Fundamentals of Remote Sensing: SAR Interferometry

Similar documents
Fundamentals of Remote Sensing: the Imaging RADAR System

Synthetic Aperture Radar Interferometry (InSAR) Technique (Lecture I- Tuesday 11 May 2010)

SARscape Modules for ENVI

RADAR REMOTE SENSING

ANALYSIS OF SRTM HEIGHT MODELS

Detection of a Point Target Movement with SAR Interferometry

COMPARATIVE ANALYSIS OF INSAR DIGITAL SURFACE MODELS FOR TEST AREA BUCHAREST

THE NASA/JPL AIRBORNE SYNTHETIC APERTURE RADAR SYSTEM. Yunling Lou, Yunjin Kim, and Jakob van Zyl

RADAR INTERFEROMETRY FOR SAFE COAL MINING IN CHINA

TanDEM-X: Mission Status & Scientific Contribution

ACTIVE SENSORS RADAR

RADAR (RAdio Detection And Ranging)

Fringe 2015 Workshop

Principles of Remote Sensing. Shuttle Radar Topography Mission S R T M. Michiel Damen. Dept. Earth Systems Analysis

SAR Remote Sensing (Microwave Remote Sensing)

Environmental Impact Assessment of Mining Subsidence by Using Spaceborne Radar Interferometry

TerraSAR-X Applications Guide

Specificities of Near Nadir Ka-band Interferometric SAR Imagery

remote sensing? What are the remote sensing principles behind these Definition

Combining Optical and SAR Data to Monitor Temprerate Glaciers

Review. Guoqing Sun Department of Geography, University of Maryland ABrief

Generation of Fine Resolution DEM at Test Areas in Alaska Using ERS SAR Tandem Pairs and Precise Orbital Data *

A first comparison of Cosmo-Skymed and TerraSAR-X data over Chamonix Mont-Blanc test-site

Microwave Remote Sensing (1)

Introduction Active microwave Radar

Sentinel-1 System Overview

HIGH RESOLUTION DIFFERENTIAL INTERFEROMETRY USING TIME SERIES OF ERS AND ENVISAT SAR DATA

Monitoring the Earth Surface from space

ASAR Training Course, Hanoi, 25 February 7 March 2008 Introduction to Radar Interferometry

FIRST DATA ACQUISITION AND PROCESSING CONCEPTS FOR THE TANDEM-X MISSION

Playa del Rey, California InSAR Ground Deformation Monitoring Interim Report H

DEMS BASED ON SPACE IMAGES VERSUS SRTM HEIGHT MODELS. Karsten Jacobsen. University of Hannover, Germany

CEGEG046 / GEOG3051 Principles & Practice of Remote Sensing (PPRS) 8: RADAR 1

Exploring the Potential Pol-InSAR Techniques at X-Band: First Results & Experiments from TanDEM-X

Introduction to radar. interferometry

MODULE 9 LECTURE NOTES 2 ACTIVE MICROWAVE REMOTE SENSING

Introduction to Radar

European Space Agency and IPY

ESA Radar Remote Sensing Course ESA Radar Remote Sensing Course Radar, SAR, InSAR; a first introduction

Motion Detection Using TanDEM-X Along-Track Interferometry

IMPACT OF BAQ LEVEL ON INSAR PERFORMANCE OF RADARSAT-2 EXTENDED SWATH BEAM MODES

Nadir Margins in TerraSAR-X Timing Commanding

Remote Sensing. Ch. 3 Microwaves (Part 1 of 2)

Comparison between SAR atmospheric phase screens at 30 by means of ERS and ENVISAT data

PALSAR SCANSAR SCANSAR Interferometry

Introduction to Microwave Remote Sensing

21-Sep-11. Outline. InSAR monitoring of CO2 sequestration - Complications. Enhanced solution (novel spatiotemporal atmospheric filtering)

TerraSAR-X Applications Guide

SATELLITE OCEANOGRAPHY

Synthetic Aperture Radar

Polarisation Capabilities and Status of TerraSAR-X

9/13/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011

Microwave remote sensing. Rudi Gens Alaska Satellite Facility Remote Sensing Support Center

Interferometric Cartwheel 1

Acknowledgment. Process of Atmospheric Radiation. Atmospheric Transmittance. Microwaves used by Radar GMAT Principles of Remote Sensing

RESERVOIR MONITORING USING RADAR SATELLITES

MULTI-CHANNEL SAR EXPERIMENTS FROM THE SPACE AND FROM GROUND: POTENTIAL EVOLUTION OF PRESENT GENERATION SPACEBORNE SAR

Figure 1: C band and L band (SIR-C/X-SAR images of Flevoland in Holland). color scheme: HH: red, HV:green, VV: blue

Synthetic Aperture Radar (SAR) images features clustering using Fuzzy c- means (FCM) clustering algorithm

PSInSAR VALIDATION BY MEANS OF A BLIND EXPERIMENT USING DIHEDRAL REFLECTORS

Radar and Satellite Remote Sensing. Chris Allen, Associate Director Technology Center for Remote Sensing of Ice Sheets The University of Kansas

UAVSAR in Africa. Quality Assurance and Preliminary Results. Brian Hawkins, UAVSAR Team

Development of a Ground-based Synthetic Aperture Radar System for Highly Repeatable Measurements

SARscape for ENVI. A Complete SAR Analysis Solution

Envisat and ERS missions: data and services

TerraSAR-X Mission: Application and Data Access

SAR Imagery: Airborne or Spaceborne? Presenter: M. Lorraine Tighe PhD

RADARSAT-2 Image Quality and Calibration Update

Damage detection in the 2015 Nepal earthquake using ALOS-2 satellite SAR imagery

Monitoring of Bridge Deformation with InSAR: An Experimental Study

EKATERINA TYMOFYEYEVA GMTSAR BATCH PROCESSING

Towards a Polarimetric SAR Processor for Airborne Sensor

Towards a polarimetric SAR processor for airborne sensor

Terrain Motion and Persistent Scatterer InSAR

All rights reserved. ENVI, IDL and Jagwire are trademarks of Exelis, Inc. All other marks are the property of their respective owners.

MODULE 7 LECTURE NOTES 3 SHUTTLE RADAR TOPOGRAPHIC MISSION DATA

EE 529 Remote Sensing Techniques. Introduction

THREE-DIMENSIONAL MAPPING USING BOTH AIRBORNE AND SPACEBORNE IFSAR TECHNOLOGIES ABSTRACT INTRODUCTION

An Introduction to Geomatics. Prepared by: Dr. Maher A. El-Hallaq خاص بطلبة مساق مقدمة في علم. Associate Professor of Surveying IUG

Persistent Scatterer InSAR

Radar remote sensing from space for monitoring deformations affecting urban areas and infrastructures

High resolution ground deformations monitoring by COSMO-SkyMed PSP SAR interferometry

Change detection in cultural landscapes

Index 275. K Ka-band, 250, 259 Knowledge-based concepts, 110

Earth Observation and Sensing Technologies: a focus on Radar Imaging Developments. Riccardo Lanari

Introduction to Imaging Radar INF-GEO 4310

SENTINEL-1 Toolbox. Polarimetric Tutorial Issued March 2015 Updated August Luis Veci

URBAN MONITORING USING PERSISTENT SCATTERER INSAR AND PHOTOGRAMMETRY


Radar Imaging Wavelengths

7.7.2 TerraSAR-X-Add-on for Digital Elevation Measurements

Forest Resources Assessment using Synthe c Aperture Radar

Trainings and capacity buildings of space

Nazemeh Ashrafianfar, Hans-Peter Hebel and Wolfgang Busch

ASAR WIDE-SWATH SINGLE-LOOK COMPLEX PRODUCTS: PROCESSING AND EXPLOITATION POTENTIAL

Detection of traffic congestion in airborne SAR imagery

GMES Sentinel-1 Transponder Development

Copernicus Introduction Lisbon, Portugal 13 th & 14 th February 2014

10 Radar Imaging Radar Imaging

Introduction to Remote Sensing Fundamentals of Satellite Remote Sensing. Mads Olander Rasmussen

Transcription:

INSIS Fundamentals of Remote Sensing: SAR Interferometry Notions fondamentales de télédétection : l interférométrie RSO Gabriel VASILE Chargé de Recherche CNRS gabriel.vasile@gipsa-lab.grenoble-inp.fr Nikola BESIC Doctorant nikola.besic@gipsa-lab.grenoble-inp.fr 1 Télédétection radar 3A SICOM SIM SN

azimut SAR focusing: ERS-1, Chamonix valley, 512 512 pixels range Range focusing Azimuth focusing SAR image formation: Echolocation: short pulse Linear frequency (chirp) modulation Demodulation: match filtering Synthetic Aperture Radar SAR amplitude image SYTER, Telecom ParisTech 2 Télédétection radar 3A SICOM SIM SN

azimut SAR focusing: ERS-1, Chamonix valley, 512 512 pixels range Range focusing Azimuth focusing SAR image formation: Echolocation: short pulse Linear frequency (chirp) modulation Demodulation: match filtering Synthetic Aperture Radar SAR phase image SYTER, Telecom ParisTech POL/In/POL-InSAR 3 Télédétection radar 3A SICOM SIM SN

Sinclair formula & differential measurements Emission: H and V Reception: H and V E S e jkr r I S E S S S HH VH S S HV VV Penetration depth + I E S E Propagation Backscattering mechanisms 2 phenomena -> differential measurements 4 Télédétection radar 3A SICOM SIM SN

Differential measurements InSAR E S e jkr r I S E -> wave/media interactions -> path difference Two SLC images: k M (master), k S (slave) Same target area Slightly different viewing angles Hermitian product -> complex cross-correlation M&S intensities Internal coherence 5 Télédétection radar 3A SICOM SIM SN

Differential measurements InSAR E S e jkr r I S E -> wave/media interactions -> path difference Two SLC images: k M (master), k S (slave) Same target area Slightly different viewing angles Hermitian product -> complex cross-correlation Normalized complex cross-correlation INTERFEROMETRIC PHASE: = arg{c} INTERFEROMETRIC COHERENCE: c = ABS{C} 6 Télédétection radar 3A SICOM SIM SN

Differential measurements POLSAR E S e jkr r I S E -> wave/media interactions -> path difference Fully polarimetric SAR data Cross-polar symmetrisation (monostatic case) Vectorisation on the Pauli basis (target vector): k=[s HH +S VV S HH -S VV 2S HV ] T Hermitian product -> complex correlation Polarimetric coherency matrix 7 Télédétection radar 3A SICOM SIM SN

Differential measurements POL-InSAR E S e jkr r I S E Two acquisitions -> wave/media interactions -> path difference Three polarization configurations k {HH,VV,HV} Hermitian product -> complex correlation Polarimetric M&S coherency matrices: Polarimetric interferometric coherency matrix: 8 Télédétection radar 3A SICOM SIM SN

Radar Interferometry Outlines Overview of interferometry Satellite Interferometry Satellite InSAR geometry InSAR processing measuring topography Satellite Differential InSAR D-InSAR processing measuring motion on the Earth s surface SAR examples 9 Télédétection radar 3A SICOM SIM SN

Satellite Interferometry For satellite interferometry of the repeat-pass type, one image is taken one day, and a second image is taken of the same scene one or more days later. More images can be taken at later intervals and used in the processing, as long as the scene retains reasonable coherence over the longer time interval Because there is always a time delay, and usually parallax as well, assumptions must be made or processing must be done to remove the unwanted component of motion or topography In Feb. 2000, the Shuttle Radar Topography Mission obtained topographic (elevation) data of much of the Earth s surface using single-pass interferometry, i.e., image pairs were acquired at the same time using two radar antennas separated physically to create a 60-m fixed baseline. 10 Télédétection radar 3A SICOM SIM SN

Radar Interferometry from Space SRTM TANDEM ERS-1/2 11 Télédétection radar 3A SICOM SIM SN

Radar Interferometry from Space SRTM TANDEM ERS-1/2 12 Télédétection radar 3A SICOM SIM SN

Radar Interferometry from Space : SRTM mission NASA / DLR 13 Télédétection radar 3A SICOM SIM SN

Coverage of 11-day SRTM Mission (Feb. 2000) NASA / DLR 14 Télédétection radar 3A SICOM SIM SN

SRTM Perspective View with Landsat Overlay Elevation data from C-band across-track interferometric radar, SRTM Acquired Feb. 16, 2000 Height exaggeration 2x Landsat overlay Acquired: Dec. 14, 1984 View toward the North 34.42 N 119.17 W Santa Clara River Valley, California NASA / DLR 15 Télédétection radar 3A SICOM SIM SN

ERS 1 and ERS 2 TANDEM Mission (1995-2000) ESA Repeat pass interferometric SAR uses two antenna positions to acquire two SAR images. Vertical height is determined by comparing phase measurements. Observable terrain shifts are on the order of the radar wavelength or smaller. 16 Télédétection radar 3A SICOM SIM SN

Radar Interferometry from Space 17 Télédétection radar 3A SICOM SIM SN

ERS 1 and ERS 2 TANDEM Mission Schefferville, Québec Colour: Interferogram Phase, 16 steps from 0 to 2π radians Intensity: Interferogram Magnitude Saturation: Coherence Interferogram Magnitude is the background black-and-white image - similar to regular SAR image. Coherence (colour brightness) indicates the degree of phase correlation. Low coherence indicates greater change (lakes at upper left). High coherence indicates least change (exposed rocks at lower left). Colour-coded interferogram phase: a phase change of 2π radians corresponds to an altitude change of 232 m 18 Télédétection radar 3A SICOM SIM SN

Satellite Repeat-pass InSAR Geometry A radar is essentially a distance or range measuring sensor It can measure range in 2 ways: Time delay: R=c/2B = 8 m Phase: R=λ/100 = 1 mm Phase is much more accurate but is a relative measurement only 19 Télédétection radar 3A SICOM SIM SN

How a SAR Measures Phase 20 Télédétection radar 3A SICOM SIM SN

Phase after Scattering from a Random Surface 21 Télédétection radar 3A SICOM SIM SN

Interferometer Phase 22 Télédétection radar 3A SICOM SIM SN

How Differential Phase Measures Topography 23 Télédétection radar 3A SICOM SIM SN

Phase Unwrapping Interferometric phase ambiguity φ Wrapped phase = φ (mod 2π) Nyquist criterion φ(n) φ(m) < π Unwrapped phase Automatic methods: local approach : cuts positioning, propagation global approach: least squares (phase or local frequencies) (N) (M) if (N) (M) c (M,N) 2 if (N) (M) 2 if (N) (M) 24 Télédétection radar 3A SICOM SIM SN

Interferogram Estimation 2 images single look complex (SLC): u 1 ( m, n) ( m, n) e After co-registration: u 1 ( m, n). u 1 * 2 i ( m, n) 1 1 u 2 ( m, n) ( m, n) e ( m, n) ( m, n). ( m, n). e 2 2 i ( m, n) 2 i( ) 1 2 SLC 1 u1( m, n) SLC 2 u2( m, n) Complex multi-looking: C( i, j) ( m, n) ( m, n) 1 u ( m, n). u 1 u ( m, n) 2 * 2 ( m, n) ( m, n) u 2 (m,n) ( m, n) 2 (i,j) Amp 1 a1( i, j) Coh. C( i, j) Amp 2 a2( i, j) Phase arg( C( i, j)) 25 Télédétection radar 3A SICOM SIM SN

Coherence Estimation Distribution of the sample coherence d as function of theoretical coherence value D and the number of looks L>1: p( d D, L) 2( L 1)(1 D 2 ) L d(1 d 2 ) L2 2 F ( L, L;1; d 1 2 D 2 ) Distribution function of L, D = 0.5 Bias function of L 26 Télédétection radar 3A SICOM SIM SN

27 Télédétection radar 3A SICOM SIM SN Distribution of the sample phase as function of theoretical coherence value D and the number of looks L>1: ) ( ) ( ) ( )) ( cos ; ; ( ) cos( )) ( cos ; 2 1 ; (1, 2 ) (1 ),, ( 2 1 2 1 2 2 2 1 0 1 2 2 1 2 2 L L D L F D D L F D L D p L Distribution function of D = 0, L = 4 Distribution function of L = 0, D = 0.7 D Phase Estimation

Measuring Coherence Coherence must always be measured to assess the suitability of the data set for InSAR processing Coherence magnitude is closely related to the local standard deviation of differential phase High coherence magnitude tells us: images have good SNR phase centres of scatterers are stable any motion is spatially organized Coherence magnitude: 0.3-0.5 is useable, but noisy 0.5-0.7 is good 0.7-1.0 is excellent Coherence has also been successfully used as a terrain classification parameter: water, vegetation, desert, city 28 Télédétection radar 3A SICOM SIM SN

InSAR Processing Process data to SLC images Register the two images to 1/10 pixel Over-sample by a factor of 2 in both dimensions Filter common bands in spectrum Conjugate multiply to form interferogram Smooth the interferogram Measure coherence Unwrap phase Estimate geometry parameters (especially baseline) Remove flat-earth fringes Convert unwrapped phase to height and/or motion 29 Télédétection radar 3A SICOM SIM SN

InSAR Processing: Chitina River Valley, S.E. Alaska B = 40 m Flat-earth fringes were removed. Phase is still wrapped. Each revolution of the colour wheel represents an increase of 200 m in altitude. ERS images acquired Feb. 1994 30 Télédétection radar 3A SICOM SIM SN

Topography Contours from Interferogram: ERS-1, 1991 Franklin Bluffs and Sagavanirktok River on the North Slope of Alaska Perspective view generated from an interferometrically derived DEM 31 Télédétection radar 3A SICOM SIM SN

Radar Differential Interferometry from Space 32 Télédétection radar 3A SICOM SIM SN

Radar Differential Interferometry from Space The information contained in the D-InSAR phase can be decomposed in: 33 Télédétection radar 3A SICOM SIM SN

Radar Differential Interferometry from Space 34 Télédétection radar 3A SICOM SIM SN

D-InSAR: orbital compensation 35 Télédétection radar 3A SICOM SIM SN

D-InSAR: topographic compensation (DTM) 36 Télédétection radar 3A SICOM SIM SN

D-InSAR: adaptive filtering 37 Télédétection radar 3A SICOM SIM SN

Location Glaciology: temperate glaciers French Alps Chamonix Mont-Blanc test site Mer-de-Glace Argentière Location 45 55 15 N/ 6 55 45 E 45 56 15 N / 7 00 30 E Area / Length 3,5 (km²) / 4.7 (km) 15 (km²) / 9 (km) Mean slope ~ 9 (17%) ~14 (26%) 38 LISTIC/LAPI Télédétection radar 3A SICOM SIM SN 38

ERS - 1/2: visibility assessment ERS ascending (image panchromatic SPOT-1) ERS descending 39 Télédétection radar 3A SICOM SIM SN

ERS-1/2 Interferogram (March 1996) SAR amplitude 5 km 100 km TANDEM ERS (Mer-de-glace) (c) InSAR coherence InSAR phase 40 Télédétection radar 3A SICOM SIM SN

D-InSAR Parameter Estimation amplitude coherence phase IDAN ML amplitude IDAN ML coherence IDAN ML phase Mer-de-glace [660 361 pixels] 41 Télédétection radar 3A SICOM SIM SN

Measuring Glacier Velocity by D-InSAR filtered phase 2D local frequencies filtered coherence 2D phase unwrapping Geocoding 3D projection velocity field DTM In situ mesures TANDEM ERS, 10/11-March-1996 Chamonix Mont-Blanc Hypotheses on flow direction 42 Télédétection radar 3A SICOM SIM SN

D-InSAR Phase Unwrapping IDAN ML phase mod 2π IDAN ML unwrapped phase Mer-de-glace [618 405 pixels]: weighted least-square phase unwrapping 43 Télédétection radar 3A SICOM SIM SN

From Slant Range to Ground Range DTM (Lat/Lon, WGS 1984): separating relief / displacement geocoding D-InSAR scalar measurement: slant range displacement 44 Télédétection radar 3A SICOM SIM SN

Glacier Velocity Field: Argentière & Mer-de-glace In situ measurements: unknown offset ablation sticks differential GPS D-InSAR/DTM measurements: 3D displacement field glacier flow direction (SPF,MSF) 45 Télédétection radar 3A SICOM SIM SN

46 Télédétection radar 3A SICOM SIM SN

47 Télédétection radar 3A SICOM SIM SN

48 Télédétection radar 3A SICOM SIM SN

49 Télédétection radar 3A SICOM SIM SN

50 Télédétection radar 3A SICOM SIM SN

51 Télédétection radar 3A SICOM SIM SN

52 Télédétection radar 3A SICOM SIM SN

53 Télédétection radar 3A SICOM SIM SN

54 Télédétection radar 3A SICOM SIM SN

TerraSAR-X StripMap Acquisition (3m res) of the Pyramids of Giza, Egypt Prel. Image recorded during calibration phase 55 55 Télédétection radar 3A SICOM SIM SN

South Nigeria, 3m res TerraSAR-X Basic Image Products Warri airport City of Warri 56 Télédétection radar 3A SICOM SIM SN 56

TerraSAR-X Basic Image Products Cape Town (South Africa) 1m res International airport 57 Télédétection radar 3A SICOM SIM SN 57

TerraSAR-X Basic Image Products Mombasa (Kenya) 1m res 58 58 Télédétection radar 3A SICOM SIM SN

Addis Abeba (Ethiopia), 3m res TerraSAR-X Basic Image Products 59 Télédétection radar 3A SICOM SIM SN 59

Bibliography Presentation available at: www.gipsa-lab.fr/~nikola.besic/teaching H. Maître, Traitement des images de RSO, Hermes Sciences Publications, 2001 L. Lliboutry, Sciences Géométriques et Télédétection, Masson, 1992 C. Elachi, Introduction to the Physics and Techniques of Remote Sensing, Wiley Series in Remote Sensing, 1987 Tutoriel du Centre Canadien de Télédétection (CCT): http://www.ccrs.nrcan.gc.ca/resource/index_f.php#tutor Trouvé E., Imagerie Radar à Synthèse d Ouverture, cours ETASM, Université de Savoie, 2004 Faller N., TerraSAR-X: Surveying, Mapping & Infrastructure Development, Map Africa 2007 Hajnsek I. at al., TerraSAR-X Mission: Application and Data Access, Int. Summer School on Very High Resolution Remote Sensing, 2009 60 Télédétection radar 3A SICOM SIM SN