Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline

Similar documents
Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Waves & Oscillations

Lecture 3: Geometrical Optics 1. Spherical Waves. From Waves to Rays. Lenses. Chromatic Aberrations. Mirrors. Outline

Advanced Lens Design

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

ECEG105/ECEU646 Optics for Engineers Course Notes Part 4: Apertures, Aberrations Prof. Charles A. DiMarzio Northeastern University Fall 2008

OPTICAL IMAGING AND ABERRATIONS

Geometric optics & aberrations

Performance Factors. Technical Assistance. Fundamental Optics

GEOMETRICAL OPTICS AND OPTICAL DESIGN

CHAPTER 1 Optical Aberrations

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Laboratory experiment aberrations

Sequential Ray Tracing. Lecture 2


Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember

Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36

Introductions to aberrations OPTI 517

AST Lab exercise: aberrations

Introduction. Geometrical Optics. Milton Katz State University of New York. VfeWorld Scientific New Jersey London Sine Singapore Hong Kong

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term

Exam Preparation Guide Geometrical optics (TN3313)

Long Wave Infrared Scan Lens Design And Distortion Correction

CHAPTER 33 ABERRATION CURVES IN LENS DESIGN

Optical Design with Zemax

Why is There a Black Dot when Defocus = 1λ?

Big League Cryogenics and Vacuum The LHC at CERN

INTRODUCTION TO ABERRATIONS IN OPTICAL IMAGING SYSTEMS

Cardinal Points of an Optical System--and Other Basic Facts

Chapters 1 & 2. Definitions and applications Conceptual basis of photogrammetric processing

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term

Geometrical Optics for AO Claire Max UC Santa Cruz CfAO 2009 Summer School

Phys 531 Lecture 9 30 September 2004 Ray Optics II. + 1 s i. = 1 f

Astronomy 80 B: Light. Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson

The Brownie Camera. Lens Design OPTI 517. Prof. Jose Sasian

Design and Correction of optical Systems

Optical Design with Zemax

Introduction to Optical Modeling. Friedrich-Schiller-University Jena Institute of Applied Physics. Lecturer: Prof. U.D. Zeitner

OPAC 202 Optical Design and Inst.

Optical System Design

3.0 Alignment Equipment and Diagnostic Tools:

Optimisation. Lecture 3

Lens Design I Seminar 1

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term

Exercises Advanced Optical Design Part 5 Solutions

Applied Optics. , Physics Department (Room #36-401) , ,

Converging and Diverging Surfaces. Lenses. Converging Surface

Supplemental Materials. Section 25. Aberrations

Imaging and Aberration Theory

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term

Ch 24. Geometric Optics

Optical Design with Zemax for PhD

Optical Systems: Pinhole Camera Pinhole camera: simple hole in a box: Called Camera Obscura Aristotle discussed, Al-Hazen analyzed in Book of Optics

Chapter 18 Optical Elements

Astronomical Observing Techniques Lecture 6: Op:cs

Aberrations and adaptive optics for biomedical microscopes

Lens Design II. Lecture 11: Further topics Herbert Gross. Winter term

Chapter 3 Op,cal Instrumenta,on

Magnification, stops, mirrors More geometric optics

OPTICAL SYSTEMS OBJECTIVES

Chapter 3 Op+cal Instrumenta+on

UNIVERSITY OF NAIROBI COLLEGE OF EDUCATION AND EXTERNAL STUDIES

Basic Wavefront Aberration Theory for Optical Metrology

Computer Generated Holograms for Optical Testing

Lens Design II. Lecture 2: Structural modifications Herbert Gross. Winter term

TOPICS Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization

Explanation of Aberration and Wavefront

Opti 415/515. Introduction to Optical Systems. Copyright 2009, William P. Kuhn

PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing.

Chapter 23. Light Geometric Optics

Warren J. Smith Chief Scientist, Consultant Rockwell Collins Optronics Carlsbad, California

Astro 500 A500/L-8! 1!

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66.

Lenses. Overview. Terminology. The pinhole camera. Pinhole camera Lenses Principles of operation Limitations

EE119 Introduction to Optical Engineering Spring 2002 Final Exam. Name:

Waves & Oscillations

Chapter 36. Image Formation

Optical Design with Zemax for PhD - Basics

Heisenberg) relation applied to space and transverse wavevector

Index. B Back focal length, 12 Beam expander, 35 Berek, Max, 244 Binary phase grating, 326 Buried surface, 131,

Chapter 36. Image Formation

COURSE NAME: PHOTOGRAPHY AND AUDIO VISUAL PRODUCTION (VOCATIONAL) FOR UNDER GRADUATE (FIRST YEAR)

Solution of Exercises Lecture Optical design with Zemax Part 6

ECEN 4606, UNDERGRADUATE OPTICS LAB

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name:

1.1 Singlet. Solution. a) Starting setup: The two radii and the image distance is chosen as variable.

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge).

PHY385H1F Introductory Optics. Practicals Session 7 Studying for Test 2

( ) Deriving the Lens Transmittance Function. Thin lens transmission is given by a phase with unit magnitude.

Parity and Plane Mirrors. Invert Image flip about a horizontal line. Revert Image flip about a vertical line.

Lens Design II. Lecture 3: Aspheres Herbert Gross. Winter term

ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM COLLEGE OF SCIENCE. Chester F. Carlson Center for Imaging Science

Chapter 23. Mirrors and Lenses

Geometrical Optics Optical systems

CH. 23 Mirrors and Lenses HW# 6, 7, 9, 11, 13, 21, 25, 31, 33, 35

PROCEEDINGS OF SPIE. Measurement of low-order aberrations with an autostigmatic microscope

Some lens design methods. Dave Shafer David Shafer Optical Design Fairfield, CT #

APPLICATION NOTE

Chapter 34 Geometric Optics (also known as Ray Optics) by C.-R. Hu

Transcription:

Lecture 4: Geometrical Optics 2 Outline 1 Optical Systems 2 Images and Pupils 3 Rays 4 Wavefronts 5 Aberrations Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 1

Optical Systems Overview combinations of several optical elements (lenses, mirrors, stops) examples: camera lens, microscope, telescopes, instruments thin-lens combinations can be treated analytically effective focal length: 1 f = 1 f 1 + 1 f 2 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 2

Simple Thin-Lens Combinations distance > sum of focal lengths real image between lenses apply single-lens equation successively Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 3

Thin-Lens Combinations 1 construct image formed by lens 1 using rays 2 and 3 ray 2 passes through focal point F i1 ray 3 passes through focal point F o1 ray 4 passes backwards through center of lens 2 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 4

Thin-Lens Combinations 2 adding lens 2 does not refract ray 4 ray 3 is refracted to image focus F i2 intersection of rays 3 and 4 determine image location lens 2 adds convergence or divergence Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 5

Second Lens Adds Convergence or Divergence Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 6

F-number and Numerical Aperture Aperture all optical systems have a place where aperture is limited main mirror of telescopes aperture stop in photographic lenses aperture typically has a maximum diameter aperture size is important for diffraction effects Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 7

F-number f/2: f/4: describes the light-gathering ability of the lens f-number given by F = f /D also called focal ratio or f-ratio, written as: f /F the bigger F, the better the paraxial approximation works fast system for F < 2, slow system for F > 2 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 8

F-number on Camera Lens Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 9

Numerical Aperture en.wikipedia.org/wiki/file:numerical_aperture.svg numerical aperture (NA): n sin θ n index of refraction of working medium θ half-angle of maximum cone of light that can enter or exit lens important for microscope objectives (n often not 1) Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 10

Numerical Aperture in Fibers en.wikipedia.org/wiki/file:of-na.svg acceptance cone of the fiber determined by materials NA = n sin θ = n1 2 n2 2 n index of refraction of working medium Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 11

Ray Definitions Planes and Rays meridional plane defined by optical axis and chief ray going through center of optical system sagittal plane is perpendicular to it Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 12

Meridional (or Tangential) Ray confined to plane containing optical axis and object point from which ray originates Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 13

Chief (or Principal) Ray goes through center of aperture meridional ray that starts at edge of object, and passes through center of aperture stop crosses optical axis at locations of pupils chief rays are equivalent to the rays in pinhole camera distance between chief ray and optical axis at an image location defines size of image Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 14

Skew Ray does not propagate in plane that contains both object point and optical axis does not cross optical axis anywhere, and not parallel to it Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 15

Marginal Ray is meridional ray that starts at point where object crosses optical axis and touches edge of aperture stop useful because it crosses optical axis again at locations where image is formed distance of marginal ray from optical axis at entrance and exit pupils defines their sizes Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 16

Sagittal (or Transverse) Ray comes from off-axis object point, propagates in plane perpendicular to meridional plane intersects the pupil along a line that is perpendicular to meridional plane chief ray is both sagittal and meridional all other sagittal rays are skew rays Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 17

Paraxial Ray makes a small angle to the optical axis of the system lies close to the axis throughout the system can be modeled reasonably well by using the paraxial approximation. Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 18

Images and Pupils Converging, Diverging and Collimated beams Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 19

Images and Pupils image every object point comes to a focus in an image plane light in one image point comes from pupil positions object information is encoded in position, not in angle pupil all object rays are smeared out over complete aperture light in one pupil point comes from different object positions object information is encoded in angle, not in position Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 20

Aperture and Field Stops aperture stop limits the amount of light reaching the image aperture stop determines light-gathering ability of optical system field stop limits the image size or angle Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 21

Entrance and Exit Pupils pupil is an image of the aperture stop entrance pupil: image of the aperture stop as seen from a point on the optical axis and on the object through optical elements preceeding the aperture stop exit pupil: image of the aperture stop as seen from a point on the optical axis and in the image through optical elements after the aperture stop Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 22

Entrance and Exit Pupils Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 23

Entrance and Exit Pupils Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 24

Vignetting effective aperture stop depends on position in object image fades toward its edges Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 25

Telecentric Arrangement as seen from image, pupil is at infininity easy: lens is its focal length away from pupil (image) magnification does not change with focus positions ray cones for all image points have the same orientation e with Touch Optical Design Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 26

Aberrations Spot Diagrams and Wavefronts plane of least confusion is location where image of point source has smallest diameter spot diagram: shows ray locations in plane of least confusion spot diagrams are closely connected with wavefronts aberrations are deviations from spherical wavefront Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 27

Spherical Aberrations different focal lengths of paraxial and marginal rays longitudinal spherical aberration along optical axis transverse (or lateral) spherical aberration in image plane much more pronounced for short focal ratios h Optical Design Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 28

Minimizing Spherical Aberrations Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 29

Spherical Aberration of Spherical Lens foci from paraxial beams are further away than marginal rays spot diagram shows central area with fainter disk around it Made with Touch Optical Design Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 30

Spherical Aberration Spots and Waves spot diagram shows central area with fainter disk around it wavefront has peak and turned-up edges Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 31

Aspheric Lens conic constant K = 1 n makes perfect lens difficult to manufacture but possible these days Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 32

HST Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 33

Coma typically seen for object points away from optical axis leads to tails on stars Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 34

Positive Coma Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 35

Coma Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 36

Coma Spots and Waves parabolic mirror with perfect on-axis performance spots and wavefront for off-axis image points wavefront is tilted in inner part Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 37

Astigmatism image of a point forms focal lines at the sagittal and tangental foci in between an elliptical shape Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 38

Tilted Glass Plate in Converging Beam astigmatism and spherical aberration note beam shift tilted plates: beam shifters, filters, beamsplitters Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 39

Astigmatism Spots and Waves focus in two orthogonal directions, but not in both at the same time difference of two parabolae with different curvatures wavefront has saddle shape Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 40

Field Curvature field (Petzval) curvature: image lies on curved surface problems with flat detectors (e.g. CCDs) solution: field flattening lens close to focus Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 41

Distortion image is sharp but geometrically distorted (a) object (b) positive (or pincushion) distortion (c) negative (or barrel) distortion Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 42

Aperture Stop Creates Distortion Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 43

Aberration Descriptions Seidel Aberrations Ludwig von Seidel (1857) Taylor expansion of sin φ sin φ = φ φ3 3! + φ5 5!... paraxial: first-order optics Seidel optics: third-order optics Seidel aberrations: spherical, astigmatism, coma, field curvature, distortion Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 44

Zernike Polynomials tip tilt focus astigmatism (45 deg) astigmatism 0 deg coma (0 deg) coma (90 deg) trefoil (0 deg) trefoil (30 deg) third-order spherical low orders equal Seidel aberrations form orthonormal basis on unit circle Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical Optics 2 45