 22 February 217 Academic Editor: Jaume Anguera Copyright 217 Xian-Jing Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This paper presents a 2 1 integrated filtering microstrip duplex antenna array with high isolation and same polarization. The antenna consists of two radiating patches fed by two T-shaped probes and a power distributing duplex network (PDDN). The PDDN is composed of two bandstop filters and a 18-degree phase shift power divider. And the PDDN is designed to achieve the functions of power division, frequency selectivity, and port isolation. A Transmission Line (TL) model is adopted to design the PDDN, and the detailed synthesis procedure is presented. For demonstration, the proposed antenna is designed and fabricated. The implemented antenna achieves an average gain of 1 dbi, a cross-polarization ratio of 2 db, and an isolation of 35 db within the operation band. 1. Introduction Full-duplex communication is one of the most important operating modes in modern wireless communications. It is common to use antennas cascaded with duplexes or filters to realize full-duplex communication. However, antennas, duplexes, or filters are designed separately and cascaded through 5 ohm interfaces and matching networks. Due to the different bandwidths of the duplexer, filter, and the antenna, they are usually not well matched; then it will degrade the performances of the system. And it will enlarge the size and weight of the overall system, too. Oneoftheeffectivemethodstoimprovetheefficiency andreducethesizeandweightofthesystemistointegrate the designs of antennas, duplexes, and filters. Therefore, designs of duplex antennas have attracted much attention of researchers. Using different feeding networks to transmit transmitting (Tx) and receiving (Rx) signals to two stackedpatchesisacommonwaytorealizeduplexfunction [1]. However, the antenna suffers from narrow bandwidth and complicated configuration. Dual-polarized antenna is another effective method to achieve duplex operation. It transmits and receives signals through a common patch to make the antenna more compact. In [2], a dual-polarized filtering antenna array with enhanced bandwidth and selectivity is proposed by integrating the multimode resonators and radiating patches. Recently, the design of duplex antenna with single polarization is attracting much attention. In [7], a single polarization T-stubs loaded aperture duplex antenna is designed. In [8], the duplex operation is realized by SIW technique. Two separated feeding lines excite the cavity backed bowtieshapedslottoobtaintwoimperviousmodes.in[3],a filtering diplexing antenna is designed. It utilizes coupled microstrip resonators and multimode patch to realize duplex function. In [4], two filtering antenna subarrays are integrated together to work as a duplex antenna. The out-of-band radiations of the subarrays are suppressed by adding shorting pins into the filtering elements. The isolation of the antenna is improved. But the size becomes large. Integrating the duplexerandadual-bandantennacanalsorealizetheduplex operation [5]. Though the abovementioned single polarization duplex antennas are well worked, they sustain the disadvantages of narrow bandwidth, low gain, and dissatisfied isolation. In this paper, a duplex antenna array with same polarization, high isolation, high gains, and acceptable working bandwidths is designed. Bandstop filters and power

2 Antennas and Propagation l Table 1: Dimensions of the proposed antenna (unit: mm). w Rx branch Patch w 1 l 14 =λ 1 /4 l 15 =λ 2 /4 l 1 l 2 l 3 Port 2 (f 2 ) Center of the power divider l 4 λ 2 /4 λ 1 /4 l 5 l w 2 6 l l8 7 l 9 l l 11 1 w 4 w w 3 5 l 12 l 13 w 6 Port 1 (f 1 ) Z X Tx branch Y Symbol Quantity l 2 l 3 6.5 l 6 24 l 9 26.5 l 12 26.5 l 15 21.775 w 2 1.27 w 5 13 l 1 49 l 4 28.5 l 7 2 l 1 25.7 l 13 25.9 w 13 w 3 7 w 6 2.25 l 2 49.5 l 5 27.3 l 8 25.7 l 11 25.5 l 14 22.725 w 1 2 w 4.5 h 6 Ground Probe h PDDN network Figure 1: Geometry of the antenna array: top view of the upper substrate, the PDDN, (c) sectional drawing of the antenna array. divider are adopted to make up a PDDN for a 2 1 microstrip antenna array. High isolation is obtained by the transmission zeros that produced by the bandstop filters. High gains are realized by the common radiation of the two patch elements. This paper is organized as follows: Section 2 illustrates the geometry and the design of the proposed antenna array. Section 3 presents a comparison between the simulation and measurement results. Section 4 is aconclusion. 2. Geometry and Design of the Antenna 2.1. Geometry of the Antenna Array. Figure 1 illustrates the configuration of the proposed antenna array. It consists of two radiating patch elements, a pair of T-shaped probes, and a feeding PDDN. With reference to the figure, the square patch elements with a side length of l 1 and spacing of l 2 arefabricatedonthetopfaceofthesup-substrate,the groundplaneandthefeedingcircuitarefabricatedonthe top and bottom faces of the sub-substrate, respectively. Both substrates are with dielectric constant 2.55, thickness.8 mm, (c) and loss tangent.3. An air gap with height of h and a pair of probes are introduced between the two substrates. The T-shaped probe consists of a horizontal stripline printed on the back side of the top substrate and a vertical metalized arm.oneendoftheverticalmetalizedarmisconnectedto the center of the horizontal stripline and the other end is connected to the PDDN through a circle slot etched on the ground plane and a via-hole in the sub-substrate. Figure 1 shows the PDDN. The PDDN composes of a power divider and two branch circuits connected to the Tx (port 1) and Rx (port 2) ports. When Tx port is excited, signal of Tx band is split into two equal magnitude and out-of-phase components coupled to the two radiating patches. Exciting the Rx port, same function can be obtained. The out-of-phase operation is realized by the λ/2 microstrip lines difference between the distances of the input port and two probes. Note that λ is the wavelength of passband center frequency. The Tx and Rx branches are both composed of a bandstop filter and an impedance transformer. The bandstop filter in Tx branch has the passband at the Tx band and the stopbandattherxband,andviceversa.theoverallsize of the antenna array is 2 13 7.6 mm 3. The detailed dimensions of the proposed antenna array are listed in Table 1. 2.2. Design of the Bandstop Filter (BSF). The BSF is shown in Figure 2. It comprises two open-circuited uniform

Antennas and Propagation 3 Z 1,θ 1 Z 2,θ 2 Z 3,θ 3 Z 1,θ 1 Z 3,θ 3 Z 2,θ 2 Transformed line With 5 ohm load Z in With 5 ohm load Z in Figure 2: Layout of the BSF: without a transformed line; with a transformed line. 2 S 11 2 S 11 4 6 S 21 4 S 21 8 6 1 1.9 2. 2.1 2.2 2.3 2.4 2.5 8 1.6 1.8 2. 2.2 2.4 2.6 2.8 3. S 11,Δθ= θ 2 /5 S 11,Δθ= θ 2 /1 S 11,Δθ= S 21,Δθ= θ 2 /5 S 21,Δθ= θ 2 /1 S 21,Δθ= S 11,Z 1 = 1, Z 2 =5 S 11,Z 1 = 1, Z 2 =25 S 11,Z 1 = 1, Z 2 =1 S 21,Z 1 = 1, Z 2 =5 S 21,Z 1 = 1, Z 2 =25 S 21,Z 1 = 1, Z 2 =1 Figure 3: Effect of the Δθ and impedance ratio. Δθ; impedance ratio (in, Z 1 = 1 Ω, Z 2 = 1 Ω, θ 2 =π/2;in,θ 2 =π/2, Δθ = θ 2 /5). impedance stubs (UISs) (Z 1,θ 1,Z 3,θ 3 ) and a low impedance (Z 2,θ 2 )TL.TheABCD parameters of the BSF are derived using the lossless TL model as A=cos θ 2 KZ 2 sin θ 2, B=jZ 2 sin θ 2, C=j(Rcos θ 2 + sin θ 2 KRZ Z 2 sin θ 2 +Kcos θ 2 ), 2 D= RZ 2 sin θ 2 + cos θ 2, where R= tan θ 1 Z 1, K= tan θ 3 Z 3. (1) (2) Then, the corresponding transmission coefficient and the reflection coefficient of the filter are as follows: S 11 = A+B/Z CZ D A+B/Z +CZ +D, (3) S 21 = 2 A+B/Z +CZ +D. (4) Z is the port impedance. According to [6], the transmission zeros are produced by the UISs. To simplify the analysis, we set θ 1 = θ 2 Δθ,θ 3 = θ 2 +Δθ,Z 1 = Z 3. Figure 3 shows the simulated S 11 and S 21 of the BSF with different Δθ. NotethatitcanbeseenthatΔθ has a significant impact on the transmission zeros of the BSF. Figure 3 shows the simulated S 11 and S 21 of the BSF with different impedance ratio. The stopband of the BSF will shift to low band when impedance ratio increases. Adjusting the Δθ and impedance ratio, a BSF with proper bandpass and stopband can be obtained. Here, a passband at 2.2 GHz and stopband at 2.4 GHz Tx BSF and a passband at 2.4 GHz and stopband at 2.2 GHz Rx BSF are designed. To eliminate the mutual interference between the Tx and Rx branches, a

4 Antennas and Propagation 4 1 35 2 3 3 4 5 Resistance (ohm) 25 2 15 1 6 5 7 1.5 2. 2.5 3. 2.31 2.34 2.37 2.4 2.43 S 11, without transformer S 12, without transformer S 11, with transformer S 12, with transformer re im 25 2 15 Resistance (ohm) 1 5 5 1 15 2.31 2.34 2.37 2.4 2.43 re im (c) Figure 4: Simulated S-parameter and input impedance of Tx BSF: S-parameter of the BSFs with and without transformer, input impedance Z in of the BSF without transformer, (c) input impedance Z in of the BSF with transformer (Z 1 = 1 Ω, Z 2 = 1 Ω, θ 2 =π/2, θ 2 =π/2, Δθ=θ 2 /5). λ/4 transformedlineisemployedasshowninfigure2, wherein λ is the wavelength of the stopband. The Tx (Rx) BPStogetherwiththetransformedlinecanbeequivalentto open circuit at the Rx (Tx) band. The S-parameter and the input impedance Z in of the Tx BSF with and without λ/4 transformedlineareshowninfigure4.itcanbeseenthat the S-parameter is not affected, but the value of Z in at 2.4 GHz is very large; thus the BSF with λ/4 transformed line can be equivalenttoterminalopen.theinputimpedanceoftherx BSF with λ/4 transformed line can also be equivalent to open circuitat2.2ghz.consequently,thetxandrxoperationcan work independently. 2.3. Design of the PDDN. Figures 5 and 5 show the configuration of the power divider and the PDDN, respectively. The power divider is a symmetrical structure like a C shape. When Δl is about quarter wavelength of the operating center frequencyoftheinputport,signalsfrominputport(port1) can split two equal magnitude and out-of-phase components to output ports (port 3 and port 4). The two equal magnitude and out-of-phase components coupled to the two patches through the two T-shaped probes can produce in-phase radiation at both of the radiating patches. The out-of-phase feeding network, Tx and Rx BSFs, and the λ/4 transformed lines constitute the PDDN. The

Antennas and Propagation 5 Output 2 (port 4) Output 1 (port 3) Input (port 1) Center of the power divider Δl Branch 2 Branch 1 Input 2 (port 2) Input 1 (port 1) Transformed line 2 Output 2 (port 4) Transformed line 1 λ 2 /4 λ 1 /4 Output 1 (port 3) Figure 5: Layout of the power divider. Layout of the PDDN. 4 36 4 36 2 18 2 4 18 1.6 1.8 2. 2.2 2.4 2.6 2.8 Phase difference (degree) 2 2 18 4 18 1.6 1.8 2. 2.2 2.4 2.6 2.8 Phase difference (degree) Phase difference. S 11 S 21 S 31 S 41 Phase difference. S 12 S 22 S 32 S 42 Figure 6:Simulated S-parameters and phase differences between the two output ports of the PDDN: port 1 excited; port 2 excited. phase difference between port 3 and port 4 of the PDDN is illustrated in Figure 6. As expected, 18 phase difference at the operating band of the excited port is obtained between port 3 and port 4 for port 1 or port 2 exited. Moreover, with reference to Figure 6, it can be seen that the PDDN can offer 45 db isolation between the two input ports. 2.4. Design of the T-Shaped Coupled Patch Antenna. In this section, two T-shaped probes coupled patches proposed in [9] are designed as the radiating elements of the antenna array. The configuration of the T-shaped probe coupled patch element is shown in Figure 7. The patch element together withthet-shapedprobecanbeequivalenttoatwo-order bandpass filter. When the coupling strengths between the T- shaped probes and the patches are proper, the two poles can be achieved. Thus, the operating band can be widened. As a result, the T-shaped probe coupled patch antenna designed as the radiating element is a good choice. 3. Simulated and Measured Results To demonstrate the idea, the integrated filtering microstrip duplex antenna array is designed and fabricated. Figure 8 Patch Substrate h Ground plane Feeding network T-shaped probe Figure 7: Layout of the T-shaped probe coupled antenna. illustrates the fabricated prototype. Figure 9 shows the simulated and measured reflection and transmission coefficients of the proposed antenna array. It is observed that themeasuredresultsagreewellwiththesimulationones,

6 Antennas and Propagation Figure 8: Prototype of the fabricated antenna array. 1 1 2 3 4 Realized gain (dbi) 1 2 3 5 6 7 2. 2.2 2.4 2.6 2.8 3. 4 5 2.1 2.2 2.3 2.4 2.5 S 11 EM S 12 EM S 22 EM S 11 meas. S 12 meas. S 22 meas. Figure 9: Simulated and measured S-parameter of the antenna array. except a small difference caused by the fabrication errors. The fractional bandwidths of the two operating bands are given by 3.1% (2.15 2.22 GHz) and 3.5% (2.37 2.46 GHz), respectively. And the port-to-port isolation is better than 35 db over the two bands. The simulated and measured realized gains of the antenna arrayareshowninfigure1.itisobservedthattheantenna array has a flat gain about 9.8 dbi from 2.15 GHz to 2.22 GHz for port 1 excited. This drops sharply to below 25 dbi at the 2.4 GHz band. When port 2 is excited, the antenna has a stable gain about 1 dbi from 2.37 GHz to 2.46 GHz. The gain is suppressed to below 3 dbi at the 2.2 GHz band. Figure 11 shows the simulated and measured normalized co- and cross-polarization radiation patterns of the antenna array in two orthogonal planes at 2.2 GHz for port 1 excited and port 2 terminated with a 5 Ω load. The measured and simulated results agree well. The maximum radiation direction can be steered by pattern reconfiguration [1, 11]. The proposed antenna exhibits a maximum radiation in the broadside direction with the polarization in the y-axis. And the measured cross-polarization discrimination (XPD) is over 2 db in both φ=9 and φ= planes. EM, port 1 excited EM, port 2 excited Meas., port 1 excited Meas., port 2 excited Figure 1: Simulated and measured realized antenna gain. Figure 12 shows the normalized simulated and measured 2.4 GHz radiation patterns for port 2 excited and port 1 terminated with a 5 Ω load. The radiation patterns also exhibit a maximum radiation in the broadside direction with the same polarization in the y-axis. The measured XPD is over 28 db in φ=9 and φ= planes. The simulated antenna efficiencies at 2.2 GHz and 2.4GHzareabout73%and75%,respectively.Table2summarizedtheperformancesoftheproposedantennacompared with other reported antennas in the literature. It can be observed that the proposed antenna array shows good performances of high gain, high isolation, and low crosspolarization level. 4. Conclusion An integrated filtering duplex microstrip antenna array with high isolation has been presented in this paper. The antenna array is composed of two T-shaped probes coupled patch elements and a PDDN. The PDDN is used as the powersplitter and isolated configuration. The lossless TL model is adopted to design the BSFs in PDDN. And the analysis of the PDDN is presented in detail. The simulated and measured

Antennas and Propagation 7 Table 2: Comparison with the previous works. Antennas Frequency Isolation Gain XPD [3] 2.45/5.5 >26 1.3/4.8 25/13 [4] 8.98/11.22 >22 4.3/4.2 13/19 [5] 2.45/5.5 >21 2.3/3.6 21.8/18.3 [6] 2.58/2.87 >32 5/4.5 2/28 This work 2.2/2.4 >35 9.8/1 2/28 3 33 1 2 3 3 6 3 33 1 2 3 3 6 27 9 27 9 24 12 24 12 21 18 15 21 18 15 Cross-Pol (EM) Co-Pol (EM) Cross-Pol (meas.) Co-Pol (meas.) Cross-Pol (EM) Co-Pol (EM) Cross-Pol (meas.) Co-Pol (meas.) Figure 11: Normalized radiation patterns at 2.2 GHz for port 1 excited: φ=9 ;φ=. 3 33 1 2 3 3 6 3 33 1 2 3 3 6 27 9 27 9 24 12 24 12 21 15 18 Cross-Pol (EM) Co-Pol (EM) Cross-Pol (meas.) Co-Pol (meas.) 21 15 18 Cross-Pol (EM) Co-Pol (EM) Cross-Pol (meas.) Co-Pol (meas.) Figure 12: Normalized radiation patterns at 2.4 GHz for port 2 excited: φ=9 ;φ=. results agree well, showing good performances of impedance matching,gain,portsisolation,xpd,andsimilarradiation pattern. Competing Interests The authors declare that there is no conflict of interests regarding the publication of this paper. Acknowledgments This work is supported by the National Natural Science Foundation of China (61571194). References [1] M. Nakano, H. Arai, W. Chujo, M. Fujise, and N. Goto, Feed circuits of double-layered self-diplexing antenna for mobile satellite communications, IEEE Transactions on Antennas and Propagation, vol. 4, no. 1, pp. 1269 1271, 1992. [2] C.-X. Mao, S. Gao, Y. Wang, F. Qin, and Q.-X. Chu, Multimode resonator-fed dual-polarized antenna array with enhanced bandwidth and selectivity, IEEE Transactions on Antennas and Propagation, vol. 63, no. 12, pp. 5492 5499, 215. [3] Y. J. Lee, J. H. Tarng, and S. J. Chung, A filtering diplexing antenna for dual-band operation with similar radiation patterns and low cross-polarization levels, IEEE Antennas and Wireless Propagation Letters,Inpress.

8 Antennas and Propagation [4]Y.Zhang,X.Y.Zhang,L.-H.Ye,andY.-M.Pan, Dual-band base station array using filtering antenna elements for mutual coupling suppression, IEEE Transactions on Antennas and Propagation,vol.64,no.8,pp.3423 343,216. [5] C.-X. Mao, S. Gao, Y. Wang, F. Qin, and Q.-X. Chu, Compact highly integrated planar duplex antenna for wireless communications, IEEE Transactions on Microwave Theory and Techniques,vol.64,no.7,pp.26 213,216. [6] F.-C. Chen, N.-Y. Zhang, P.-S. Zhang, and Q.-X. Chu, Design of ultra-wideband bandstop filter using defected ground structure, Electronics Letters, vol. 49, no. 16, pp. 11 111, 213. [7] Y.-C. Lu and Y.-C. Lin, A mode-based design method for dualband and self-diplexing antennas using double T-stubs loaded aperture, IEEE Transactions on Antennas and Propagation, vol. 6, no. 12, pp. 5596 563, 212. [8] S. Mukherjee and A. Biswas, Design of self-diplexing substrate integrated waveguide cavity backed slot antenna, IEEE Antennas and Wireless Propagation Letters,vol.15,pp.1775 1778,216. [9] C. L. Mak, K. F. Lee, and K. M. Luk, Broadband patch antenna with a T-shaped probe, IEE Proceedings Microwaves, Antennas and Propagation,vol.147,no.2,pp.73 76,2. [1] L. Gong, K. Y. Chan, and R. Ramer, A beam steering singlearm rectangular spiral antenna with large azimuth space coverage, in Proceedings of the IEEE 14th Annual Wireless and Microwave Technology Conference (WAMICON 13), pp.1 4, IEEE, Orlando, Fla, USA, April 213. [11] L. Gong, Y. Yang, K. Y. Chan, and R. Ramer, RHCP patternreconfigurable spiral antenna biased with two DC signals, Microwave and Optical Technology Letters, vol.56,no.7,pp. 1636 164, 214.

Rotating Machinery Engineering The Scientific World Journal Distributed Sensor Networks Sensors Control Science and Engineering Advances in Civil Engineering Submit your manuscripts at https://www.hindawi.com Electrical and Computer Engineering Robotics VLSI Design Advances in OptoElectronics Navigation and Observation Chemical Engineering Active and Passive Electronic Components Antennas and Propagation Aerospace Engineering Modelling & Simulation in Engineering Shock and Vibration Advances in Acoustics and Vibration