A Neural Solution for Signal Detection In Non-Gaussian Noise

Similar documents
Radar Signal Detection In Non-Gaussian Noise Using RBF Neural Network

Radial basis function neural network for pulse radar detection

A COMPARISON OF ARTIFICIAL NEURAL NETWORKS AND OTHER STATISTICAL METHODS FOR ROTATING MACHINE

An Hybrid MLP-SVM Handwritten Digit Recognizer

Stochastic Resonance and Suboptimal Radar Target Classification

Neural Filters: MLP VIS-A-VIS RBF Network

A Quantitative Comparison of Different MLP Activation Functions in Classification

Neural Network based Digital Receiver for Radio Communications

Improved Detection by Peak Shape Recognition Using Artificial Neural Networks

Cubature Kalman Filtering: Theory & Applications

Enhanced MLP Input-Output Mapping for Degraded Pattern Recognition

Mikko Myllymäki and Tuomas Virtanen

MATHEMATICAL MODELS Vol. I - Measurements in Mathematical Modeling and Data Processing - William Moran and Barbara La Scala

SNR Estimation in Nakagami Fading with Diversity for Turbo Decoding

Dynamic thresholding for automated analysis of bobbin probe eddy current data

Enhancement of Speech Signal Based on Improved Minima Controlled Recursive Averaging and Independent Component Analysis

MITIGATING INTERFERENCE TO GPS OPERATION USING VARIABLE FORGETTING FACTOR BASED RECURSIVE LEAST SQUARES ESTIMATION

Multiuser Detection with Neural Network MAI Detector in CDMA Systems for AWGN and Rayleigh Fading Asynchronous Channels

Linear time and frequency domain Turbo equalization

(i) Understanding the basic concepts of signal modeling, correlation, maximum likelihood estimation, least squares and iterative numerical methods

A Technique for Pulse RADAR Detection Using RRBF Neural Network

Background Pixel Classification for Motion Detection in Video Image Sequences

Distributed Broadcast Scheduling in Mobile Ad Hoc Networks with Unknown Topologies

CHAPTER 4 LINK ADAPTATION USING NEURAL NETWORK

Statistical Tests: More Complicated Discriminants

Current Harmonic Estimation in Power Transmission Lines Using Multi-layer Perceptron Learning Strategies

SIGNAL DETECTION IN NON-GAUSSIAN NOISE BY A KURTOSIS-BASED PROBABILITY DENSITY FUNCTION MODEL

Degrees of Freedom in Adaptive Modulation: A Unified View

Optimal Power Allocation over Fading Channels with Stringent Delay Constraints

Band 10 Bandwidth and Noise Performance

Neural Network with Median Filter for Image Noise Reduction

Blind Dereverberation of Single-Channel Speech Signals Using an ICA-Based Generative Model

Use of Neural Networks in Testing Analog to Digital Converters

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 22.

Performance Analysis of Maximum Likelihood Detection in a MIMO Antenna System

Problem Sheet 1 Probability, random processes, and noise

Fundamental frequency estimation of speech signals using MUSIC algorithm

Online modulation recognition of analog communication signals using neural network

Some Properties of RBF Network with Applications to System Identification

Blind Blur Estimation Using Low Rank Approximation of Cepstrum

The fundamentals of detection theory

Median-Prefiltering-Based Robust Acquisition of Direct-Sequence Spread-Spectrum Signals in Wide-Band Pulse Jamming

NEURO-ACTIVE NOISE CONTROL USING A DECOUPLED LINEAIUNONLINEAR SYSTEM APPROACH

A HYBRID ALGORITHM FOR FACE RECOGNITION USING PCA, LDA AND ANN

OFDM Transmission Corrupted by Impulsive Noise

Advanced Signal Processing in Communications

A NEW APPROACH FOR DIAGNOSING EPILEPSY BY USING WAVELET TRANSFORM AND NEURAL NETWORKS

CycloStationary Detection for Cognitive Radio with Multiple Receivers

Data Flow 4.{1,2}, 3.2

COMPARATIVE ANALYSIS OF ACCURACY ON MISSING DATA USING MLP AND RBF METHOD V.B. Kamble 1, S.N. Deshmukh 2 1

A fast and accurate distance relaying scheme using an efficient radial basis function neural network

AN IMPROVED NEURAL NETWORK-BASED DECODER SCHEME FOR SYSTEMATIC CONVOLUTIONAL CODE. A Thesis by. Andrew J. Zerngast

A Sphere Decoding Algorithm for MIMO

MIMO Receiver Design in Impulsive Noise

THE SHOPS AT ROSSMOOR NWC St Cloud Drive & Seal Beach Blvd, Seal Beach, CA

THE problem of acoustic echo cancellation (AEC) was

Adaptive Multi-layer Neural Network Receiver Architectures for Pattern Classification of Respective Wavelet Images

A Radial Basis Function Network for Adaptive Channel Equalization in Coherent Optical OFDM Systems

Neural Networks and Antenna Arrays

IBM SPSS Neural Networks

Matched filter. Contents. Derivation of the matched filter

Multiple-Layer Networks. and. Backpropagation Algorithms

16 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL. 34, NO. 1, FEBRUARY 2004

RECENTLY, there has been an increasing interest in noisy

System Analysis of Relaying with Modulation Diversity

TCM-coded OFDM assisted by ANN in Wireless Channels

MURDOCH RESEARCH REPOSITORY

MOBILE satellite communication systems using frequency

An Analytical Design: Performance Comparison of MMSE and ZF Detector

Application of Multi Layer Perceptron (MLP) for Shower Size Prediction

Antennas and Propagation. Chapter 6b: Path Models Rayleigh, Rician Fading, MIMO

for Single-Tone Frequency Tracking H. C. So Department of Computer Engineering & Information Technology, City University of Hong Kong,

Voice Recognition Technology Using Neural Networks

TRANSMIT diversity has emerged in the last decade as an

"È$ß#È"ß$È#ß%È% This same mapping could also be represented in the form

A Spatial Mean and Median Filter For Noise Removal in Digital Images

Performance of Soft Iterative Channel Estimation in Turbo Equalization

SPLIT MLSE ADAPTIVE EQUALIZATION IN SEVERELY FADED RAYLEIGH MIMO CHANNELS

Comparison of Various Neural Network Algorithms Used for Location Estimation in Wireless Communication

Artificial Neural Networks. Artificial Intelligence Santa Clara, 2016

First generation mobile communication systems (e.g. NMT and AMPS) are based on analog transmission techniques, whereas second generation systems

ANTENNA EFFECTS ON PHASED ARRAY MIMO RADAR FOR TARGET TRACKING

Datong Chen, Albrecht Schmidt, Hans-Werner Gellersen

FILTER FIRST DETECT THE PRESENCE OF SALT & PEPPER NOISE WITH THE HELP OF ROAD

Optimization of Coded MIMO-Transmission with Antenna Selection

ON WAVEFORM SELECTION IN A TIME VARYING SONAR ENVIRONMENT

Development and Comparison of Artificial Neural Network Techniques for Mobile Network Field Strength Prediction across the Jos- Plateau, Nigeria

Iterative Joint Source/Channel Decoding for JPEG2000

A Neural Network Approach for the calculation of Resonant frequency of a circular microstrip antenna

Optimal Simultaneous Detection and Signal and Noise Power Estimation

IMPERIAL COLLEGE of SCIENCE, TECHNOLOGY and MEDICINE, DEPARTMENT of ELECTRICAL and ELECTRONIC ENGINEERING.

An Adaptive Threshold Detector and Channel Parameter Estimator for Deep Space Optical Communications

Audio Watermark Detection Improvement by Using Noise Modelling

EUSIPCO

An Array Feed Radial Basis Function Tracking System for NASA s Deep Space Network Antennas

Chapter - 7. Adaptive Channel Equalization

A Noise Adaptive Approach to Impulse Noise Detection and Reduction

Data Fusion with ML-PMHT for Very Low SNR Track Detection in an OTHR

Detection, Classification and Tracking in Distributed Sensor Networks

NEURAL NETWORK DEMODULATOR FOR QUADRATURE AMPLITUDE MODULATION (QAM)

Transcription:

1 A Neural Solution for Signal Detection In Non-Gaussian Noise D G Khairnar, S N Merchant, U B Desai SPANN Laboratory Department of Electrical Engineering Indian Institute of Technology, Bombay, Mumbai-400 076, India phone: +(9122) 25720651, email: dgk,merchant,ubdesai @eeiitbacin Abstract In this paper, we suggest a neural network signal detector using radial basis function network for detecting a known signal in presence of Gaussian and non-gaussian noise We employ this RBF Neural detector to detect the presence or absence of a known signal corrupted by different Gaussian and non-gaussian noise components In case of non-gaussian noise, computer simulation results show that RBF network signal detector has significant improvement in performance characteristics Detection capability is better than to those obtained with multilayer perceptrons and optimum matched filter detector Index Terms Radial basis function neural network, non- Gaussian noise, signal detection I INTRODUCTION In radar, sonar and communication applications, ideal signals are usually contaminated with non-gaussian noise Detection of known signals from noisy observations is an important area of statistical signal processing with direct applications in communications fields Optimum linear detectors, under the assumption of additive Gaussian noise are suggested in [1] A class of locally optimum detectors are used in [2] under the assumptions of vanishingly small signal strength, large sample size and independent observation Recently, neural networks have been extensively studied and suggested for applications in many areas of signal processing Signal detection using neural network is a recent trend [3] - [6] In [3] Watterson generalizes an optimum multilayer perceptron neural receiver for signal detection To improve performance of the matched filter in the presence of impulsive noise, Lippmann and Beckman [4] employed a neural network as a preprocessor to reduce the influence of impulsive noise components Michalopoulou it et al [5] trained a multilayer neural network to identify one of orthogonal signals embedded in additive Gaussian noise They showed that, for, operating characteristics of the neural detector were quite close to those obtained by using the optimum matched filter detector Gandhi and Ramamurti [6], [7] has shown that the neural detector trained using BP algorithm gives near optimum performance The performance of the neural detector using BP algorithm is better than the Matched Filter (MF) detector, used for detection of Gaussian and non-gaussian noise In our previous work [10], we suggest the signal detector for two non-gaussian cases such as Double exponential and Contaminated Gaussian In this work, we explore it further and propose a neural network detector using radial basis function network and we employ this neural detector to detect the presence or absence of a known signal corrupted by Gaussian and non-gaussian noise components For many non-gaussian noise distributions such as double exponential, Contaminated Gaussian, Cauchy noise etc We found that RBF network signal detector performance is very close to that of MF and BP detector for Gaussian noise While, we observed that in non-gaussian noise environments the RBF network signal detector show better performance characteristics and good detection capability compared to neural detector using BP II PRELIMINARIES Probability of detection and the probability of false alarm are the two commonly used measures to assess performance of a signal detector [1] That is, is defined as the probability of choosing given that is true, and is defined as the probability of choosing given that is true and *! "#%$'&() (1) +!",#%$'&(- (2) 10 2!43 265!43)7879787879783 2;:! =<?> Consider a data vector / as an input to the detector in Figure 1 Using the additive observational model, we have / A@ /CBED/ (3) for the hypothesis that the target signal is present (denoted by ) and F0 G G 5 / D/ (4) for the @ hypothesis that the signal is absent (denoted by ), where / H!I3!43)78797879783!J<K> is the target signal vector and D/ L0 M!I3 M45!I3N79787978783 M4:!J<K> is the noise vector The likelihood ratio is defined by /O G : /O&H /O&HN where +/O&H4 and /O&H are the jointly conditional probability density functions of / under and, respectively Denoting the decision threshold by $, we choose (5)

¹ Æ È V ¹ y ½ ¼ Ï ` d 2 Fig 1 Fig 2 Block diagram of a signal detector Signal detector based on the RBF P (the output PZ of the detector is 1) if RSTSUVOVXWEY ; otherwise, we choose (the output of the detector is 0) [2] With [H\S]^V as the marginal (symmetric) probability density function (pdf) of _-`ba"cdfegaihja)k8k9k8k9a"l, here we consider the following pdf s: 1) Gaussian { pdf with [(\S]^Vmd ngo;pq"ris"thquwv hhxzy s and _ `~} s dy s 2) Double exponential pdf with [ \ S]^V d n o* =pg Jrit u(h(y and { _ `~} s d hwy s 3) Contaminated Gaussian pdf with [ \ S];Vƒd Sbe Vbn o;pq"risithq ujˆ hhxzy ZŠ s n o;pq"risithq uœˆ hhxzy s 4) Cauchy pdf with [(\-S]^V dyžu x Sy s ] s V } { and _ ` s } d where y Z s is the nominal variance, Sy s W y Z s V is contaminated variance, e is the degree of contamination, and { _ ` s } d S!e Vby Z s y s These non-gaussian pdfs are commonly used to model impulsive noises III A RBF NEURAL SIGNAL DETECTOR The structure of the signal detector based on an RBF network is shown in Figure 2 [9] This neural network signal detector consists of three layers The input layer has _ number of neurons with a linear function One hidden layer of neurons with nonlinear transfer functions such as the Gaussian function The output layer has only one neuron whose inputoutput relationship should be such that it approximates the two possible states The two bias nodes are included as part of the network A real-valued input ] to a neuron of the hidden or output layer produces neural output S ŽV, where š A S ŽV œe The Gaussian function S ŽV that we choose here is S a! ` V dan]g CSb žehu(hwyÿs `Œ š z sv The RBF neural network detector test statistic z\\ S ŽV may now be expressed as, \\ S ŽV d z ` *ìs ŽV «ª q (6) where ` S ŽV4a!cŠdmewaOhŒa" 'a)k8k9k8k8a" is a set of basis functions The ` constitutes a set of connection weights for the output layer When using RBF the basis is *ìs ŽV d S ± U s V `ª a!cdewaohœa" 'a)k8k9k8k8a" (7) where U`Cd U` a!u` s a)k8k9k8k8k9a"un` \ }?² with UN` as unknown centers to be determined is a symmetric positive definite weighting matrix of size _³ z_ Sbḱ V represents a multivariate Gaussian distribution with mean vector U` and covariance matrix By using above equations we redefine \\ S ŽV as \X\ S ŽV d z ` S a!un`jv d Ž `µ S š +U` V4k (8) We determine the set of weights md a s ank9k8k8k9k8a }?² and the set U of vectors U` of centers such that the cost functional, Sº»a!UV d ¼ S½ ` ¾ ¾ S ` + ¾ V!V s (9) where ` S ŽVIa!cœd ewaihja" 'a)k8k9k8k9aoàœ is a new set of basis functions The first term on the right hand side of the equation may be expressed as the squared Euclidean norm wá  º s, where  d ai½ s a"½äãwank9k8k9k8a"½ }K² and º a s a ÃwaNk9k8k8k9k8k9a } [8] ST a! ST a" s VÊÉNÉ)É ST a! ÌÎ V ST s a! V ST s a" s VÊÉNÉ)É ST s a! V Åd STÃga! V STÃwa" s VÊÉNÉ)É STÃga! V ST \ a! Vƒ ST \ a" s VÊÉNÉ)ÉË ST \ a! V º d a s a à a)k8k9k8k8k9k8a } k The first step in the learning procedure is to define the instantaneous value of the the cost function dåehu(h Ð n s` (10) where is the size of the training sample used to do the learning, and nh` is the error signal defined by n ` d ½ ` ÑST V Ð n ` d ½ ` C ` S T ; ` V (11) We assume Ed ½wcJÒgÓ a"y s a)k8k9k8k8k9aiy \ } is to be minimized with respect to the parameters `, b`, and y o ¹ ` The cost function is convex with respect to the linear parameters `, but non convex with respect to the centers U ` and matrix y ` o The search for the optimum values of U ` and y o may get stuck at a local minimum in parameter space The different learning-parameters assigned updated values to `,

ô Ø ÔbÕ, and Ö zø Õ RBF networks with supervised learning were able to exceed substantially the performance of multilayer perceptrons [8] After updating at the end of an epoch, the training is continued for the next epoch and it continues until the maximum error among all K training patterns is reduced to a prespecified level 3 IV EXPERIMENTAL RESULTS AND PERFORMANCE EVALUATIONS Neural weights are obtained by training the network at 10- db SNR using ÙÛÚÝÜ ÞNß and àá âã Õ~ä ÚœÞ During simulation, the threshold ånææ is set to ß'ç è, and the bias weight é êµë value that gives a ì*íî value in the range ßjç ßwß'ÞïðÞ For each éñêë value that gives a ì íî value in the above range, the corresponding ì*ò value are also simulated These ì ò values are plotted against the corresponding ì íî values to obtain the receiver operating characteristics Of course, for a given ì íî value, larger ì ò value implies a better signal detection at that ì íî The 10-dB-SNR-trained neural network is tested in the 5-dB and 10-dB SNR environment This latter experiment is carried out to study the neural detector s sensitivity to the training SNR To achieve 5-dB SNR environment, we keep Ù at Ü Þß and sufficiently increase the noise variance àá â+ã Õ ä A Performance in Gaussian Noise (Constant Signal, 10 db Performance characteristics of neural detectors using RBF, MLP and MF detectors are presented in Figure 3 for Gaussian noise The RBF and MLP neural detectors are trained using the constant signal and ramp signal with SNR = 10 db And then both neural detectors and match filter detector are tested with 10-dB SNR inputs Fig 4 Performance in Gaussian Noise (Ramp Signal, 10 db) (a) Ramp Signal, 10 db Fig 5 (b) Ramp Signal, 5 db Performance comparison in double exponential noise C Testing of Signal Detector in Non-Gaussian Noise In this work, we consider the classical problem of detecting known signals in non-gaussian noise Performance characteristics of RBF and MLP neural detectors are presented at small false alarm probabilities (in the range ÞNß ^ó to ÞNßwô ) that are of typical practical interest Fig 3 Performance in Gaussian Noise (Constant Signal,10 db) D Performance in Double Exponential Noise (Ramp Signal) Here we, illustrates performance comparisons of the LR, MF, LO, and neural detectors using RBF and MLP for ramp signal embedded in additive double exponential noise Figure 5-a and 5-b show the comparison for a 10-dB-SNRtrained neural detectors operating in the 10-dB and 5-dB SNR environment In this testing, the signal detector using RBF network continues to provide performance improvement, compare to MLP neural, MF and LO signal detectors B Performance in Gaussian Noise (Ramp Signal,10 db) For gaussian noise, the receiver operating characteristics of neural detectors as well as matched filter detectors are presented in Figure 4 In this case, RBF and MLP neural detectors are trained using the ramp signal with SNR = 10 db All detectors are then tested with 10-dB SNR inputs In both Constant and Ramp Signal cases, the RBF and MLP neural detectors performance is very close to that of the MF detector E Performance in Contaminated Gaussian Noise (Ramp Signal) The same experiment is repeated for the ramp signal embedded in contaminated Gaussian noise with parameters õ Ú ßjç ö, ÖŸã Ú ß'ç ögè and ÖŸã Úùø Figure 6-a and 6-b show the comparison for a 10-dB-SNR-trained neural detectors operated in the 10-dB-SNR and 5-dB-SNR environment respectively In all cases, we see that both MF and LO detectors perform similarly and that the neural detector using RBF network

4 (a) 10 db SNR (b) 5 db SNR Fig 6 Performance comparison in contaminated Gaussian noise clearly provides the best detection performance compare to MLP neural detector Fig 8 Performance in Cauchy Noise (Triangular Signal) F Performance in Cauchy Noise (Constant and Triangular Signal) In this case, we are not consider SNR as the random variable is not finite in Cauchy noise Here, we consider the signal energy úðûwüwý and þeúmÿ ý of the Cauchy pdf Performance of detector are illustrated in Figure 7 and 8 We observe that the neural detector using RBF outperforms compare to other detectors But for relatively high values its performance decreases compare to the matched filter and locally optimum detectors (a) NN Trained at 0 db SNR (b) NN Trained at 10 db SNR (c) NN Trained at 15 db SNR Fig 9 Performance comparison in double exponential noise Fig 7 Performance in Cauchy Noise (Constant Signal) function of SNR The neural detector using RBF network clearly yields superior performance characteristics in all three cases G Detection Performance as a Function of SNR (Ramp Signal) Here we try to study the behavior of MF, LO and RBF, MLP neural detector s for fixed and varying values The noise variance is set to unity during training and testing Here, we consider the case of contaminated Gaussian noise distribution with úýý û, þ úœý ûwü and þ ú, as before The neural detectors are trained using the ramp signal at 0, 10 and 15-dB SNR During testing, we adjust the bias weight in both the neural detector s to ensure that the neural detector s operation at ú ý ýgýjÿ We set to unity and vary for SNR values between 0-15 db These probability of detection values are plotted in Figure 9-a,9-b and 9-c as a V CONCLUSION In this paper radial basis function network is proposed for known signal detection in non-gaussian noise Neural detector using radial basis function network show better performance characteristics for many non-gaussian noise distributions such as double exponential, contaminated Gaussian and Cauchy noise We observed that in non-gaussian noise environments the RBF neural network signal detector show good detection capability compared to neural detector using multilayer perceptron (BP) and conventional signal detectors REFERENCES [1] H V Poor,: An Introduction to Signal Detection and Estimation, Springer- Verlag (1988)

5 [2] S A Kassam,: Signal Detection in Non-Gaussian Noise, Springer-Verlag (1988) [3] J W Watterson,: An Optimum Multilayer Perceptron Neural Receiver for Signal Detection, IEEE Transactions on Neural Networks, Vol1,No4 (1990) 298-300 [4] R P Lippmann and P Beckman,: Adaptive neural net preprocessing for signal detection in non-gaussian noise, In Advances in Neural Information Processing Systems, Vol1, (1989) [5] Z Michalopoulou, L Nolta and D Alexandrou,: Performance evaluation of multilayer perceptrons in signal detection and classification, IEEE Transactions on Neural Networks, Vol6, No2 (1995) [6] P P Gandhi and V Ramamurti,: Neural networks for signal detection in non-gaussian noise, IEEE Transactions on Signal Processing, Vol45, No11 (1997) [7] V Ramamurti, SS Rao, and PP Gandhi: Neural detectors for signals in non-gaussian noise, In IEEE International Conference Acoustic, Speech, Signal Processing, Minneapolis, MN, 1993; Reprinted in Neural Networks: Theory, Technology, and Applications, PK Simpson, ED Piscataway, NJ:IEEE (1996) 733-736 [8] L Fa-Long and U Rolf,: Applied Neural Networks for Signal Processing, Cambridge University Press, (1997) [9] S C Chen and P M Grant,: Orthogonal least squares learning algorithm for radial basis function networks, IEEE Transactions on Neural Networks, Vol2, No2, (1991) 302-309 [10] D G Khairnar, S N Merchant and U B Desai: An optimum RBF network for signal detection in non-gaussian noise, Springer-Verlag, Berlin Heidelberg, LNCS 3776, (2005) 306-309