Stepper Motors and Control Part I - Unipolar Stepper Motor and Control (c) 1999 by Rustle Laidman, All Rights Reserved

Similar documents
combine regular DC-motors with a gear-box and an encoder/potentiometer to form a position control loop can only assume a limited range of angular

Assembly Language. Topic 14 Motion Control. Stepper and Servo Motors

30V 30 R1 120V R V 30 R1 120V. Analysis of a single-loop circuit using the KVL method

Series Circuits. Chapter

Electronic Speed Controls and RC Motors

MICROCONTROLLERS Stepper motor control with Sequential Logic Circuits

Lab Exercise 9: Stepper and Servo Motors

MOSFET as a Switch. MOSFET Characteristics Curves

CHAPTER 5 CONCEPTS OF ALTERNATING CURRENT

User's Manual. Step Motor Driver

G251X MANUAL STEP MOTOR DRIVE

:for... A G!,Jide to Stepp~s~ Se~o~, ~,6d ~er Electrical M~chines

Controlling Stepper Motors Using the Power I/O Wildcard

EEE3410 Microcontroller Applications Department of Electrical Engineering Lecture 11 Motor Control

ServoStep technology

AC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

PART 2 - ACTUATORS. 6.0 Stepper Motors. 6.1 Principle of Operation

Achopper drive which uses the inductance of the motor

Upgrading from Stepper to Servo

Inductance, capacitance and resistance

CIS009-2, Mechatronics Signals & Motors

DISCONTINUED PRODUCT FOR REFERENCE ONLY. See A3967 or A3977 for new design. BiMOS II UNIPOLAR STEPPER-MOTOR TRANSLATOR/DRIVER FEATURES

Stepper Motors in C. Unipolar (5 lead) stepper motorr. $1.95 from 100 steps per rotation. 24V / 160mA / 600 gm cm holding 160mA

Feedback Devices. By John Mazurkiewicz. Baldor Electric

Single-Phase Transformation Review

L E C T U R E R, E L E C T R I C A L A N D M I C R O E L E C T R O N I C E N G I N E E R I N G

MLA High Performance Microstepping Driver. User s Guide E. Landon Drive Anaheim, CA

How to Build Radiant Chargers

G210X STEP MOTOR DRIVE REV 5: March 25, 2011

G201X STEP MOTOR DRIVE REV 5: SEPTEMBER 13, 2010

A Practical Guide to Free Energy Devices

DUAL STEPPER MOTOR DRIVER

Introduction to Relays. ECE/CS 5780/6780: Embedded System Design. Various Relay Configurations. Types of Relays. Drawing of an EM Relay

User's Manual. Step Motor Driver L E V E L

M.Kaliamoorthy and I.Gerald PSNACET/EEE CHAPTER 2 STEPPER MOTORS

APPLICATIONS Some common applications include: milling, turning, engraving, drilling, hot wire foam cutting and animation camera control.

EXPERIMENT 6: Advanced I/O Programming

BLD75-1. Bilevel Step Motor Driver. User s Guide. #L010125

Administrative Notes. DC Motors; Torque and Gearing; Encoders; Motor Control. Today. Early DC Motors. Friday 1pm: Communications lecture

Step vs. Servo Selecting the Best

PKG-341-MLA-CBL System Diagram and Specifications

UNDERSTANDING HORIZONTAL OUTPUT STAGES OF COMPUTER MONITORS

Brushed DC Motor PWM Speed Control with the NI myrio, Optical Encoder, and H-Bridge

Experiment 45. Three-Phase Circuits. G 1. a. Using your Power Supply and AC Voltmeter connect the circuit shown OBJECTIVE

ME430 Mechatronics. Lab 2: Transistors, H Bridges, and Motors. Name. Name. The lab team has demonstrated:

3. What is the difference between Switched Reluctance motor and variable reluctance stepper motor?(may12)

Semiconductor 9/21/2015

Page ENSC387 - Introduction to Electro-Mechanical Sensors and Actuators: Simon Fraser University Engineering Science

Computer Numeric Control

Detect stepper motor stall with back EMF technique (Part 1)

Laboratory Exercise 1 Microcontroller Board with Driver Board

Brushed DC Motor System

CEU Certification Test Drive Road Show: TRM040-DrivesRoadShow-CEU

Exercise 1: The DC Ammeter

Series Circuits. Chapter

Actuators. EECS461, Lecture 5, updated September 16,

Application Note. I C s f o r M o t o r C o n t r o l. Evaluation board for the TDA5143/TDA5144. Report No: EIE/AN R. Galema

In an unmagnetized piece of iron, the atoms are arranged in domains. In each domain the atoms are aligned, but the domains themselves are random.

NJM3777 DUAL STEPPER MOTOR DRIVER NJM3777E3(SOP24)

3 Circuit Theory. 3.2 Balanced Gain Stage (BGS) Input to the amplifier is balanced. The shield is isolated

8902/RE and 8902/RR Resolver Speed Feedback Options

Step Motor Controller I. Introduction II. Step Motor Basics

Variable Transformers Product Design & Engineering Data

Simulation Study of MOSFET Based Drive Circuit Design of Sensorless BLDC Motor for Space Vehicle

MBC Bipolar Microstep Driver. User s Guide E. Landon Drive Anaheim, CA

Basic Electronics Course Part 2

JFET 101, a Tutorial Look at the Junction Field Effect Transistor 8May 2007, edit 2April2016, Wes Hayward, w7zoi

R2000 FAQs [R2000FAQ.doc rev:0807]

Transformer circuit calculations

The NMIH-0050 H-Bridge

05-VAWT Generator Testing

THE UNIVERSITY OF BRITISH COLUMBIA. Department of Electrical and Computer Engineering. EECE 365: Applied Electronics and Electromechanics

Robot Actuators. Motors and Control. Stepper Motor Basics. Increased Resolution. Stepper motors. DC motors AC motors. Physics review: Nature is lazy.

815-BR SERVO AMPLIFIER FOR BRUSH SERVOMOTORS

Three-Phase Induction Motors. By Sintayehu Challa ECEg332:-Electrical Machine I

G250X MANUAL STEP MOTOR DRIVE

Thermal Imaging, Power Quality and Harmonics

Aligarh College of Engineering & Technology (College Code: 109) Affiliated to UPTU, Approved by AICTE Electrical Engg.

CN0140 & CN0150 SERIES

Product Information. Latching Switch Hall-Effect IC Basics. Introduction

Generator Advanced Concepts

INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMOUS) Dundigal, Hyderabad

R208 Microstepping Driver. User Manual Version 1.3. Lin Engineering Vineyard Blvd, Morgan Hill, CA 95037

Product Information. Bipolar Switch Hall-Effect IC Basics. Introduction

BLOCK DIAGRAM OF THE UC3625

BLOCK DIAGRAM OF THE UC3625

CoolBLUE Inductive Absorbers NaLA Noise Line Absorbers

Designated client product

Stepper motors. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Experiment (1) Principles of Switching

Alternating Current Page 1 30

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

Embedded Systems Lab Lab 7 Stepper Motor Application

Paper number: Principles of electrical and electronics technology Paper series: December Practice

Basic NC and CNC. Dr. J. Ramkumar Professor, Department of Mechanical Engineering Micro machining Lab, I.I.T. Kanpur

EE 201 Lab 1. Meters, DC sources, and DC circuits with resistors

The Mechatronics Sorter Team Members John Valdez Hugo Ramirez Peter Verbiest Quyen Chu

A Subsidiary of Regal-Beloit Corporation. AC Inverter Terminology

SRI SUKHMANI INSTITUTE OF ENGINEERING & TECHNOLOGY DERA BASSI DEPARTMENT: ELECTRONICS & COMM. LABORATORY MANUAL LAB: EMI SUBJECT CODE: SEMESTER: 4th

PHASE BRUSHLESS DC MOTOR CONTROLLER/DRIVER FEATURES

Transcription:

Copyright Notice: (C) June 2000-2008 by Russell Laidman. All Rights Reserved. ------------------------------------------------------------------------------------ The material contained in this project, including Tutorials, Documentation, and Software is copyright protected. You are not permitted to re-distribute any part without specific written permission from the author. Many of the figures contain material from Douglas Jones's stepping motor tutorial; this material is used with his permission.for additional information, please contact admin at Stepperworld.com Stepper Motors and Control Part I - Unipolar Stepper Motor and Control (c) 1999 by Rustle Laidman, All Rights Reserved Introduction Stepper Motors have several features which distinguish them from AC Motors, and DC Servo Motors. Brushless - Steppers are brushless. Motors with contact brushes create sparks, undesirable in certain environments. (Space missions, for example.) Holding Torque - Steppers have very good low speed and holding torque. Steppers are usually rated in terms of their holding force (oz/in) and can even hold a position (to a lesser degree) without power applied, using magentic 'detent' torque. Open loop positioning - Perhaps the most valuable and interesting feature of a stepper is the ability to position the shaft in fine predictable increments, without need to query the motor as to its position. Steppers can run 'open-loop' without the need for any kind of encoder to determine the shaft position. Closed loop systems- systems that feed back position information, are known as servo systems. Compared to servos, steppers are very easy to control, the position of the shaft is guaranteed as long as the torque of the motor is sufficient for the load, under all its operating conditions. Load Independent - The rotation speed of a stepper is independent of load, provided it has sufficient torque to overcome slipping. The higher rpm a stepper motor is driven, the more torque it needs, so all steppers eventually poop out at some rpm and start slipping. Slipping is usually a disaster for steppers, because the position of the shaft becomes unknown. For this reason, software usually keeps the stepping rate within a maximum top rate. In applications where a known RPM is needed under a varying load, steppers can be very handy. Types of steppers Stepper Motors come in a variety of sizes, and strengths, from tiny floppy disk motors, to huge machinery steppers rated over 1000 oz in. There are two basic types of steppers-- bipolar and unipolar. The bipolar stepper has 4 wires. Unipolar steppers have 5,6 or 8 wires. This document will discuss control of Unipolar Steppers. Motor Basics 1 of 7 2/12/13 7:29 AM

The Unipolar Stepper motor has 2 coils, simple lengths of wound wire. The coils are identical and are not electrically connected. Each coil has a center tap - a wire coming out from the coil that is midway in length between its two terminals. You can identify the separate coils by touching the terminal wires together-- If the terminals of a coil are connected, the shaft becomes harder to turn. Because of the long length of the wound wire, it has a significant resistance (and inductance). You can identify the center tap by measuring resistance with a suitable ohm-meter (capable of measuring low resistance <10 ohm) The resistance from a terminal to the center tap is half the resistance from the two terminals of a coil. Coil resistance of half a coil is usually stamped on the motor; for example, '5 ohms/phase' indicates the resistance from center tap to either terminal of a coil. The resistance from terminal to terminal should be 10 ohms. Motor Control Circuitry Current flowing through a coil produces a magnet field which attracts a permanent magnet rotor which is connected to the shaft of the motor. The basic principle of stepper control is to reverse the direction of current through the 2 coils of a stepper motor, in sequence, in order to influence the rotor. Since there are 2 coils and 2 directions, that gives us a possible 4-phase sequence. All we need to do is get the sequencing right and the motor will turn continuously. You may wonder how the stepper can achieve such fine stepping increments with only a 4-phase sequence. The internal arrangement of the motor is quite complex- the winding and core repeating around the perimeter of the motor many times. The rotor is advanced only a small angle, either forward or reverse, and the 4-phase sequence is repeated many times before a complete revolution occurs. Let us return to the 4-phase sequence of reversing the current though the 2 coils. A Bipolar stepper controller 2 of 7 2/12/13 7:29 AM

achieves the current reversal by reversing the polarity at the two terminals of a coil. The Unipolar controller takes advantage of the center tap to achieve the current reversal with a clever trick -- The center tap is tied to the positive supply, and one of the 2 terminals is grounded to get the current flowing one direction. The other terminal is grounded to reverse the current. Current can thus flow in both directions, but only half coils are energized at a time. Both terminals are never grounded at the same time, which would energize both coils, achieving nothing but a waste of power. Conceptual Model of Unipolar Stepper Motor With center taps of the windings wired to the positive supply, the terminals of each winding are grounded, in sequence, to attract the rotor, which is indicated by the arrow in the picture. (Remember that a current through a coil produces a magnetic field.) This conceptual diagram depicts a 90 degree step per phase. In a basic "Wave Drive" clockwise sequence, winding 1a is de-activated and winding 2a activated to advance to the next phase. The rotor is guided in this manner from one winding to the next, producing a continuous cycle. Note that if two adjacent windings are activated, the rotor is attracted mid-way between the two windings. The following table describes 3 useful stepping sequences and their relative merits. The sequence pattern is represented with 4 bits, a '1' indicates an energized winding. After the last step in each sequence the sequence repeats. Stepping backwards through the sequence reverses the direction of the motor. Sequence Name Description Table of Stepping Sequences 0001 0010 0100 1000 Wave Drive, One-Phase Consumes the least power. Only one phase is energized at a time. Assures positional accuracy regardless of any winding imbalance in the motor. 3 of 7 2/12/13 7:29 AM

0011 0110 1100 1001 Hi-Torque, Two-Phase Hi Torque - This sequence energizes two adjacent phases, which offers an improved torque-speed product and greater holding torque. 0001 0011 0010 0110 0100 1100 1000 1001 Half-Step Half Step - Effectively doubles the stepping resolution of the motor, but the torque is not uniform for each step. (Since we are effectively switching between Wave Drive and Hi-Torque with each step, torque alternates each step.) This sequence reduces motor resonance which can sometimes cause a motor to stall at a particular resonant frequency. Note that this sequence is 8 steps. Identifying Stepper Motors Stepper motors have numerous wires, 4, 5, 6, or 8. When you turn the shaft you will usually feel a "notched" movement. Motors with 4 wires are probably Bipolar motors and will not work with a Unipolar control circuit. The most common configurations are pictured above. You can use an ohm-meter to find the center tap - the resistance between the center and a leg is 1/2 that from leg to leg. Measuring from one coil to the other will show an open circuit, since the 2 coils are not connected. (Notice that if you touch all the wires together, with power off, the shaft is difficult to turn!) Shortcut for finding the proper wiring sequence Connect the center tap(s) to the power source (or current-limiting resistor.) Connect the remaining 4 wires in 4 of 7 2/12/13 7:29 AM

any pattern. If it doesn't work, you only need try these 2 swaps... 1 2 4 8 - (arbitrary first wiring order) 1 2 8 4 - switch end pair 1 8 2 4 - switch middle pair You're finished when the motor turns smoothly in either direction. If the motor turns in the opposite direction from desired, reverse the wires so that ABCD would become DCBA. Stepper Motor Ratings Manufacturers rate stepper motors with at least two of the familiar electrical terms: voltage, current, resistance. When one of these terms is missing it can be derived using the formula: Voltage = Current x Resistance. If only the current rating is known, the resistance rating can be found by carefully measuring a half coil (center-tap to either terminal) with an ohmmeter. In the rating nomenclature, a 'phase' refers to the minimum operational coil, which is a half-coil for unipolar motors. For example, '5 ohms/phase' indicates the half-coil resistance. A current rating (i.e. 2 amps/phase) specifies the maxium current the motor can sustain through a half-coil for an extended period without overheating. The current rating is usually taken as the ideal operating current. Selecting a current limiting resistor It is important that neither the motor nor controller exceed their rated currents. There is a precise relationship between the Voltage, Resistance, and Current ratings of both the motor and controller which must be understood before experimenting with motors. The most straightforward way of reducing current to a motor is to reduce the voltage. With power supplied to the motor at its rated voltage, calculations are easy-- the motor will draw the rated current. There may be times, however, when the rated motor voltage is not available and you need to reduce current to the motor, or you simply wish to run the motors below the rated current. (There is a benefit of running motors at much higher than rated voltages with proper current-limiting -- the motors can achieve higher RPMs.) A current-limiting resistor in series with the motor can be used to effectively limit current to the motor, at the cost of wasted power. The resistor used is a special "power resistor" which must dissipate heat. Ideally, the resistor should be a non-inductive type so as not to interfere with the inductance of the motor and control circuit (especially when current-limiting to achieve higher RPMs). The value of a current-limiting resistor in series with a motor coil can be derived from the following equality... Where... Vresistor = (Vsupply - Vmotor - Vdrop) = IR Vsupply = Power supply voltage Vmotor = Motor voltage rating Vresistor = Voltage developed across the power resistor Vdrop = Voltage drop due to transistors (0v for FETs, 1-2v otherwise) 5 of 7 2/12/13 7:29 AM

Vmotor and I are fixed attributes of the motor. R is selected based on the power supply voltage that will be used. (This resistor also has a power rating.) First, calculate Vresistor... Vresistor = Vsupply - Vmotor - Vdrop Then solve for R based on the desired current... R = Vresistor / I Minimum resistor wattage = Vresistor * I For example, Using a power supply of 12 volts, what current limiting resistor should be chosen to deliver 1 amp of current to a motor with a voltage rating of 5v? Assume 1 volt drop due to the transistors used. Vresistor = (12v - 5v - 1v) = 6v R = 6V / 1 amp = 6 ohm What will the voltage be across this resistor? 6v What current will flow through this resistor? (same as motors current rating) = 1a What power rating should this resistor be? 6v * 1a = 6 watt, minimum. In practice, the wattage rating of the power resistor should be at least twice the calculated minimum. In addition, heat sinking may be required for power resistors. Ideally, two matched current limiting resistors should be used, one in series with each of the 2 motor coil center taps. The unipolar driver can share a single power resistor when the motor center taps are tied together, as in the 5-wire configuration. This single resistor can be thought of as two calculated resistors with terminals shorted, so they operate in parallel. The value of the single resistor is then half the calculated ohm value, with twice the calculated wattage rating. This works best in HI-Torque mode. Power Supply Considerations 6 of 7 2/12/13 7:29 AM

The current drawn by a single motor, holding in Hi-Torque mode is twice the rated current. Therefore the power supply must have a current rating of at least twice the motor current rating times the number of motors. This current requirement is the same regardless of operating voltage. (Don't forget the power resistors when the power supply voltage exceeds the motor voltage.) In summation, make your calculations carefully, and always apply caution when making any kind of modification to a circuit. Check the circuit often for over-heating. Heat Considerations Over-heating can be an early indicator of a problem or need for additional heat sinking. This is true of both the controller and motors. Components can be warm, even hot to the touch, but not so hot that you can't leave your finger on them for a few seconds. Motors are designed to be mounted in such a way that heat is drawn away from the motors. This is usually accomplished with a metal mounting bracket. Motors that are not yet mounted may require some type of temporary heat sinking. Motors heat more running at the LOW speeds or in Hold Mode. If a component or motor is running too hot, try using the Wave Drive stepping mode only, if it still runs too hot, try heat sinking, and/or a fan. If it still runs too hot, something is wrong. This is the end of the Unipolar Stepper Motor Tutorial. At this time, please refer to the documentation that accompanies your particular project for precautions and further information. Visit the www.stepperworld.com web site 7 of 7 2/12/13 7:29 AM