ID-5100 User Evaluation & Test Report

Similar documents
IC-R8500 Test Report. By Adam Farson VA7OJ/AB4OJ

Basic Transceiver tests with the 8800S

RM Italy HLA-305V HF Amplifier Test Report

Testing Motorola P25 Conventional Radios Using the R8000 Communications System Analyzer

DMR Application Note Testing MOTOTRBO Radios On the R8000 Communications System Analyzer

Application Note: DMR Application Note Testing MOTOTRBO Radios On the Freedom Communications System Analyzer

Application Note: Testing P25 Conventional Radios Using the Freedom Communications System Analyzers

i2820h (USA) ie2820(europe)

IC-400pro - RADIOAFICION.COM

HP 8921A Cell Site Test Set. Product Note AMPS Base Station Testing

Agilent 8920A RF Communications Test Set Product Overview

The Icom IC Adam Farson VA7OJ. A New Top-class HF/6m Transceiver. IC-7700 Information & Links

ie92d (U.S.A.) (EURO)

Technical Equipment Specification

ATB-7300 to NAV2000R Product Comparison

Yaesu FT-25R 2-Meter Handheld Transceiver

IC-756 Pro III vs. Pro II

FT-897 Alignment. Local Oscillator Adjustment. PLL Adjustment

Maintenance Manual. ORION UHF (Dual Bandwidth) SCAN AND SYSTEM MOBILE RADIO. ericssonz LBI TABLE OF CONTENTS

BridgeCom Systems D Centimeter DMR and Analog Handheld Transceiver

STUDIO TO TRANSMITTER LINKING SYSTEM

The amazing evolution of the 706 series

SPECS FEATURES SUPPLIED ACCESSORIES. HF All Band Transceiver

Technical Application Note #3

IC-7100 User Evaluation & Test Report

FCC ID: AXI IC: 10239A Alignment

VX-4100/4200SERIES. VHF/UHF Mobile Radios

FREEDOM Communications System Analyzer R8000C DATA SHEET

18-CHANNEL MOBILE CB TRANSCEIVER MODEL CB-845

FREEDOM Communications System Analyzer R8600 DATA SHEET

FM sensitivity, for 12 db SINAD Frequency Preamp off Preamp one Preamp two

MX800 BASE STATION SPECIFICATIONS

Adjustment for IC-910H. Adjustment. Adjustment

Receiver Adjustments

FREEDOM Communications System Analyzer R8100 DATA SHEET

FREEDOM Communications System Analyzer R8100 DATA SHEET

Content. Maintenance. Features ENGLISH. 1 transceiver 1 antenna 1 battery pack 1 belt clip 1 fast desktop charger User manual

PC Tune PC Tune Test Procedures for 5100 Series Portable Radios

VX-2100/VX-2200 (UHF) Alignment

ICOM IC-R8600 Specifications, Features & Options

evolution wireless G4 ew 300 G4-Base SK-RC Bodypack Base Set

SUBELEMENT T4. Amateur radio practices and station set up. 2 Exam Questions - 2 Groups

Preliminary Users Manual, Telex SAFE-1000 System.

Commercial Analogue Series VX-450, VX-4600 and VXR-9000

A New Look at SDR Testing

Testing Motorola DMR MOTOTRBO Radios with the Cobham 3920B Radio Test Platform

MASTR II BASE STATION MHz RECEIVER IF/AUDIO/SQUELCH & RF ASSEMBLY (25 khz/12.5 khz CHANNEL SPACING) Maintenance Manual LBI-38506A

FREEDOM Communications System Analyzer R8000C DATA SHEET

ICOM IC-208H Dual-Band FM Transceiver

NXDN Signal and Interference Contour Requirements An Empirical Study

The equipment will provide up to 50W RF output power in the MHz band.

R2590 Communications System Analyzer. High-end Analyzer at a Low-end Price

Measurement Procedure & Test Equipment Used

Sixty Meter Operation with Modified Radios

Icom IC-9100 HF/VHF/UHF transceiver

SERVICE MANUAL ADDENDUM

Venue 2 TECHNICAL DATA. Six Channel Modular Receiver. Digital Hybrid Wireless. Featuring Digital Hybrid Wireless Technology

DC Instruction Manual. Professional FM Transceiver

Mastr III P25 Base Station Transmitter Tune-up Procedure

ARRL Laboratory Expanded Test-Result Report ICOM IC-7800

This report contains the test setups and data required by the FCC for equipment authorization in accordance with Title 47 parts 2, and 87.

IC-F7000. Advanced selective call and ALE make HF communication easier than ever!

B & D Enterprises 1P repeater controller pg 1 INTRODUCTION:

PPA 377. Personal PA FM Listening System FM SPECIFICATION DATA. System Includes:

BASE TECH SERIES

EDACS WALL MOUNT STATION. Maintenance Manual. Mobile Communications LBI-31838A TABLE OF CONTENTS

VX-4100E/4200ESERIES. VHF/UHF Mobile Radios

FREEDOM Communications System Analyzer R8100 DATA SHEET

DStar Co-channel and Adjacent Channel Performance

Second Hand Yaesu FTDX5000MP HF base station transceiver

IC-7410 User Evaluation & Test Report

Rockwell Collins, Inc. VHF Users Manual

evolution wireless G4 ew 100 G4-ME2 ew 100 G4-ME4 Lavalier Set

IC-9100 User Evaluation & Test Report

AUTOTUNE USER GUIDE. R8000 Series Communications Systems Analyzer. Motorola ASTRO XTL Series Motorola ASTRO XTS Series

DMR Rx Test Solution. Signal Analyzer MS2830A. Reference Specifications

HF Receivers, Part 2

2801 Multilock. Communications System Analyzer. Data Sheet. Boosting wireless efficiency

PSM 900 Personal Monitor System. Personal Monitoring. Redefined.

TC-3000C Bluetooth Tester

3900 Series Digital Radio Test Set DMR Option Manual. Issue-10


Frequency Coverage MHz RF Power Output 30W SSB / 9W AM/ 30W FM Dual Finals on Heat Sink Modes AM, FM, USB, LSB Microprocessor

Instruction Manual PMR-101TX. Private Mobile Radio. TTI Tech. 446MHz, 8 Channels

Test Report: Yaesu FT-991, S/N 4N02453 (loaned by Bill Trippett W7VP)

UHF Wireless Microphone System

Screen shots vary slightly according to Windows version you have.

ARRL Laboratory Expanded Test-Result Report ICOM IC-756 Pro

Yaesu FT-8800R Alignment

KENWOOD SKY COMMAND SYSTEM

UHF Wireless Conference System Master Controller (With Recording) UHF-300MC

LBI-31564A. Mobile Communications. DELTA - SX MHz RADIO COMBINATIONS (NEGATIVE GROUND ONLY) Maintenance Manual

evolution wireless G4 ew 300 G4-865-S Handheld Set

TECHNICAL INFORMATION BULLETIN

i410pro ADVANCED MANUAL UHF CB TRANSCEIVER INTRODUCTION 1 ACCESSORIES AND INSTALLATION 2 BASIC OPERATION 3 SET MODE 4 REPEATER OPERATION 5 SCAN

i7610 Technical Report Volume 1

i7610 Technical Report Volume 1

evolution wireless G4 ew 300 G4-HEADMIC1-RC Bodypack Headmic Set

DX AM FM SSB CW PA Amateur Base Station Transceiver OWNER S MANUAL RX / TX 2 4 POWER NF CHANNEL MODE RF POWER OFF CAL OFF OFF CALIBRATE

evolution wireless G4 ew 112 P G4 Camera Lavalier ME 2 Set ew 122 P G4 Camera Lavalier ME 4 Set

Transcription:

ID-5100 User Evaluation & Test Report By Adam Farson VA7OJ/AB4OJ Iss. 1, August 13, 2014. Part I: Brief User Evaluation. Introduction: This report describes the evaluation and lab test of ID-5100 S/N 05001175. I was able to spend a number of days with the IC-9100 in my lab and hamshack, and thus had the opportunity to briefly evaluate its on-air behavior. 1. Physical feel of the ID-5100: IC-2820 owners should find the ID-5100 quite familiar, and will immediately feel comfortable with it. The front-panel layout is similar to that of the IC-2820, although the new touch-screen has eliminated the need for many conventional keys. The learning curve should be minimal for IC-2820 owners, although those unfamiliar with D-Star operation may need more familiarization time. The ID-5100 is solidly constructed and superbly finished. It conveys a tight, smooth, and precise overall feel (as do other Icom radios). The main radio unit is compact and is intended for remote mounting. A 3.5m separation cable is supplied to connect the radio unit to the control head, but the only microphone jack is in the radio unit. Unlike the IC- 7100, the ID-5100 does not have a MIC jack in its control head. This necessitates an OPC-440 (5m) or OPC-647 (2.5m) microphone extension cable for remote mounting. The control head has a 5.5 (diagonal) monochrome touch-screen display which gives the user control over all frequency-entry, mode selection, setup and memory functions. The screen image is crisp and clear. (See Figure 4.) In addition, a comprehensive keypad on the supplied HM-207 hand microphone allows control of all basic radio functions. This is especially useful when operating mobile. 2. Control knob/key functions and menus: Thanks to the touch-screen, front panel controls are minimal. The concentric volume/squelch and tuning dial controls for the Main and Sub (or A and B) bands are to the left and right of the screen respectively. The Power ON/OFF button, which doubles as the speech synthesizer key, is between the controls to the right of the screen. The only other keys are MENU, DR (D-Star Repeater), HOME (home call) and QUICK (quick menu/mute) are below the screen. This clean front-panel layout is a great aid to safe mobile operation. 3. Operating Notes: After a brief perusal of the Basic Manual, I was able to configure the ID-5100 for the lab test suite (including the crossband repeater feature) and also for basic FM and D-Star operating using local repeaters, without much trouble. I called in on local 2m and 70cm FM repeaters as well as a 2m D-Star repeater, and received good audio reports despite limited antenna facilities. Due to time constraints, I did not make use of the ID-5100 s extensive memory-management or GPS capabilities. 21. Acknowledgements: I would like to thank and Paul Veel VE7PVL and Jim Backeland VE7JMB at Icom Canada for making the ID-5100 available to me for testing and evaluation. Adam Farson, VA7OJ/AB4OJ e-mail: farson@shaw.ca 1

Part II: Performance Tests on ID-5100 S/N 05001175 As performed in my home RF lab, August 4 10, 2014. A. FM & AM Receiver Tests 1: 12 db SINAD FM sensitivity: In this test, the DUT external speaker jack is connected to AUDIO IN on the communications analyzer (Z in = 8Ω), and the analyzer s RF IN/OUT port is connected to the DUT ANT port. An FM signal is applied, modulated by a 1 khz tone with 3 khz (FM) or 2 khz (FM-N) peak deviation. The input signal level for 12 db SINAD is recorded (Table 1). Note: No DV receiver tests were conducted, as a suitable test set was unavailable. 12 db SINAD Table 1: FM Sensitivity. 146 MHz 446 MHz FM FM-N FM FM-N dbm -124-125 -124-124 μv 0.14 0.13 0,14 0.14 Table 1a: FM Sensitivity (out-of-band). 12 db 155 MHz 460 MHz SINAD FM FM-N FM FM-N dbm -124-125 -123-124 μv 0.14 0.13 0.16 0.13 1a: AM (Air Band) Sensitivity. Here, an AM test signal with 30% modulation at 1 khz is applied to the DUT ANT port. The RF input power which yields 10 db (S+N)/N is recorded (Table 2). Table 2: AM Sensitivity. 10 db 121.0 MHz S/N AM AM-N dbm -109-110 μv 0.8 0.7 2: Squelch Sensitivity. In this test, the squelch is set at threshold, and an unmodulated signal is applied to the ANT port. The RF input level which just opens the squelch is recorded (Table 3). Table 3: Squelch Sensitivity (FM). 146 MHz 446 MHz dbm -130-130 μv 0.7 0.7 3. CTCSS Decoding: For this test, the communications analyzer is set up to encode a 1Z (100 Hz) CTCSS tone at 700 khz peak deviation. The test signal is modulated with this tone. The minimum RF input level for reliable decoding is recorded. Next, the RF input level is adjusted for 12 db SINAD at the external speaker jack, the tone deviation is slowly increased from minimum and the deviation for reliable decoding is recorded. Test Results: a. At 146 MHz, 700 Hz deviation, minimum input level = -130 dbm (0.07 μv). b. At 12 db SINAD input level, decoding is reliable at 200 Hz tone deviation. 2

4. Audio THD: In this test, a 146 MHz FM at -96 dbm, modulated by a 1 khz tone with 3 khz peak deviation, is applied to the DUT. An S7 to S9 RF test signal is applied to the antenna input, and the main tuning is offset by 1 khz to produce a test tone. The audio voltage corresponding to 10% THD is then read off the analyzer, and the audio output power calculated. Test Results: Measured audio output voltage = 6.5V rms. Thus, audio power output = (6.5) 2 /8] 5.3W in 8 Spec is 5W). 5. Two-Tone 3 rd -Order Dynamic Range (DR 3 ), EIA Method: The purpose of this test is to determine the range of signals which the receiver can tolerate in the FM mode while producing no spurious responses greater than the SINAD level. Two test signals f 1 and f 2, of equal amplitude and spaced 20 khz apart, are applied to the DUT antenna port. The signal 40 khz removed from the IMD product being measured is modulated at 1 khz, with 3 khz deviation. The receiver is tuned to the IMD products (2f 1 -f 2 ) and (2f 2 -f 1 ). The test signal levels are then increased simultaneously by equal amounts until the IMD product reads 12 db SINAD. The DR 3 values for the upper and lower IMD products are averaged to yield the final result (Table 4). Test Conditions: 2m, I: 146 MHz, FM. f 1 = 146.000 MHz modulated at 1 khz, f 2 = 146.020 MHz, modulation off. Peak deviation = 3 khz. IMD 3 product at 146.040 MHz. 2m, II: 146 MHz, FM. f 1 = 146.000 MHz modulation off, f 2 = 146.020 MHz, modulated at 1 khz. Peak deviation = 3 khz. IMD 3 product at 145.980 MHz. 70cm, I: 440 MHz, FM. f 1 = 446.000 MHz modulated at 1 khz, f 2 = 446.020 MHz, modulation off. Peak deviation = 3 khz. IMD 3 product at 446.040 MHz. 70cm, II: 440 MHz, FM. f 1 = 446.000 MHz modulation off, f 2 = 446.020 MHz, modulated at 1 khz. Peak deviation = 3 khz. IMD 3 product at 445.980 MHz. Table 4. FM DR3 at 20 khz spacing. Frequency MHz DR3 db 146 72 446 74 6. FM Receive Adjacent-Channel Selectivity: In this test, two FM signals are applied to the DUT antenna port at 20 khz channel spacing. The desired signal is modulated at 1 khz, and the undesired signal at 400 Hz (both at 3 khz deviation). Initially, the desired signal level is adjusted for 12 db SINAD, and then the undesired signal level is increased until SINAD on the desired signal is degraded to 6 db. The adjacent-channel rejection is the ratio of the undesired to the desired signal level. Test Conditions: 146 MHz, FM. f 1 = 146.000 MHz modulated at 1 khz, f 2 = 146.020 MHz modulated at 400 Hz. Peak deviation = 3 khz for f 1 and f 2. 3

Set f 1 level to -124 dbm (for 12 db SINAD per Test 1 above.) Increase f 2 level until measured SINAD drops to 6 db. Note this level. Adjacent-channel rejection = f 2 level f 1 level (in db.) Repeat entire test with f 2 = 145.980 MHz. Test results should be unchanged. (Table 5). Table 5. FM adj. chan. rejection at 20 khz spacing. Mode Deviation khz Rej. (f 2 > f 1) Rej. (f 2 < f 1) FM 3 70 70 7. 1 st -IF Image Rejection: In this test, the DUT is tuned to a convenient frequency f 0, and an FM test signal modulated at 1 khz with 3 khz peak deviation, at f 0 + twice the 1 st IF signal, is applied to the DUT antenna port. The test signal power is increased until the analyzer reads 12 db SINAD. 2m Test Conditions: f 0 = 146 MHz, A-Band 1 st IF = 38.85 MHz. Test signal freq. = 146 + (2 * 38.85) = 223.7 MHz. Test signal power for 12 db SINAD = -36 dbm. 12 db SINAD sensitivity = -124 dbm. Thus, image rejection = 124-33 = 91 db. 70cm Test Conditions: : f 0 = 446 MHz, A-Band 1 st IF = 38.85 MHz. Test signal freq. = 446 - (2 * 38.85) = 368.3 MHz. Test signal power for 12 db SINAD = -49 dbm. 12 db SINAD sensitivity = -124 dbm. Thus, image rejection = 124-49 = 75 db. 7a. 1 st -IF Rejection: In this test, the DUT is tuned to a convenient frequency f 0, and a test signal at the 1 st IF (modulated at 1 khz with 3 khz peak deviation) is applied to the DUT antenna port. The test signal power is increased until the analyzer reads 12 db SINAD. 2m Test Conditions: f 0 = 146 MHz. Test signal frequency = 38.85 MHz. Test signal power for 12 db SINAD -20 dbm. 12 db SINAD sensitivity = -124 dbm. Thus, 1 st -IF rejection > 100 db. 70cm Test Conditions: f 0 = 446 MHz. Test signal frequency = 38.85 MHz. Test signal power for 12 db SINAD -20 dbm. 12 db SINAD sensitivity = -124 dbm. Thus, 1 st -IF rejection > 100 db. 8. S-Meter Readings: In this test, an unmodulated test signal is applied to the DUT ANT port, and the input level increased gradually. The level corresponding to each bar on the S-meter is recorded. Refer to Table 6. Table 6: S-meter readings vs, RF input level. A-Band FM Bars Freq. MHz 1-2 2 4 5 6 8 10 12 14 146-111 -108-106 -105-104 -102-100 -98-96 dbm 446-111 -110-106 -105-104 -103-101 -99-97 dbm 4

B. Transmitter Tests 9: Power Output and FM Deviation. In this test, the DUT ANT port is connected to the RF IN/OUT port of the communications analyzer. The instrument can accept 75W max. RF power output is measured in FM and DV modes at the HIGH, MID and LOW settings on 146 and 440 MHz, at a primary DC supply voltage of +13.8V. Frequency error is also measured (Table 7). Voice, CTCSS and DTMF deviation are measured (Table 8). Table 7: FM Power Output and Frequency Error. Freq. MHz 146 446 Freq. Error Hz -25-67 Band P O Setting HIGH MID LOW HIGH MID LOW A FM P O W 4.9 14.6 48.8 5.6 15.6 48 B DV P O W 5.8 15.6 50.2 5.5 15.6 47.7 Table 8: FM Deviation. FM Deviation khz FM-N Deviation khz Freq. MHz Voice CTCSS DTMF Voice CTCSS DTMF 146 4 0.75 3.4 2 0.35 1.7 446 4 0.75 4 2 0.375 1.7 10: Transmitter Harmonics & Spurs. The communications analyzer is configured as a spectrum analyzer, sweeping from the fundamental to the 2 nd and 3 rd harmonic on 446 and 146 MHz respectively. A screenshot of the sweep is captured. Test Conditions: 144 and 446 MHz, FM, P O = 15W (MID). Center freq. & span as shown in Figures 1 & 2. Figure 1: ID-5100 transmitter harmonics & spurs (146 MHz). 5

Figure 2: ID-5100 transmitter harmonics & spurs (446 MHz). 11: DV Occupied Bandwidth. This test displays the transmitted DV spectrum, from which the occupied bandwidth can be derived. The communications analyzer is set up as a spectrum analyzer and tuned to the transmit frequency. A screenshot of the sweep is captured. Test Conditions: 144 and 446 MHz, FM, P O = 15W (MID). Center freq. & span as shown in Figure 3. Occupied bandwidth 6 khz at the -26 dbc points. Figure 3: ID-5100 DV transmit spectrum (449.825 MHz). 6

12: Crossband Repeater Function. In this test, the DUT s ability to re-transmit incoming 2m signals on 70cm, and vice versa, is verified. The communications analyzer s RF IN/OUT port is connected to the DUT ANT port. The analyzer is configured for fullduplex operation (RF Generator on RF OUT and RF Analyzer on RF IN). The RF IN/OUT port is now in full-duplex mode, and the RF cable to the DUT is bi-directional. The DUT is configured as a crossband repeater, transmitting on 2m and receiving on 70cm. The test will be repeated with TX on 70cm and RX on 2m. Test Conditions: 1. DUT: MAIN 146 MHz, SUB 446 MHz, Po LOW (5W), Repeater function activated (Menu/Others/Repeater Mode=Y, Hangup Time ON). See Figure 4. 2. Communications analyzer: RF Generator 146 MHz, FM Dev. 3 khz, RF Out; RF Analyzer 446 MHz, FM, RF In, RF Power, FM DEV & SINAD meters on. 3. Increase RF Generator output until MAIN squelch opens, then increase further for 12 db SINAD reading on RF Anl.. Read and record RF Power and FM DEV on RF Analyzer. 4. Next, set RF Generator to 446 MHz. Set RF Analyzer to 146 MHz. Repeat 3.with new settings and record results. 5. At DUT, swap MAIN and SUB. Operation should be unchanged. See Table 9. Table 9: Crossband Repeater Test Results Direction DUT TX P O W DUT Tx Dev. khz Dev. Ratio 146 446 5.5 2.5 0.83 446 146 5.0 3.3 1.1 Figure 4: ID-5100 Crossband Repeater Screen. Copyright 2014 A. Farson VA7OJ/AB4OJ. All rights reserved. August 13, 2014. 7