Distance Protection Scheme for Series Compensated Transmission Lines

Similar documents
ENHANCED DISTANCE PROTECTION FOR SERIES COMPENSATED TRANSMISSION LINES

Detection of Fault in Fixed Series Compensated Transmission Line during Power Swing Using Wavelet Transform

Negative-Sequence Based Scheme For Fault Protection in Twin Power Transformer

Improving Current and Voltage Transformers Accuracy Using Artificial Neural Network

Fault Location Technique for UHV Lines Using Wavelet Transform

A New Adaptive High Speed Distance Protection Scheme for Power Transmission Lines

Protection of Extra High Voltage Transmission Line Using Distance Protection

EFFECTS OF SERIES COMPENSATION ON DISTANCE PROTECTION OF HIGH VOLTAGE TRANSMISSION LINES UNDER FAULT CONDITIONS

A New Subsynchronous Oscillation (SSO) Relay for Renewable Generation and Series Compensated Transmission Systems

1842 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 24, NO. 4, OCTOBER 2009

FAULT LOCATION IN OVERHEAD TRANSMISSION LINE WITHOUT USING LINE PARAMETER

AFTER an overhead distribution feeder is de-energized for

A Novel Fuzzy Neural Network Based Distance Relaying Scheme

Effect of Series Capacitor on Line Protection - A Case Study

Considering Characteristics of Arc on Travelling Wave Fault Location Algorithm for the Transmission Lines without Using Line Parameters

Review of Performance of Impedance Based and Travelling Wave Based Fault Location Algorithms in Double Circuit Transmission Lines

ACCURATE location of faults on overhead power lines for

Enhancement of Fault Current and Overvoltage by Active Type superconducting fault current limiter (SFCL) in Renewable Distributed Generation (DG)

Micro grid Protection Using Digital Relays Mr.Karthik.P 1, Mrs.Belwin J. Brearley 2

DETECTION OF HIGH IMPEDANCE FAULTS BY DISTANCE RELAYS USING PRONY METHOD

Comparison and Simulation of Open Loop System and Closed Loop System Based UPFC used for Power Quality Improvement

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE

Arvind Pahade and Nitin Saxena Department of Electrical Engineering, Jabalpur Engineering College, Jabalpur, (MP), India

PSCAD Simulation High Resistance Fault in Transmission Line Protection Using Distance Relay

Power System Stability Enhancement Using Static Synchronous Series Compensator (SSSC)

Analysis of Modern Digital Differential Protection for Power Transformer

DESIGN AND DEVELOPMENT OF ADVANCED NUMERICAL DISTANCE RELAYING TECHNIQUES

Power Quality Improvement of Unified Power Quality Conditioner Using Reference Signal Generation Method

Online Optimal Transmission Line Parameter Estimation for Relaying Applications Yuan Liao, Senior Member, IEEE, and Mladen Kezunovic, Fellow, IEEE

Implementing Re-Active Power Compensation Technique in Long Transmission System (750 Km) By Using Shunt Facts Control Device with Mat Lab Simlink Tool

Performance Evaluation of Mho and Quadrilateral Characteristic Relays on UPFC Incorporated Transmission Line

Figure 1 System One Line

NERC Protection Coordination Webinar Series June 16, Phil Tatro Jon Gardell

Reducing the Fault Current and Overvoltage in a Distribution System with an Active Type SFCL Employed PV System

Enhanced Real Time and Off-Line Transmission Line Fault Diagnosis Using Artificial Intelligence

Power Upgrading of Transmission Line by Injecting DC Power in to AC Line with the help of ZIG-ZAG Transformer

International Journal for Research in Applied Science & Engineering Technology (IJRASET) Distance Protection Scheme for Transmission Lines

NOWADAYS, there is much interest in connecting various

DISTANCE relay used for transmission line protection is

I. INTRODUCTION IJSRST Volume 3 Issue 2 Print ISSN: Online ISSN: X

EMERGING distributed generation technologies make it

Wavelet Based Fault Detection, Classification in Transmission System with TCSC Controllers

An Enhanced Adaptive Algorithm to Mitigate Mis-coordination Problem of the Third Zone of Distance Relays

Transmission Line Protection for Symmetrical and Unsymmetrical Faults using Distance Relays

Analysis of MOV Surge Arrester Models by using Alternative Transient Program ATP/EMTP

Approach for High voltage transmission line protection by using line trap network & ANN over SVM

Short-Circuit Analysis IEC Standard Operation Technology, Inc. Workshop Notes: Short-Circuit IEC

Neutral Reactor Optimization in order to Reduce Arc Extinction Time during Three-Phase Tripping

Effect of Fault Resistance and Load Encroachment on Distance Relay- Modeling and Simulation PSCAD/EMTDC

FAULT CLASSIFICATION FOR DISTANCE PROTECTION

Power Quality Improvement in Fourteen Bus System using UPQC

Implementation and Evaluation a SIMULINK Model of a Distance Relay in MATLAB/SIMULINK

Detection of Fault Direction and Location in Compensated System using Sequence Component

Designing Of Distributed Power-Flow Controller

A New Fault Locator for Three-Terminal Transmission Lines Using Two-Terminal Synchronized Voltage and Current Phasors

Jan Izykowski, Piotr Mazniewski Eugeniusz Rosolowski, Przemyslaw Balcerek, Marek Fulczyk

Distance Relay Response to Transformer Energization: Problems and Solutions

Analysis of a 405 km transmission line with series compensation

Capacitive Voltage Substations Ferroresonance Prevention Using Power Electronic Devices

MODEL POWER SYSTEM TESTING GUIDE October 25, 2006

TRANSIENT STABILITY ENHANCEMENT OF POWER SYSTEM USING INTELLIGENT TECHNIQUE

FAULT CLASSIFICATION AND LOCATION ALGORITHM FOR SERIES COMPENSATED POWER TRANSMISSION LINE

NERC Protection Coordination Webinar Series June 9, Phil Tatro Jon Gardell

Loss of Excitation protection of generator in R-X Scheme

International Journal of Advance Engineering and Research Development

Comparative Performance of Conventional Transducers & Rogowski Coil for Relaying Purpose

APERFECT transmission line protection scheme is expected

Optimal Placement of Shunt Connected Facts Device in a Series Compensated Long Transmission Line

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 3, May 2013

Voltage Regulation by Adaptive PI Control of STATCOM

Improved first zone reach setting of artificial neural network-based directional relay for protection of double circuit transmission lines

Power Transmission of AC-DC Supply in a Single Composite Conductor

Level 6 Graduate Diploma in Engineering Electrical Energy Systems

Dynamic Response of Wound Rotor Induction Generator for. Wind Energy Application

Application Of Artificial Neural Network In Fault Detection Of Hvdc Converter

A Multilevel Diode Clamped SVPWM Based Interline Dynamic Voltage Restorer with Sag & Swell Limiting Function

DESIGN AND ANALYSIS OF LOW POWER CHARGE PUMP CIRCUIT FOR PHASE-LOCKED LOOP

COORDINATEDD CONTROL OF HYBRID SERIES CAPACITIVE COMPENSATION FOR DAMPING WIND FARM

Anti-Islanding Protection of Distributed Generation Resources Using Negative Sequence Component of Voltage

UNDERSTANDING SUB-HARMONICS

Bhavin Gondaliya 1st Head, Electrical Engineering Department Dr. Subhash Technical Campus, Junagadh, Gujarat (India)

Discrimination of Fault from Non-Fault Event in Transformer Using Concept of Symmetrical Component

Wavelet-DFT based Hybrid Adaptive Algorithm to Fast Distance elaying in Series Compensated Transmission Lines

NEW DESIGN OF GROUND FAULT PROTECTION

Modeling and Performance Analysis of Mho-Relay in Matlab

AS the power distribution networks become more and more

HYSTERESIS CONTROL FOR CURRENT HARMONICS SUPPRESSION USING SHUNT ACTIVE FILTER. Rajesh Kr. Ahuja

Review of Loss of Excitation Protection Setting and Coordination to the Generator Capacity Curve.

TRANSIENT AND DESIGN OPERATION ASSESSMENT OF RFCL IN BULK POWER SYSTEMS

Estimation of Fault Resistance from Fault Recording Data. Daniel Wong & Michael Tong 2014-November-5

Simulation Programs for Load Shedding Studies: Expermintal Results

Identification of weak buses using Voltage Stability Indicator and its voltage profile improvement by using DSTATCOM in radial distribution systems

ISSN Vol.04,Issue.16, October-2016, Pages:

IDENTIFICATION OF POWER QUALITY PROBLEMS IN IEEE BUS SYSTEM BY USING NEURAL NETWORKS

Size Selection Of Energy Storing Elements For A Cascade Multilevel Inverter STATCOM

Comparison of Simulation and Experimental Results of UPFC used for Power Quality Improvement

DIGITAL SIMULATION OF MULTILEVEL INVERTER BASED STATCOM

Damping of Sub-synchronous Resonance and Power Swing using TCSC and Series capacitor

Static Synchronous Compensator (STATCOM) for the improvement of the Electrical System performance with Non Linear load 1

Identification of Inrush and Internal Fault in Indirect Symmetrical Phase Shift Transformer Using Wavelet Transform

Transcription:

RESEARCH ARTICLE OPEN ACCESS Distance Protection Scheme for Series Compensated Transmission Lines Vanitha.V*, Hemalatha.P** *PG Scholar, M.P.N.M.J Engineering College, Erode, Tamilnadu, India. **Assistant Professor, M.P.N.M.J Engineering College, Erode, Tamilnadu, India. *vanithaeee@gmail.com,**hema12latha@gmail.com Abstract Conventional distance protection applies the positive sequence to protect a line against short-circuit faults. Series-compensated lines may considerably change the positive sequence of the fault path and cause the distance relays to maloperate. To overcome this problem, the mutual between phases of a transmission line is used for the design of a new distance protection scheme. The voltages and currents of both ends of the line are applied to compute the mutual between the relay and the fault point. The proposed scheme has a reliable performance in protection against single-phase and double-phase-to-ground faults and, therefore, it can be used as a backup protection. Simulation results approve the efficiency of the proposed method in protection of series-compensated transmission lines. Index Terms Distance protection, mutual, series compensation, transmission line. I. INTRODUCTION SERIES compensation is a common practice to increase the loadability of transmission lines and improve the power system stability. Series capacitors are used to compensate a portion of inductive of the line and provide a better voltage pro file along the transmission line [1]. Distance relays provide the main protection of transmission lines, as well as interconnected distribution networks. These relays measure the positive-sequence to the fault and compare it with their predefined characteristic. The presence of series capacitor in the fault loop affects reach and directionality of distance relays. The reach of distance relays may experience two major problems: 1) the reduction of series inductance of line which shifts down the locus of fault in the R-X plane, and decreases the reliability of relay and 2) sub synchronous resonance which may introduce remarkable delays in the response of digital phasor estimation methods. Directionality of the distance relay in seriescompensated lines may fail due to voltage or current inversions. A common solution for this problem is using memory voltage as the reference quantity to detect fault direction. The literature shows that protection of seriescompensated lines has been an interesting issue for protection engineers and has been the subject of many works for several decades. Effects of series compensation on the performance of directional comparison relaying, as well as phase comparison protection, are analyzed in [4]. A modified procedure is presented in [5] for the protective zone setting of distance relays in series - compensated lines. In [6], the problems of distance protection in series-compensated lines are explained in detail. Series capacitors are commonly protected against transient over voltages by metal oxide varistors (MOVs). The nonlinear function of MOV is considered in [7] and [8] to modify the distance protection by computing the voltage drop along the series compensator. This voltage drop is also used in [9], as well as some additional logics, to increase the accuracy and speed of the first zone of distance relays. In [10], some modification techniques are provided for pilot protection schemes to prevent malfunctions of the main line and its adjacent line relays. Problems associated with the directionality of protective relays in series- compensated lines are addressed in [11] where a new process of directional relaying using the phase difference between the pre fault and post fault currents is presented. In [12], the residual current is applied to compensate for the measurement error in MHO relays. Proposed protective schemes for seriescompensated line are not limited to the distance protection. Differential protection, in the form of the phase comparison scheme, is expected to operate properly in series-compensated lines [13]. Some papers propose protection schemes using the transient features of currents and voltages during fault conditions. These schemes can be mainly divided into the traveling wave based [14] [17] and superimposed-based methods [18], [19]. Despite high-speed performance, these schemes are dealing with two challenges: 1) If, for any reason such as measurement errors, the current and voltage samples 96 P a g e

of the transient time after fault inception are not properly achieved, the schemes cannot operate correctly. 2) In the case of slowly evolving faults, superimposed voltages and current may graduate so slowly that the required traveling waves are not generated. This paper proposes a new distance protection, based on the mutual between phases. Applying the voltages and currents of both ends of the line, the proposed scheme can protect the line against single-phase and double-phase-to-ground faults. Since the mutual is not affected by series compensation, the proposed scheme can provide a reliable backup protection for seriescompensated transmission lines. The rest of this paper is organized as follows: Section II analyzes the effects of series compensation on transmission lines. Section III explains the characteristic of the proposed relay.performance of proposed relay based on positive sequence is discussed in Section IV. Simulation results are presented in Section V Finally, Section VI contains the conclusion of this paper. II. EFFECTS OF SERIES COMPENSATION ON TRANSMISSION LINES Series capacitive compensation in alternating current transmission systems can yield several benefits such as increases in power transfer capability and enhancement in transient stability. In Figure 3.1 series capacitors are connected in series with the line conductors to compensate the inductive reactance of the line. This reduces the transfer reactance between buses to which the line is connected, increases maximum power that can be transmitted, and reduces effective reactive power loss. Although series capacitors are not usually installed for voltage control, they do contribute to improving the voltage profile of the line. inductive reactance also increases. If inductive reactance increases means power also decreases. To get maximum power X L to be reduced. It is not possible to decrease the X L value because it is fixed for conductors and tower configurations. Instead of reducing X L value of the line a capacitor is placed in series with the transmission line. III. CHARACTERISTICS OF THE PROPOSED RELAY The shape of the operation zones has developed throughout the years. An overview of relay characteristics can be seen in the Fig.2.Modern distance relays offer quadrilateral characteristic, whose resistive and reactive reach can be set independently which is shown in Fig 2. It therefore provides better resistive coverage than any mho-type characteristic for short lines. This is especially true for earth fault measurement, where the arc resistances and fault resistance to earth contribute to the highest values of fault resistance. Polygonal characteristics are highly flexible in terms of fault coverage for both phase and earth faults. Fig.2 Different characteristic curves of distance protection relay Fig.1.Ideal Series compensated system To obtain maximum power transfer, series compensation is used. The power equation is given by P= (EV/X L ) sin δ. If line length increases 97 P a g e

Fig.3.Quadrilateral characteristic curve of distance protection relay For this reason, most digital relays offer this form of characteristic. Some numerical relays measure the absolute fault and then determine whether operation is required according to boundaries defined on the R/X diagram. Traditional distance relays and numerical relays that emulate the elements of traditional relays do not measure absolute. They compare the measured fault voltage with a replica voltage derived from the fault current and the zone setting to determine whether the fault is within zone or out-of-zone. Distance relay comparators or algorithms which emulate traditional comparators are classified according to their polar characteristics, the number of signal inputs they have, and the method by which signal comparisons are made. The common types compare either the relative amplitude or phase of two input quantities to obtain operating characteristics that are either straight lines or circles when plotted on an R/X diagram. IV. PERFORMANCE OF PROPOSED RELAY BASED ON POSITIVE SEQUENCE IMPEDANCE Assume resistance R=0.1Ω/km,Reactance X L =0.4 Ω/km, line length=300km & X C = 75% of X L therefore X C =75%x120 = 90Ω.. Positive sequence measurement is suitable only for uncompensated lines.in uncompensated line for load flow analysis relay should not operate and for short circuit it should operate.the total line is calculated as below Z = (R 2 + X 2 ) = (30 2 + 120 2 ) = 123.69Ω. In distance relay, for positive sequence measurement the setting of the is 80% of the total line.z set = 80% x Z= 80% x 123.09= 98.954 Ω. Fig.4 shows the load flow analysis of an uncompensated line using ETAP.The is measured by Z = Line voltage / 3 I= (400x10 3 )/( 3x 672.3 ). Z measured = 343Ω. Condition for the operation of the relay is Z measured < Z set, but here Z measured >Z set = 343Ω > 98.954Ω.Relay does not operate here. The internal fault analysis of an uncompensated line is shown in fig 5.The is measured by Z = Line voltage / 3 I= (363.3x10 3 )/( 3x 3.73x10 3 ) Z measured = 56.23Ω. Condition for the operation of the relay is Z measured < Z set = 56.23Ω < 98.954 Ω.Relay identifies the fault in the uncompensated line when there is real fault. Fig.6.shows the external fault analysis of an uncompensated line using ETAP. The is measured by Z = Line voltage/ 3I=Z=Linevoltage/ 3I= (384.5x10 3 )/( 3x1.57x10 3 ). Z measured = 141.59Ω.Condition for the operation of the relay is: Z measured < Z set but here Z measured > Z set =141.59Ω > 98.954 Ω.Therefore Relay does not operate. The system for series compensated line is shown in fig.7. For this total reactance X= X L - X C = 120Ω - 90Ω = 30Ω. After compensation net reactance value is 30Ω.The total line is calculated as Z = (R 2 + X 2 ) = (30 2 + 30 2 ) = 42.42 Ω and Z set = 80% x Z = 80% x 42.42=33.94 Ω. Fig.8. shows the load flow analysis of a compensated line using ETAP.The is measured by Z = Line voltage / 3 I=(400x10 3 )/( 3x 691.7),Z measured = 333.87Ω. Condition for the operation of the relay is: Z measured < Z set. But here Z measured >Z set = 333.87 Ω > 98.954 Ω Therefore relay does not operate during normal operation. Fig.4.LoadFlow analysis of uncompensated line Fig.9.shows the internal fault analysis of a series compensated line. The is measured by Z = 98 P a g e

Line voltage / 3 I=(363.3x10 3 )/ ( 3x 3.73x10 3 ),Z measured = 56.23Ω. In case of fault in a series compensated line the relay has to operate. But actually it is failed to operate because the measured value here is 56.27 Ω.It is greater than the set value. If positive sequence is measured for compensated line for distance protection means relay fails to operate when there is the real fault. Fig.7.Series compensated system Fig.5.Internal fault analysis of uncompensated line Fig.6.External fault analysis of uncompensated line Fig.8.LoadFlow analysis of a series compensated line 99 P a g e

Table I Simulation system data Parameter Value Unit System voltage System frequency Lines length(ax,xy,yb) Linespositiveseq.series Lines positive seq. capacitive reactance Lines zero seq. series Lines zero seq. capacitive reactance Sources positive seq. Sources zero seq. 400 50 300 0.1+j0.4 3.6 0.1+j0.4 3.6 0.01802+j0.36 039 0.01802+j0.36 039 KV Hz Km Ω/km µωx km Ω/km µωx km % % Fig.9.Internal fault analysis of a compensated line V. VSIMULATION RESULTS The transient stability analysis is done to detect the internal fault in a series compensated line and the simulation results are verified using ETAP. Internal fault is created for a series compensated line and simulation results are verified using ETAP. Fig.10 shows the machine behavior during internal fault. From the machine characteristics it is observed that quad-characteristics of distance relay be pickup and isolate the fault.the transient stability analysis is done to detect the external fault in a series compensated line and the simulation results are verified using ETAP. External fault is created for a series compensated line and simulation results are verified using ETAP. Fig.11shows the machine behavior during external fault from machine characteristics it is observed that quad-characteristics of distance relay will not pickup and isolate the fault. The data for the simulated system is shown in Table I..The performance comparison of the conventional distance protection relay with the proposed protection scheme is analyzed for internal and external single phase to ground fault simulation done in ETAP software. Fig.10.Machine behavior during internal fault in a compensated line 100 P a g e

Fig.11.Machine behavior during external fault in a compensated line VI. CONCLUSION In this paper, the significance of distance protection relay and the need for series compensation for transmission lines are studied and detailed procedure of computation of mutual both for initial setting the distance protection relay and for the mutual to be seen by the relay during fault. Simulation of single line to ground fault in a series compensated line with and without the effect of fault resistance is studied for both internal and external fault. Acknowledgement We heartily convey our gratitude to Prof.D.Sabapathi, ASP&HoD/EEE, M.P.N.M.J Engg. College, for guiding and encouraging us to develop this project. REFERENCES [1] P. M. Anderson, Power System Protection. New York: IEEE, 1999. [2] Ziegler, Numerical Distance Protection; Principles and Applica-tions. Erlangen, Germany: Publicis, 2006. [3] C. Yu, A reiterative DFT to damp decaying DC and subsynchronous frequency components in fault current, IEEE Trans. Power Del., vol. 21, no. 4, pp. 1862 1870, Oct. 2006. [4] J. Berdy, Protection of circuits with series capacitors, IEEE Trans. Power App. Syst., vol. PAS-81, no. 3, pp. 929 935, Feb. 1963. [5] A. Newbould and I. A. Taylor, Series compensated line protection: System modelling & relay testing, in Proc. 4th Int. Conf. Develop. Power Protect. 1989, pp. 182 186. [6] B. Kasztenny, Distance protection of seriescompensated lines: Prob-lems and solutions, in Proc. 28th Annu. Western Protective Relay Conf., Spokane, WA, 2001, pp. 1 34. [7] E. Rosolowki, J. Izykowski, P. Pierz, M. M. Saha, P. Balcerek, and M. Fulczyk, Optimization of distance protection algorithm for series-compensated transmission line, in Proc. IEEE Trondheim PowerTech, 2011, pp. 1 7. [8] D. Novosel, A. Phadke, M. M. Saha, and S. Lindahl, Problems and solutions for microprocessor protection of series compensated lines, in Proc. Develop. Power Syst. Protect., 1997, pp. 18 23. [9] M. M. Saha, B. Kasztenny, E. Rosolowski, and J. Izykowski, First zone algorithm for protection of series compensated lines, IEEE Trans. Power Del., vol. 16, no. 2, pp. 200 207, Apr. 2001. [10] T.S.Sidhu and M. Khederzadeh, Series compensated line protection enhancement by modified pilot relaying schemes, IEEE Trans. Power Del., vol. 21, no. 3, pp. 1191 1198, Jul. 2006. [11] P. Jena and A. K. Pradhan, A positive-sequence directional relaying algorithm for seriescompensated line, IEEE Trans. Power Del., vol. 24, no. 4, pp. 2288 2298, Oct. 2010. [12] A. B. Shah, V. K. Sood, and O. Saad, Mho relay for protection of se-ries compensated transmission lines, presented at the Int. Conf. Power Syst. Transients, Toronto, ON, Canada, Sep. 2009. Kasztenny, I. Voloh, and E. A. Udren, Rebirth of the phase com-parison line protection principle, in Proc. 59th Annu. Conf. Protect. Relay Eng., 2006, pp. 193 252. [13] D. W. P. Thomas and C. Christopoulos, Ultrahigh speed protection of series compensated lines, IEEE Trans. Power Del., vol. 7, no. 1, pp. 139 145, Jan. 1992. [14] J. A. S. B. Jayasinghe, R. K. Aggarwal, A. T. Johns, and Z. Q. Bo, A novel non-unit protection for series compensated EHV transmission lines based on fault generated high frequency voltage signals, IEEE Trans. Power Del., vol. 13, no. 2, pp. 405 413, Apr. 1998. [15] A. Y. Abdelaziz, A. M. Ibrahim, M. M. Mansour, and H. E. Talaat, Modern approaches for protection of series compensated transmission lines, Elect. Power Syst. Res., vol. 75, pp. 85 98, 2005. [16] C. Aguilera, E. Orduna, and G. Ratta, Fault detection, classification and faulted phase 101 P a g e

selection approach based on high-frequency voltage signals applied to a series-compensated line, Proc. Inst. Elect. Eng., Gen. Transm. Distrib., vol. 153, no. 4, pp. 469 475, Jul. 2006. [17] P. Jafarian and M. Sanaye-Pasand, High-speed superimposed-based protection of seriescompensated transmission lines, Inst. Eng. Technol. Gen. Transm. Distrib., vol. 5, no. 12, pp. 1290 1300, 2011. [18] S. M. Hashemi, M. T. Hagh, and H. Seyedi, Transmission-line pro-tection: A directional comparison scheme using the average of superimposed components, IEEE Trans. Power Del., vol. 28, no. 2, pp. 955 964, Apr. 2013. [19] S. M. Hashemi, M. Tarafdar hagh, Member IEEE and H. Seyedi, A Novel backup distance protection scheme for series compensated Transmission lines IEEE Transactions on Power Delivery, vol.29, no.2, pp.699-707,apr.2014. BIOGRAPHY Ms.V.Vanitha is studying M.E. (Power Systems Engineering) in M.P.Nachimuthu M.Jaganathan Engineering College, chennimalai-638112, Tamilnadu, India. She has presented a paper in International conference & 9 papers in national conference at various reputed institutions. She attended National Level seminars like Energy Management in recent trends, Investigation on Efficient Magnetic generators for future power needs. She attended the workshops like introduction to lab view for engineers organized by Innovative Invaders Technologies Coimbatore, Remote sensing &Digital Image Processing by ISRO and ETAP (Electrical Transient Analysis Program). She has presented many projects on project contest & guided many UG projects. She has undergone the prescribed course of training in Southern Railways Erode, Thermal Power Station; Mettur.She completed the courses like web designing, Hosting & multimedia training. She has participated twice in IEEE Student Professional Awareness Conference. She has undergone the skill Development programme on Artificial Intelligence methods in Engineering &Mind without fear. She has attended the faculty development programmes like enhancing academic performance, Embedded Control applications in Drives, Advances in process control & automation and emerging trends in electrical & embedded Technologies. She is the life member of Indian Society for Technical Education (ISTE).She is one of the members of IEEE. Her area of interest is in Power System Protection. Mrs.P.Hemelatha completed her M.E Embedded System Technologies in Nandha Engineering College, Erode, Completed B.E Electrical and Electronics Engineering in Sasurie College of Engineering, Erode and has 6 years of teaching experience. Now working as an assistant professor in EEE department in M.P.Nachimuthu M.Jaganathan Engineering College, Erode. She attended many workshops like MATLAB based Training on Neural Networks in Engineering Applications, Embedded Systems and its Applications, Mat lab Simulation and Economic Utilization of Energy Sources. She is one of the members of ISTE. 102 P a g e