Modeling and Implementation of Closed Loop PI Controller for 3 Phase to 3 Phase Power Conversion Using Matrix Converter

Similar documents
Hardware Implementation of Multi-Phase Power Conversion using Matrix Converter

Performance Comparison of a Three Phase AC to Three Phase AC Matrix Converter using Different Carrier based Switching Algorithms

International Journal of Pure and Applied Mathematics

Modeling and Simulation of Matrix Converter Using Space Vector PWM Technique

Performance Analysis of Matrix Converter Fed Induction Motor with Different Switching Algorithms

Generation of Switching pulses for a 3 x 3 Matrix Converter

New Direct Torque Control of DFIG under Balanced and Unbalanced Grid Voltage

Literature Review. Chapter 2

Ultra-Modified Control Algorithms for Matrix Converter in Wind Energy System

Resonant Controller to Minimize THD for PWM Inverter

Single Phase Matrix Converter as a Frequency Changer with Sinusoidal Pulse Width Modulation using Matlab

A Predictive Control Strategy for Power Factor Correction

Hybrid Matrix Converter Based on Instantaneous Reactive Power Theory

Comparison of Modulation Techniques for Matrix Converter

Selected paper. Voltage Controlled Single Phase Matrix Converter with Low Harmonics

PERFORMANCE ANALYSIS OF SVPWM AND FUZZY CONTROLLED HYBRID ACTIVE POWER FILTER

INVESTIGATION OF HARMONIC DETECTION TECHNIQUES FOR SHUNT ACTIVE POWER FILTER

Symmetrical Multilevel Inverter with Reduced Number of switches With Level Doubling Network

SIMULATION AND COMPARISON OF SPWM AND SVPWM CONTROL FOR TWO LEVEL UPQC

SVPWM Rectifier-Inverter Nine Switch Topology for Three Phase UPS Applications

Shunt Active Power Filter based on SRF theory and Hysteresis Band Current Controller under different Load conditions

PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT CARRIER AND MODULATING SIGNAL

ABSTRACT I. INTRODUCTION

A Novel Four Switch Three Phase Inverter Controlled by Different Modulation Techniques A Comparison

Implementation of SRF based Multilevel Shunt Active Filter for Harmonic Control

Sinusoidal Current Control based Shunt Active Power Filter for Current Harmonics Reduction

Development and Simulation of Dynamic Voltage Restorer for Voltage SAG Mitigation using Matrix Converter

Kanuru; Krishna (Dt); A.P, India. DOI: / Page. 1 G. Aruna Jyothi, 2 DR. P. V. R. L.

Modular Grid Connected Photovoltaic System with New Multilevel Inverter

ISSN: Page 20. International Journal of Engineering Trends and Technology- Volume2Issue3-2011

A Pv Fed Buck Boost Converter Combining Ky And Buck Converter With Feedback

CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE

A Three-Phase AC-AC Buck-Boost Converter using Impedance Network

Modeling and Simulation of Five Phase Induction Motor Fed with Five Phase Inverter Topologies

Intelligence Controller for STATCOM Using Cascaded Multilevel Inverter

Multilevel Inverter for Single Phase System with Reduced Number of Switches

Analysis and control for matrix rectifier by circuit DQ transformation

Comparison of Reference Current Extraction Methods for Shunt Active Power Filters

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE

Improvement of Power Quality Using a Hybrid Interline UPQC

Hysteresis Controller and Delta Modulator- Two Viable Schemes for Current Controlled Voltage Source Inverter

CHAPTER 2 MATRIX CONVERTER (MC)

A Buck-Boost AC-AC Converter Topology Eliminating Commutation Problem with Multiple Mode of Operations

Power Quality Improvement of Distribution Network for Non-Linear Loads using Inductive Active Filtering Method Suresh Reddy D 1 Chidananda G Yajaman 2

Nine-Level Cascaded H-Bridge Multilevel Inverter Divya Subramanian, Rebiya Rasheed

DUAL CONVERTER CONTROLLED SINGLE PHASE MATRIX CONVERTER FED DC DRIVE

Closed Loop Single Phase Bidirectional AC to AC Buck Boost Converter for Power Quality Improvement

Application of AGPU for Matrix Converters

Modified Multilevel Inverter Topology for Driving a Single Phase Induction Motor

New Inverter Topology for Independent Control of Multiple Loads

PI-VPI Based Current Control Strategy to Improve the Performance of Shunt Active Power Filter

A CONTROL TECHNIQUE FOR INSTANT MITIGATION OF VOLTAGE SAG/SWELL BY DYNAMIC VOLTAGE RESTORER

CHAPTER 5 MODIFIED SINUSOIDAL PULSE WIDTH MODULATION (SPWM) TECHNIQUE BASED CONTROLLER

Application of Fuzzy Logic Controller in UPFC to Mitigate THD in Power System

2020 P a g e. Figure.2: Line diagram of series active power filter.

Anfis Based Soft Switched Dc-Dc Buck Converter with Coupled Inductor

Size Selection Of Energy Storing Elements For A Cascade Multilevel Inverter STATCOM

Design and Simulation of Three Phase Shunt Active Power Filter Using SRF Theory

A MATLAB-SIMULINK APPROACH TO SHUNT ACTIVE POWER FILTERS

Enhancement of Power Quality in Distribution System Using D-Statcom for Different Faults

A Simple Control Algorithm for Three-Phase Shunt Active Power Filter for Reactive Power and Current Harmonic Compensation

P. Sivakumar* 1 and V. Rajasekaran 2

Comparative Analysis of Two Inverter Topologies Considering Either Battery or Solar PV as DC Input Sources

Unit Vector Theory based Unified Power Quality Conditioner for Power Quality Improvement

Application of Fuzzy Logic Controller in Shunt Active Power Filter

DESIGN AND DEVELOPMENT OF ACTIVE POWER FILTER FOR HARMONIC MINIMIZATION USING SYNCHRONOUS REFERENCE FRAME (SRF)

Current Rebuilding Concept Applied to Boost CCM for PF Correction

PSPWM Control Strategy and SRF Method of Cascaded H-Bridge MLI based DSTATCOM for Enhancement of Power Quality

Design of Single-Stage Transformer less Grid Connected Photovoltaic System

Performance Analysis of The Simple Low Cost Buck-Boost Ac-Ac Converter

TRANSFORMER LESS H6-BRIDGE CASCADED STATCOM WITH STAR CONFIGURATION FOR REAL AND REACTIVE POWER COMPENSATION

Minimization Of Total Harmonic Distortion Using Pulse Width Modulation Technique

Power Quality Improvement In Matrix Converter Using Hybrid Filter

Vector Control of Three-Phase Active Front End Rectifier

SPACE VECTOR PULSE WIDTH MODULATION SCHEME FOR INTERFACING POWER TO THE GRID THROUGH RENEWABLE ENERGY SOURCES

CHAPTER 4 PV-UPQC BASED HARMONICS REDUCTION IN POWER DISTRIBUTION SYSTEMS

CHAPTER 3 VOLTAGE SOURCE INVERTER (VSI)

BIDIRECTIONAL SOFT-SWITCHING SERIES AC-LINK INVERTER WITH PI CONTROLLER

Chapter 2 Shunt Active Power Filter

Simulation And Hardware Analysis Of Three Phase PWM Rectifier With Power Factor Correction

Study of Unsymmetrical Cascade H-bridge Multilevel Inverter Design for Induction Motor

Simulation And Comparison Of Space Vector Pulse Width Modulation For Three Phase Voltage Source Inverter

Control of Induction Motor Fed with Inverter Using Direct Torque Control - Space Vector Modulation Technique

A Novel FPGA based PWM Active Power Filter for Harmonics Elimination in Power System

Mitigation of Line Current Harmonics Using Shunt Active Filter With Instantaneous Real and Reactive Power Theory

SHUNT COMPENSATOR USED FOR POWER QUALITY IMPROVEMENT

Hybrid PWM switching scheme for a three level neutral point clamped inverter

Australian Journal of Basic and Applied Sciences. Simulation and Analysis of Closed loop Control of Multilevel Inverter fed AC Drives

Space vector pulse width modulation for 3-phase matrix converter fed induction drive

Control of grid connected inverter system for sinusoidal current injection with improved performance

ENHANCING POWER SYSTEM STABILITY USING NEURO-FUZZY BASED UPFC

Mitigation of Power Quality Problems Using DVR in Distribution Network for Welding Load

STATCOM with FLC and Pi Controller for a Three-Phase SEIG Feeding Single-Phase Loads

International Journal of Modern Engineering and Research Technology

A HIGH RELIABILITY SINGLE-PHASE BOOST RECTIFIER SYSTEM FOR DIFFERENT LOAD VARIATIONS. Prasanna Srikanth Polisetty

AC to AC Conversion Using Single Phase Matrix Converter

OPTIMAL TORQUE RIPPLE CONTROL OF ASYNCHRONOUS DRIVE USING INTELLIGENT CONTROLLERS

Analysis of Voltage Source Inverters using Space Vector PWM for Induction Motor Drive

Control Of Shunt Active Filter Based On Instantaneous Power Theory

Power Quality Improvement Using Hybrid Power Filter Based On Dual Instantaneous Reactive Power Theory With Hysteresis Current Controller

Transcription:

IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 22-1, Volume 11, Issue 1 Ver. I (Jan Feb. 216), PP 1-8 www.iosrjournals.org Modeling and Implementation of Closed Loop PI Controller for Phase to Phase Power Conversion Using Matrix Converter 1 B.Muthuvel, 2 Dr.T.S.Anandhi, Dr.P.Sivagnanam, 4 M.Janani raj 1 Department of EEE, AKT Memorial college of Engineering and Technology, Villupuram, India. 2 Electronics & Instrumentation Engineering, Annamalai University, Annamalai Nagar, India. Principal, Krishnasamy college of Engineering and Technology, Cuddalore, India. 4 Department of EEE, Vivekananda Polytechnic College, Cuddalore, India. Abstract: This paper proposes a simulation of modeling and implementation of PI controller for a phase to phase power conversion using matrix converter. Closed loop PI controller is used to achieve real time control for phase to phase matrix converter. The entire matrix converter circuits are developed by Mathematical model so as to achieve less computational time and performances of the PI controller are evaluated using MATLAB/SIMULINK for RL Load. The mathematical expressions of the three phase matrix converter are implemented by using simulink block set. The duty cycles of the matrix converter bidirectional switches are calculated using modified venturini algorithm for maximum voltage transfer ratio. Key Words: phase to phase converter, AC to AC conversion, closed loop Matrix converter, Matrix converter, PI Controller. I. Introduction The matrix converter (MC) is a single-stage power converter, capable of feeding an m-phase load from a n-phase source without using energy storage components. It is a direct frequency conversion device that generates variable magnitude variable frequency output voltage from the ac line. It has high power quality and it is fully regenerative.. Recently, direct ac/ac converters have been studied in an attempt to realize high efficiencies, long lifetime, size reduction, and unity power factors. The benefits of using direct ac/ac converters are even greater for medium voltage converters as direct ac/ac converters do not require electrolytic capacitors, which account for most of the volume and cost of medium-voltage converters. The matrix converter presents a promising topology that needs to overcome certain barriers like complexity of modulation and control techniques, protection systems etc, in order to gain a foothold in the industry. Traditionally, the MC has Matrix converters have some advantages when compared to conventional back to back Pulse width modulation voltagesource converters. The MC may be considered more reliable and is smaller because the bulky dc capacitor is eliminated from the topology. Therefore, when MCs are used in ac ac power conversion, the size and weight of the whole generation system is reduced. To interface a MC-based generation system to an unbalanced threephase stand-alone load, a four-leg MC is required to provide an electrical path for the zero-sequence load current. Hence the application of resonant controllers to four-leg matrix converters feeding unbalanced or nonlinear loads has been proposed [1]. A new technique improved space vector modulation using amplitude coefficient on a capacitor-clamped multilevel matrix converter. The MMC utilizes a multilevel structure on a conventional matrix converter, which allows direct ac-ac conversion without large energy store elements has been introduced [2].For a common mode voltage reduction and the power quality of matrix converters for a lowvoltage transfer ratio of less than.5, a direct space vector modulation method has been focused []. Fig.1. Basic block diagram of pase to phase Matrix converter DOI: 1.979/1676-111118 www.iosrjournals.org 1 Page

Modeling and Implementation of Closed Loop PI Controller for Phase to Phase Power For various industrial adjustable speed ac drives and applications, various analysis and mathematical model is introduced in matrix converter. By varying the Modulation Index (MI), the outputs of the matrix converter are controlled and in ac drives, speeds of the drive were controlled. To reduce the computational time and low memory requirement, a mathematical model has been developed [4]-[11].To achieve real time control with quick speed and fast response, new designs of controllers are needed. PI controllers are the one to sense the output continuously and correct the output at the instant if any disturbance occurred. In this paper, PI controllers are designed and implemented for the phase to phase matrix converter in closed loop configuration and the power circuit in closed loop are implemented by the mathematical modeling along with the PI controllers. The duty cycle calculation is taken into account for Maximum voltage transfer ratios and the mathematical model is realized with the RL load. The entire power circuit is modeled with MATLAB/SIMULINK. Implementation of PI controller in mathematical modeling includes the modeling of power circuit, switching algorithm, load and the controller. Merits of Mathematical model over conventional power circuit are less computation time and low memory requirement. The proposed model is very simple, flexible and can be accommodated with any type of load. Fig. 1 refers the Basic block diagram of the proposed pase to phase Matrix converter. II. Matrix Converter The Matrix converter (MC) is a single stage direct ac to ac converter, which has an array of m x n bidirectional switches that can directly connect m phase voltage source into n phase load. A phase matrix converter consists of x switches arranged in matrix form. The arrangement of bi-directional switches is such that any of the input phases R, Y, B is connected to any of the output phases r, y, b at any instant. The average output voltage with desired frequency and amplitude can be controlled by the bi-directional switches. The bidirectional x switches (2 9 ) give 512 combinations of the switching states. But only 27 switching combinations are allowed to produce the output line voltages and input phase currents. The attractive characteristics of a Matrix converter are as follows: Controllable input power factor Bidirectional energy flow capability Compact design Sinusoidal input and output waveforms with minimal higher order harmonics and no sub harmonics; Minimal energy storage requirements Long life due to absence of a bulky electrolytic capacitor Unity input power factor at the power supply side Fig.2. circuit scheme of phase to phase matrix converter Limitations of Matrix converter are The voltage transfer ratio limitation has a maximum value of.866 Sensitive to the power source distortion due to the direct connection between input and output sides. Input filter is needed in order to eliminate the harmonic components of the input current and reduce the input voltage distortion supplied to the Matrix Converter as shown in fig.2. DOI: 1.979/1676-111118 www.iosrjournals.org 2 Page

Modeling and Implementation of Closed Loop PI Controller for Phase to Phase Power III. Control Algorithm When phase to phase converter operated with 9 bi-directional switches, the following two basic rules have to be satisfied [1]. Two or three input lines should not be connected to the same output line to avoid short circuit At least one of the switches in each phase should be connected to the output to avoid open circuit. The switching function of single switch as 1, switch SKj closed S Kj = { (1), switch SKj opened Where, K = {r, y, b), j = {R, Y, B} The above constraints can be expressed by Srj + Syj + Sbj = 1, j = {R, Y, B} (2) With these restrictions, the x matrix converter has 27 possible switching states. The input or source voltage vector of the phase to phase Matrix converter is V V im cos(ω i t) R V i = V Y = V im cos (ω i t + 2π ) () V B V im cos (ω i t + 4π ) The output voltage vector of the phase to phase Matrix converter is V V om cos(ω o t) r V o = V y = V om cos (ω o t + 2π ) (4) V b V om cos (ω o t + 4π ) (5) (6) The input or source current vector of the phase to phase Matrix converter is I I im cos(ω i t) R I i = I Y = I im cos (ω i t + 2π ) I B I im cos (ω i t + 4π ) The output current vector of the phase to phase Matrix converter is I I om cos(ω o t) r I o = I y = I om cos (ω o t + 2π ) I b I om cos (ω o t + 4π ) Where, ω i - frequency of input voltage and ω o - frequency of output voltage The relationship between output and input voltage is given as V o (t) = M (t). V i (t) (7) Where M t is the transfer Matrix and is given by M Rr M Yr M Br M (t) = M Ry M Yy M By (8) M Rb M Yb M Bb where, M Rr = t Rr / T s, duty cycle switch S Rr, Ts is the sampling period. The input current is given by I in = M T I o (9) Duty cycle must satisfy the following condition in order to avoid short circuit on the input side. M Rr + M Yr + M Br = 1 (1) M Ry + M Yy + M By = 1 (11) M Rb + M Yb + M Bb = 1 (12) The above condition is fulfilled by calculation of duty cycle using modified venturini algorithm. In venturini switching algorithm, the maximum voltage transfer ratio is restricted to.5.this limit can be overcome by using modified venturini algorithm [16]. The maximum possible output voltage can be achieved by injecting third harmonics of the input and output frequencies into the output waveform [11]. This will increase the available output voltage range to.75 of the input when third harmonics has a peak value of V i /4. Further increasing of the transfer ratio can be achieved by subtracting a third harmonic at the output frequency from all target output voltages. Hence the maximum transfer ratio of.75/.866 =.866 of V i when this third harmonic has a peak value of V o /6. Therefore the output voltage becomes V oγ =qv im cos(ω o t + ψ γ ) q V 6 im cos(ω o t)+ 1 V 4q im (ω i t) m (1) DOI: 1.979/1676-111118 www.iosrjournals.org Page

Modeling and Implementation of Closed Loop PI Controller for Phase to Phase Power Where, ψ γ =, 2π/, 4π/ corresponding to the output phase r, y, b [11], [15], [16]. IV. Modeling of Matrix Converter The actual MATLAB/SIMULINK model of phase to phase Matrix converter is shown in fig.. it comprises normally 4 sections. 4.1 Modeling of Control Algorithm Fig.. Mathematical Modeling of phase to phase Matrix converter. The required voltage transfer ratio (q), output frequency (f o ) and switching frequency (f s ) are the inputs required for calculation of duty cycle matrix M. the duty cycle calculations for voltage transfer ratio of.5 and.866 are realized in the form of m-file in Matlab. Duty cycles for.5 &.866 voltage transfer ratio are; M Rr = 1 (1 + 2q cos(ω m t + θ)) (14) M Yr = 1 (1 + 2q cos(ω m t + θ 2π )) (15) 1 M Br = m t + θ 4π )) (16) M Ry = 1 (1 + 2q cos(ω m t + θ 4π )) (17) M Yy = 1 (1 + 2q cos(ω m t + θ)) (18) M By = 1 (1 + 2q cos(ω m t + θ 2π )) (19) M Rb = 1 (1 + 2q cos(ω m t + θ 2π )) (2) M Yb = 1 (1 + 2q cos(ω m t + θ 4π )) (21) M Bb = 1 (1 + 2q cos(ω m t + θ)) (22) Where, ω m = ω o ω i = modulation frequency, θ = relative phase of output, q =voltage transfer ratio Switching time for voltage transfer ratio of.866 are; T βγ = T s 1 + 2V oγ V iβ V 2 + 2 q sin ω im q i t + ψ β sin(ω i t) (2) m Where, ψ β =, 2π/, 4π/ corresponding to the input phases R, Y, B, q m = maximum voltage transfer ratio, q = required voltage ratio, V im =input voltage vector magnitude, T s = sampling period. 4.2 Modeling of power circuit The modeling of power circuit is derived from basic output voltage equations [17], [18]. DOI: 1.979/1676-111118 www.iosrjournals.org 4 Page

Modeling and Implementation of Closed Loop PI Controller for Phase to Phase Power V r (t) = M Rr V R (t) + M Yr V Y (t) + M Br V B (t) (24) V y (t) = M Ry V R (t) + M Yy V Y (t) + M By V B (t) (25) V b (t) = M Rb V R (t) + M Yb V Y (t) + M Bb V B (t) (26) Fig.4. Modeling block of power circuit of r phase in phase to phase Matrix converter. Fig.4 shows the realization of modeling block of power circuit of r phase in phase to phase Matrix converter. The switching pulses for the bi-directional switches are realized by comparing the duty cycles with a saw tooth waveform having very high switching frequency 4. Modeling of Load The transfer function of mathematical modeling of RL load is I(S) = 1 V(S) Ls+R (27) 4.4 Modeling of PI Controller The proportional plus integral controller produces an output signal, u(t) consisting of two terms-one proportional to input signal, e(t) and the other proportional to the integral of input signal, e(t). The PI controller reduces the Steady state error. The PI controller model was developed using Simulink Blockset. In PI controller, u(t) α [e(t) + ʃ e(t) dt] (28) u(t) = K p e(t) + K i ʃ e(t) dt (29) Where, K p is the proportional gain = -ω 1 sinθ /A 1 and K i is the integral constant or gain = cosθ / A 1 Transfer function of PI Controller is G c (s) = U(s)/E(s) = K p + K i /s () V. Simulation Results and Discussion The simulation of phase to phase Matrix converter for closed loop PI controller are carried out using simulink blockset. In closed loop configuration, PI controller was realized as real time controller. Simulations results are performed for a reference current of 7 Amps and Amplitude =25.26V and time limit is.1 m.sec. The output is realized with phase passive RL load for R= 1 Ω and L= 2 mh. The reference current is set to 7 Amps. The output is again feedback to the input of the matrix converter through PI controller to achieve the real time control. Fig. 5-7 shows the results of control waveform for all the 9 Bidirectional Switches from S Rr to S Bb ( M Rr to M Bb ) with I ref =7 amps. Fig. 8 shows the Input waveform for I ref =7 amps and Amplitude =25.26V in r Phase. The Output Voltage and current waveforms in r Phase for I ref =7 amps as shown in Fig.9&1. The Output Voltage and current waveforms in y Phase for I ref =7 amps as shown in Fig.11&12. The Output Voltage and current waveforms in b Phase for I ref =7 amps as shown in Fig.1&14. Fig.15. shows the Simulation waveform for THD in r Phase. Fig.16 shows the. Simulation waveform for reference Current I ref =7 amps. Fig.17. shows the Average Output Voltage waveform for phase to phase Matrix converter (for r, y, b Phases). Similarly, Fig.18 shows the Output Current waveform for phase to phase Matrix converter (for r, y, b Phases). The average output voltage is =25.26V and the average output current is 7 Amps. DOI: 1.979/1676-111118 www.iosrjournals.org 5 Page

Current in Amps Modeling and Implementation of Closed Loop PI Controller for Phase to Phase Power.55.5.45.4.5..25.2.6.5.4..2.1 -.1.9.8.7.6.5.4..2 -.2 Fig.5. Duty cycle for M Rr, M Yr, M Br Phases..1.9.8.7.6.5.4..2.55.5.45.4.5..25.2.6.5.4..2.1 -.1.1 Fig.6. Duty cycle for M Yy, M Ry, M By Phases. -.2.6.5.4..2.1 -.1.9.8.7.6.5.4..2.55.5.45.4.5..25.2 -.2.1 Fig.7. Duty cycle for M Rb, M Yb, M Bb Phases. 4 2 1-1 -2 - -4 Fig.8. Input waveform for I ref =7 amps and Amplitude =25.26V in r Phase 4 2 1-1 -2 - -4 Fig.9. Output Voltage waveform for I ref =7 amps in r Phase. 8 6 4 2-2 -4-6 -8 Fig.1. Output Current waveform for I ref =7 amps in r Phase. DOI: 1.979/1676-111118 www.iosrjournals.org 6 Page

Current in Amps Magnitude in Volts Current in Amps Modeling and Implementation of Closed Loop PI Controller for Phase to Phase Power 4 2 1-1 -2 - -4 Fig.11. Output Voltage waveform for I ref =7 amps in y Phase. 8 6 4 2-2 -4-6 -8 Fig.12. Output Current waveform for I ref =7 amps in y Phase. 4 2 1-1 -2 - -4 Fig.1. Output Voltage waveform for I ref =7 amps in b Phase. 8 6 4 2-2 -4-6 -8 Fig.14. Output Current waveform for I ref =7 amps in b Phase..5 x 117 -.5-1 -1.5-2 -2.5 - -.5 Fig.15. Simulation waveform for THD in r Phase. 8 7.5 7 6.5 6 Fig.16. Simulation waveform for reference current I ref =7 amps DOI: 1.979/1676-111118 www.iosrjournals.org 7 Page

Current in Amps Modeling and Implementation of Closed Loop PI Controller for Phase to Phase Power 4 2 1-1 -2 - -4 Fig.17. Output Voltage waveform for phase to phase Matrix converter ( r, y, b Phases) 1 5-5 -1 Fig.18. Output Current waveform for phase to phase Matrix converter ( r, y, b Phases) VI. Conclusion Simulation of mathematical modeling and implementation of closed loop PI controller for phase to phase power conversion using matrix converter has been presented in this paper. A mathematical model is developed for Matrix converter using MATLAB/Simulink which is also utilized for closed loop PI controller configuration. In closed loop configuration, a real time control has been achieved for PI controller with less computational time. The output was realized by RL load and the simulation results are taken for maximum voltage transfer ratio. The simulation output results are satisfactory and the future extension of this paper is possible for closed loop Fuzzy logic control in three phase to n phase Matrix converter with various passive loads and different voltage transfer ratio. References [1] Kiwoo Park, Kyo-Beum Lee and Frede Blaabjerg, Improving output performance of a Z-source sparse matrix converter under unbalanced input-voltage conditions, IEEE Transactions on Power Electronics, Vol.27, No.4, April 212. [2] Xu Lie, Li Yongdong, Wang Kui, Jon C.Clare and Patrick W.Wheeler, Research on the amplitude coefficient for multilevel matrix converter space vector modulation, IEEE Transactions on Power Electronics, Vol.27, No.8, August 212. [] Modeling and simulation of single-phase AC-AC matrix converter using SPWM, Student conference on Research and Development proceedings, Malaysia, 22, pp. 286-289. [4] B.Muthuvel, T.S.Anandhi, P.Sivagnanam and K.Ramash kumar, Simulation of Phase to Phase Power Conversion Using Matrix Converter with Maximum and Minimum Voltage Transfer Ratio, International Journal of Engineering Research and applications (IJERA) ISSN: 2248-9622, Vol. 5, Issue 11, (Part - 2) November 215. [5] Imayavaramban, K.Latha and G.Uma, Analysis of different schemes of matrix converter with maximum voltage conversion ratio, IEEE MELECON'4MAY12-15,24, pp117 114. [6] A. Alesina and M.G.B. Venturini, Analysis and design of optimum amplitude nine-switch direct AC-AC converters, IEEE Trans. Power Electron. vol.4, pp.11-112, Jan. 1989. [7] P.W. Wheeler, J. Clare and A. Weinstein, Matrix Converters: A Technology Review, IEEE Industrial Electronics Vol. 49, No. 2, April 22,pp. 276-287. [8] Zuckerberger, A., Weingstock, D. and Alexandrovitz A, Single - phase matrix converter, IEE proc. Electric Power Application,Vol144(4), July 1997, pp25-24. [9] P.W. Wheeler, Jon C. Clare and M. Bland, Gate drive level intelligence and current sensing for matrix converter current commutation, IEEE Industrial Electronics, Vol. 49, No. 2, April 22, pp. 8-89. [1] Sedat Sunter and Tatar Y, Pspice modelling and design of a snubber circuit for the matrix converter, International Journal of Engineering Model 1, 2, pp.41-46. [11] Zuckerberger, A., Weinstock, D. and Alexandrovitz, A., Simulation of three- phase loaded matrix converter, Electric Power Applications, IEE Proceedings, Vol.14, Issue: 4, July 1996, pp. 294 - DOI: 1.979/1676-111118 www.iosrjournals.org 8 Page