DIO Vrms Audio Driver with Adjustable Gain

Similar documents
DIO2115E 2-Vrms Audio Driver with Adjustable Gain

SGM8908 Capless 3Vrms Line Driver with Adjustable Gain

SGM89000 Capless 2Vrms Line Driver with Adjustable Gain

SGM89112 Capless 3Vrms Line Driver with 8MHz 5th-Order Video Driver

190μA, 3MHz, Rail-to-Rail I/O CMOS Operational Amplifiers VREF. DIO2026QN20 D2026 RoHS/Green -40 to +125 C QFN4*4-20 Tape & Reel, 5000

2-Vrms Cap-Less Line Driver with Adjustable Gain. Description. Product ID Package Packing Comments 96 Units / Tube TSSOP-14. Right Input Right Output

SGM mW, Capless, Stereo Headphone Amplifier with Shutdown

SGM mW, Capless, Stereo Headphone Amplifier with Shutdown

MIX3001 2X3W FM Non-Interference Class-D Amplifier. Features. Description. Applications

EUA W/CH Stereo Filter-less Class-D Audio Power Amplifier with Auto-Recovery

Figure 1 Typical Application Circuit

DIO2051/2052/DIO2054. Rev 1.0. Single/Dual/Quad, Rail-to-Rail Low Power Amplifier. Features. Descriptions. Typical Application.

EUA6210 Output Capacitor-less 67mW Stereo Headphone Amplifier

A W CLASS AB BTL AUDIO POWER AMPLIFIER EXTERNAL GAIN CONFIGURATION CAPABILITY

DIO6605B 5V Output, High-Efficiency 1.2MHz, Synchronous Step-Up Converter

LM48820 Ground-Referenced, Ultra Low Noise, Fixed Gain, 95mW Stereo Headphone Amplifier

SN W Mono Filterless Class-D Audio Power Amplifier DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit

PAM8908. Description. Pin Assignments. Features. Applications. Typical Applications Circuit. A Product Line of. Diodes Incorporated

EUA2011A. Low EMI, Ultra-Low Distortion, 2.5-W Mono Filterless Class-D Audio Power Amplifier DESCRIPTION FEATURES APPLICATIONS

Low Noise 300mA LDO Regulator General Description. Features

SGM4809 Dual 158mW Headphone Amplifier with Active Low Shutdown Mode

MPQ7731 5W - 30W Class D Mono Bridged Audio Amplifier Available in AEC-Q100

UNISONIC TECHNOLOGIES CO., LTD M4670 Preliminary CMOS IC

EUA W Mono Filterless Class-D Audio Power Amplifier DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit

UNISONIC TECHNOLOGIES CO., LTD PA4838

2.95W Mono Filter-less Class-D Audio Power Amplifier

SGM W Fully Differential Audio Power Amplifier with Selectable Shutdown

DIO V Step-Up LED Driver with PWM to Constant Current Dimming Mode

ESMT Preliminary AD51652

Rail-to-Rail, 200kHz Op Amp with Shutdown in a Tiny, 6-Bump WLP

2.5W/CH Stereo Filter-less Class-D Audio Amplifier. Description. Product ID Package Comments Packing

SGM mW Differential Input, Stereo Audio Power Amplifier

DIO6010 High-Efficiency 1.5MHz, 1A Continuous, 1.5A Peak Output Synchronous Step Down Converter

Precision, High-Bandwidth Op Amp

SGM4863 Dual 2.1W Audio Power Amplifier Plus Stereo Headphone Function

DIO6970 High-Efficiency 2A, 24V Input Synchronous Step Down Converter

LM4808 Dual 105 mw Headphone Amplifier

Mono Filter-less Class-D Audio Power Amplifier

Dual 2.6W Stereo Audio Amplifier

EUA W Mono Filterless Class-D Audio Power Amplifier

SGM8551XN Single-Supply, Single Rail-to-Rail I/O Precision Operational Amplifier

SGM9154 Single Channel, Video Filter Driver for HD (1080p)

EVALUATION KIT AVAILABLE Precision, High-Bandwidth Op Amp

NAU82011WG 2.9 W Mono Filter-Free Class-D Audio Amplifier. 1 Description VIN. Output Driver VIP. Class D Modulator VDD VSS

DIO20881/2/4 600nA,Rail-to-Rail Input/ Output Low Power Amplifier

id9309 Ultra-Low Noise Ultra-Fast 300mA LDO Regulator Features

参考資料 PAM8012. Pin Assignments. Description. Features. Applications. A Product Line of. Diodes Incorporated

SGM MHz, 48μA, Rail-to-Rail I/O CMOS Operational Amplifier

LEFT AUDIO INPUT RIGHT AUDIO INPUT

DIO6011C. Step Down Converter. Features. Descriptions. Function Block. Applications. Ordering Information. Rev 1.0 CYWA

AD864/AD8642/AD8643 TABLE OF CONTENTS Specifications... 3 Electrical Characteristics... 3 Absolute Maximum Ratings... 5 ESD Caution... 5 Typical Perfo

DATA SHEET. Filterless, 2.8W, Mono Class-D Audio Power Amplifier

IS31AP W STEREO CLASS-D AUDIO AMPLIFIER WITH POWER LIMIT AND DYNAMIC TEMPERATURE CONTROL November 2015

NAU82011VG 3.1W Mono Filter-Free Class-D Audio Amplifier. 1 Description VIN. Output Driver VIP. Class D Modulator VDD VSS NAU82011VG

Filterless 3W Class- D Mono Audio Amplifier

MP W Class D Mono Single Ended Audio Amplifer

HT82V7524 3W Mono Filter-free Class-D Audio Power Amplifier

Block Diagram 2

2.7W Mono Filter-less Class-D Audio Amplifier. Applications. Description. PWM Generator

V CC OUT MAX9945 IN+ V EE

Low Power, Rail-to-Rail Output, Precision JFET Amplifiers AD8641/AD8642/AD8643

MP8103 Dual Ultra Low Power 1.8V, 600kHz Op Amp

2W+2W AMPLIFIER WITH DC VOLUME CONTROL

IS31AP4066D DUAL 1.3W STEREO AUDIO AMPLIFIER. January 2014 KEY SPECIFICATIONS

MIC915. Features. General Description. Applications. Ordering Information. Pin Configuration. Pin Description. Dual 135MHz Low-Power Op Amp

UNISONIC TECHNOLOGIES CO., LTD

EC MHz, CMOS, Rail-to-Rail Output Operational Amplifier. General Description. Features. Applications. Pin Configurations(Top View)

High Common-Mode Rejection. Differential Line Receiver SSM2141 REV. B FUNCTIONAL BLOCK DIAGRAM FEATURES. High Common-Mode Rejection

Precision, Low-Power and Low-Noise Op Amp with RRIO

MPQ20051-AEC1 Low Noise, High PSRR, 1A Linear Regulator AEC-Q100 Qualified

NAU W Mono Filter-Free Class-D Audio Amplifier

PAM8406. Pin Assignments. Description. Features. Applications. Typical Applications Circuit. A Product Line of. Diodes Incorporated

TPA6110A2 150-mW STEREO AUDIO POWER AMPLIFIER

Features. Applications SOT-23-5

UNISONIC TECHNOLOGIES CO., LTD KA8602

VDD 0.1 F A1 C1 IN+ IS31AP2145A IN- CTRL GND. Figure 1 Typical Application Circuit (Differential Input)

FAN5340 Synchronous Constant-Current Series Boost LED Driver with PWM Brightness Control and Integrated Load Disconnect

MAX14777 Quad Beyond-the-Rails -15V to +35V Analog Switch

0.1 F A4 SDB IS31AP2036A IN+ IN- Figure 1 Typical Application Circuit (Differential Input)

SGM W Audio Power Amplifier

id id mA, Low Dropout, Low Noise Ultra-Fast With Soft Start CMOS LDO Regulator Features General Description Applications

SGM Channel PWM Dimming Charge Pump White LED Driver

General Description. Stereo Input Signal

BA Features. General Description. Applications. Marking Information. 3W Mono Filterless Class D Audio Power Amplifier

SGM8621/2/3/4 3MHz, Rail-to-Rail I/O CMOS Operational Amplifiers

A2211 CLASS AB 1.25 W DIFFERENTIAL AUDIO POWER AMPLIFIER WITH INTERNAL FEEDBACK CIRCUIT

ESMT Preliminary AD52068

DIO6023. Features. Block. Function. Rev The synchronous. step-down. range. The. external. Internal. and. with 1MHz frequency. LCD TV.

TS488 TS489. Pop-free 120 mw stereo headphone amplifier. Description. Features. Applications. TS488IST - MiniSO-8

SGM8554 Single-Supply, Quad Rail-to-Rail I/O Precision Operational Amplifier

150 μv Maximum Offset Voltage Op Amp OP07D

NCS603. NOCAP, Pop-Free, 3 V RMS Audio Line Driver with Adjustable Gain

1.2W Audio Power Amplifier with Active-low Standby Mode

LM V, Mono 85mW BTL Output, 14mW Stereo Headphone Audio Amplifier

MCP6021/1R/2/3/4. Rail-to-Rail Input/Output, 10 MHz Op Amps. Features. Description. Typical Applications. Package Types.

LM4562 Dual High Performance, High Fidelity Audio Operational Amplifier

IS31AP W AUDIO POWER AMPLIFIER WITH ACTIVE-HIGH STANDBY MODE. August 2013

MP MHz, 700mA, Fixed-Frequency Step-Up Driver for up to 10 White LEDS

SGM8521/2/4 150kHz, 5.5μA, Rail-to-Rail I/O, CMOS Operational Amplifiers

Obsolete Product(s) - Obsolete Product(s)

Transcription:

Rev.2 Features Voltage Output at 600Ω Load 2Vrms with 3.3V supply voltage 3Vrms with 5.0V supply voltage Ultra Low noise and THD SNR>2dB Typical Vn<5.µVrms THD+N>00dB No Pop/Clicks Noise when Power ON/OFF No Need for Output DC-Blocking Capacitors Optimized Frequency Response between 20Hz 20kHz Accepting Differential Input Featuring external under voltage mute HBM ESD protection: Output pin 8kV Available in EP-MSOP-0 package Applications Set-Top Boxes High Definition DVD Players Car Entertainment System Medical Descriptions The DIO228 is an integrated solution for Set-top box and high definition player, and designed to optimize the audio driver circuit performance while reducing the BOM cost by eliminating the peripheral discrete components for noise reduction. DIO228 features a 3Vrms stereo audio driver that designed to allow for the removal of output AC-coupling capacitors. Featuring differential input mode, gain range of ±V/V to ±0V/V can be achieved via external gain resistor setting. The DIO228 is able to offer 3Vrms output at 600Ω load with 5V supply. Meanwhile, the DIO228 offers built-in shut-down control circuitry for optimal pop-free performance. Under under-voltage condition, DIO228 is able to detect it and mutes the output. Block Diagram Ordering Information Order Part Number Top Marking T A Package DIO228XM0 DIO228 Green/RoHS -40 to +85 C EP-MSOP-0 Tape & Reel, 3000

Pin Assignment Pin Descriptions PIN Name NO. EP-MSOP-0 Figure Top View I/O Description -INR I Right-channel negative input OUTR 2 O Right-channel output EN 3 I Enable input, active-high PVSS 4 P Supply voltage CN 5 I/O Charge-pump flying capacitor negative terminal CP 6 I/O Charge-pump flying capacitor positive terminal PVDD 7 P Positive supply UVP 8 I Under voltage protection input OUTL 9 O Left-channel output -INL 0 I Left-channel negative input GND Exposed Pad P Power ground Note: For simplicity, all V DD below stands for PVDD.

Absolute Maximum Ratings DIO228 Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maxim rating conditions for extended periods may affect device reliability. Parameter Rating Unit Supply Voltage -0.3 to 7.5 V Input Voltage GND-0.3 to V DD+0.3 V Minimum load impedance 600 Ω EN to GND -0.3 to V DD+0.3 V Storage Temperature Range -65 to 50 C Junction Temperature -65 to 50 C MSOP-0,Ө JA 90 C/W HBM ESD, JESD22-A4 Output Pins 8 kv Recommend Operating Conditions The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended Operating conditions are specified to ensure optimal performance to the datasheet specifications. DIOO does not Recommend exceeding them or designing to Absolute Maximum Ratings. Symbol Parameter Min. Typ. Max. Unit V DD Supply Voltage 3 5 5.5 V V IH EN High level Input Voltage(V DD=5V).2 EN High level Input Voltage(V DD=3.3V). V EN Low level Input Voltage(V DD=5V) 0.4 V V IL EN Low level Input Voltage(V DD=3.3V) 0.3 V T A Operating Temperature Range -40 85 C

Electrical Characteristics DIO228 Typical value: T A = 25 C, unless otherwise specified. Symbol Parameter Conditions Min. Typ. Max. Unit V OS Output Offset Voltage V DD=3-5V, Input grounded, unity gain -3.3 0 3.3 mv OVP V DD Over Voltage Protection V DD>5.5V, then IC shut down 5.7 V PSRR Power supply rejection ratio 90 db V OH V OL V DD=5V,R L=2.5kΩ 4.9 V High level output voltage V DD=3.3V,R L=2.5kΩ 3.2 V V DD=5V,R L=2.5kΩ -4.80 V Low level output voltage V DD=3.3V,R L=2.5kΩ -3.0 V I IH EN High level input current V DD=5V,V I=V DD µa I IL EN Low level input current V DD=5V,V I=0V µa V DD=3.3V, V I= V DD, No load I DD Supply current V DD=5V, V I= V DD, No load 2 ma Shut down mode, V DD=3-5V ma Operating Characteristics Typical value: V DD=3.3V, R L=2.5kΩ, C PUMP=µF,C PVSS=µF, C IN=0µF, R IN=0kΩ, R fb=20kω,t A=25 C, unless otherwise specified. Symbol Parameter Conditions Min. Typ. Max. Unit V O Output Voltage THD=%, V DD=3.3V, f=khz 2.05 V RMS THD+N Total harmonic distortion + noise V O=2V RMS, f=khz, R L=600Ω 0.00 % X TALK Channel crosstalk V O=2V RMS, f=khz 95 db I O Maximum output current V DD=3.3V 60 ma SNR Signal noise ratio V O=2V RMS, BW=22kHz, A-weighted 2 db SR Slew rate 2 V/µs V N Noise output voltage BW=20Hz to 22kHz,V DD=3.3V 4.5 µv RMS G BW Unity gain bandwidth 7 MHz A VO Open loop voltage gain 40 db V UVP External under-voltage detection.08..4 V I Hys External under-voltage detection hysteresis current 5 µa f CP Charge pump frequency 30 khz Attenuation @mute Input-to-output attenuation in shutdown EN=0V 90 db

Operating Characteristics DIO228 Typical value: V DD=5V, R L=2.5kΩ, C PUMP=µF,C PVSS=µF, C IN=0µF, R IN=0kΩ, R fb=20kω,t A=25 C, unless otherwise specified. Symbol Parameter Conditions Min. Typ. Max. Unit V O Output Voltage THD=%, V DD=5V, f=khz 3.0 THD=%, V DD=5V, f=khz, R L=00kΩ THD+N Total harmonic distortion + noise V O=3V RMS, f=khz, R L=600Ω 0.00 % X TALK Channel crosstalk V O=3V RMS, f=khz 95 db I O Maximum output current V DD=5V 60 ma SNR Signal noise ratio V O=3V RMS, BW=22kHz, A-weighted 2 db SR Slew rate 2 V/µs V N Noise output voltage BW=20Hz to 22kHz,V DD=5V 5. µv RMS G BW Unity gain bandwidth 7 MHz A VO Open loop voltage gain 40 db V UVP External under-voltage detection.08..4 V 3. V RMS I Hys External under-voltage detection hysteresis current 5 µa f CP Charge pump frequency 30 khz Attenuation @mute Input-to-output attenuation in shutdown EN=0V 90 db

Typical Performance Characteristics At T A = +25, C PUMP=0.33µF,C PVSS=µF,unless otherwise noted. IDD (ma) 4 3 2 0 9 8 3.0 3.5 4.0 4.5 5.0 5.5 3 2 IDD vs. VDD VDD (V) VOS vs. VDD IDD (ma) 4 3 2 0 9 IDD vs. Temperature 8-40 -20 0 20 40 60 80 00 20 3 2 VDD=5V, EN=H, Gain=2 VDD=5V, Gain=00 Temperature ( C ) VOS vs. Temperature VOS (mv) 0 VOS (mv) 0 - -2 Right Left - -2 Right Left -3 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) -3-40 -20 0 20 40 60 80 00 20 Temperature ( C ) THD+N vs. V OUT THD+N vs. V OUT 0 THD+N VS.Vout 0 THD+N VS.Vout VDD=3.3V,G=2 VDD=5V,G=2 THD+N (%) 0. 0.0 THD+N (%) 0. 0.0 E-3 E-4 L_RL=600Ω R_RL=600Ω L_RL=0kΩ R_RL=0kΩ 0. Vout (Vrms) 2 E-3 E-4 L_RL=600Ω R_RL=600Ω L_RL=0kΩ R_RL=0kΩ 0. Vout (Vrms) 2 3

THD+N (%) GBW (db) 0. 0.0 E-3 20 0 0 VDD=3.3V,G=2 VIN=Vrms THD+N vs. Frequency THD+N VS.Frequency 00 k 0k Frequency (Hz) GBW vs. Frequency GBW VS.Frequency L_RL=600Ω R_RL=600Ω L_RL=0kΩ R_RL=0kΩ THD+N (%) PSRR (db) 0. 0.0 E-3-20 -30-40 -50-60 -70 VDD=5V,G=2 VIN=.5Vrms VDD=5V@200mVpp THD+N vs. Frequency THD+N VS.Frequency 00 k 0k Frequency (Hz) PSRR vs. Frequency PSRR VS.Frequency L_RL=600Ω R_RL=600Ω L_RL=0kΩ R_RL=0kΩ -0-80 VDD=5V,G=0 VIN=50mVpp -20 0 00 k 0k 00k M 0M Frequency (Hz) -90-00 0 00 k 0k 00k M 0M Frequency (Hz) OVP 5.60 5.64 5.68 5.72 5.76 5.80 5.84 5.88 Over Voltage Protection

Rev.2 Application Circuit Notes:. In some applications, if the power supply noise needs to be filtered, the ferrite bead is recommended in a value of 600ohm@00MHz, instead of RC network. RC network normally will lower the power supply resulting in the degraded the audio performance. If the resistor is not chosen properly, which can trigger the internal UVP detection circuit and shut down the output. As depicted below. 2. In order to protect the device against the power surge, transient voltage suppressor (TVS) devices are recommended at the output pins OUTL/OUTR.

Application Notes DIO228 Gain-SettingResistorsRanges and Input-Blocking Capacitors The gain-setting resistors, R IN and R FB, must be chosen so that noise, stability, and input capacitor size of the DIO228 are kept within acceptable limits. Voltage gain is defined as R FB divided by R IN. Table lists the recommended resistor value for different gain settings. Selecting values that are too low demands a large input ac-coupling capacitor C IN. Selecting values that are too high increases the noise of the amplifier. The gain-setting resistor must be placed close to the input pins to minimize capacitive loading on these input pins and to ensure maximum stability. Table Input Capacitor with 2Hz cutoff and Resistor Values Recommended Input Res., Feedback Res., R IN R fb Inverting Gain 22 kω 22 kω - V/V 5 kω 30 kω -2 V/V 0 kω 00 kω -0 V/V f CIN = or 2πRINCIN C IN = 2πR f IN CIN Equation Cutoff decision Cutoff Figure 2 Inverting Gain Configurations Figure 3 Non-Inverting Gain Configuration Figure 4 Differential Gain Configuration

INPUT-BLOCKING CAPACITORS DC input-blocking capacitors are required to be added in series with the audio signal into the input pins of DIO228. These capacitors block the dc portion of the audio source and allow DIO228 inputs to be properly biased to provide maximum performance. These capacitors form a high-pass filter with the input resistor, R IN. The cutoff frequency is calculated using the equation below. For this calculation, the capacitance used is the input-blocking capacitor, and the resistance is the input resistor chosen from Table ; then the frequency and/or capacitance can be determined when one of the two values is given. 2nd Order Filter Typical Application Several audio DACs used today require an external low-pass filter to remove out-of-band noise. This is possible with the DIO228, as it can be used like a standard OPAMP. Several filter topologies can be implemented, both single-ended and differential. In Figure 3, a multi-feedback (MFB) with differential input and single-ended input is shown. An ac-coupling capacitor to remove dc content from the source is shown; it serves to block any dc content from the source and lowers the dc-gain to, helping reducing the output dc-offset to minimum. The resistor values should have a low value for obtaining low noise, but should also have a high enough value to get a small size ac-coupling capacitor. Figure 5 Second-Order Active Low-Pass Filter Charge Pump Flying Capacitor and PVSS Capacitor The charge pump flying capacitor serves to transfer charge during the generation of the negative supply voltage. The PVSS capacitor must be at least equal to the charge pump capacitor in order to allow maximum charge transfer. Low ESR X5R or X7R capacitors are recommended selection, a value of typical 0.33µF is recommended for C PUMP, and a value of typical µf is recommended for P VSS. Capacitor values can be smaller than the value recommended, but the maximum output voltage may be reduced and the device may not operate to specifications.

Decoupling Capacitors The DIO228 requires adequate power supply decoupling to ensure that the noise and total harmonic distortion (THD) are low. A good low equivalent-series-resistance (ESR) X5R or X7R ceramic capacitor, typically a combine of paralleled 0.µF and 0µF, placed as close as possible to the device V DD lead works best. Placing this decoupling capacitor close to the DIO228 is important for the performance of the amplifier. For filtering lower-frequency noise signals, a 0µF or greater capacitor placed near the audio power amplifier would also help, but it is not required in most applications because of the high PSRR of this device. Pop-Free Power-Up Pop-free power up is ensured by keeping the EN (shut down pin) low during power-supply ramp up and ramp down. The EN pin should be kept low until the input ac-coupling capacitors are fully charged before asserting the EN pin high to achieve pop-less power up. Figure 6 illustrates the preferred sequence. Figure 6 Power-Up Sequences External Under-voltage Detection External under-voltage detection can be used to shut down the DIO228 before an input device can generate a pop noise. Although the shut down voltage is.v, customers need to consider the accuracy of system passive components such as resistors and associated temperature variation. Users often select a resistor divider to obtain the power-on and shut down threshold for the specific application. The typical thresholds can be calculated as follows: Case : VSUP_MO= 2V (Recommended) V UVP =(.V-6µA*R3)*(R+R2)/R2; VSUP_MO= 2V V hysteresis =5µA*R3*(R+R2)/R2; With the condition R3>>R//R2. For example, if R=k, R2=.4k and R3=47k, Then V UVP =7.334V; V hysteresis =2.08V Here, V UVP is the shut down threshold. Cy R R2 R3 UVP pin In this case, the voltage at UVP pin is greater than.3v under worst case of VSUP_MO ripples.

Capacitive Load The DIO228 has the ability to drive a high capacitive load up to 220pF directly. Higher capacitive loads can be accepted by adding a series resistor of 47Ω or larger. For further assistance, please contact DIOO worldwide sales office to seek technical support. You can find DIOO sales office information at.

Physical Dimensions: EP-MSOP-0 Symbol Min Typ Max A - -.0 A 0-0.5 A2 0.75 0.85 0.95 A3 0.25 0.35 0.39 b 0.8-0.27 b 0.7 0.20 0.23 c 0.5-0.20 c 0.4 0.5 0.6 D 2.90 3.00 3.0 D 0.75-2.50 E 4.70 4.90 5.0 E 2.90 3.00 3.0 E2 0.75-2.50 e 0.40 0.50 0.60 L 0.40 0.60 0.80 L 0.95REF L2 0.25BSC R 0.07 - - R 0.07 - - Θ 0-8 Θ 9 2 5

CONTACT US Dioo is a professional design and sales corporation for high-quality and performance analog semiconductors. The company focuses on industry markets, such as, cell phone, handheld products, laptop, and medical equipment and so on. Dioo s product families include analog signal processing and amplifying, LED drivers and charger IC. Go to http:// for a complete list of Dioo product families. For additional product information, or full datasheet, please contact with our Sales Department or Representatives.

Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: DIOO: DIO228XM0