Low frequency jitter tolerance Comments 109, 133, 140. Piers Dawe IPtronics. Charles Moore Avago Technologies

Similar documents
Synchronizing Transmitter Jitter Testing with Receiver Jitter Tolerance

100G CWDM4 MSA Technical Specifications 2km Optical Specifications

PAM4 interference Tolerance test ad hoc report. Mike Dudek QLogic Charles Moore Avago Nov 13, 2012

IEEE Std 802.3ap (Amendment to IEEE Std )

Comment Supporting materials: The Reuse of 10GbE SRS Test for SR4/10, 40G-LR4. Frank Chang Vitesse

Considerations for CRU BW and Amount of Untracked Jitter

IEEE 802.3ba 40Gb/s and 100Gb/s Ethernet Task Force 22th Sep 2009

Clause 71 10GBASE-KX4 PMD Test Suite Version 0.2. Technical Document. Last Updated: April 29, :07 PM

Considera*ons for CRU BW 400 GbE PMDs in Support of Comments

400G CWDM8 10 km Optical Interface Technical Specifications Revision 1.0

yellow highlighted text indicates refinement is needed turquoise highlighted text indicates where the text was original pulled from

Date: October 4, 2004 T10 Technical Committee From: Bill Ham Subject: SAS 1.1 PHY jitter MJSQ modifications

40 AND 100 GIGABIT ETHERNET CONSORTIUM

Proposed Baseline text for: Chip-to-module 400 Gb/s eightlane Attachment Unit Interface (CDAUI-8) Tom Palkert MoSys Jan

06-011r0 Towards a SAS-2 Physical Layer Specification. Kevin Witt 11/30/2005

IEEE P802.3bs D Gb/s & 400 Gb/s Ethernet 4th Sponsor recirculation ballot comments

BERT bathtub, TDP and stressed eye generator

10 GIGABIT ETHERNET CONSORTIUM

GIGABIT ETHERNET CONSORTIUM

AUTOMOTIVE ETHERNET CONSORTIUM

PHY PMA electrical specs baseline proposal for 803.an

2.5G/5G/10G ETHERNET Testing Service

TDEC for PAM4 ('TDECQ') Changes to clause 123, to replace TDP with TDECQ Draft 1a. May 3 rd 2016 Jonathan King Finisar

IEEE P802.3bs D Gb/s & 400 Gb/s Ethernet 4th Sponsor recirculation ballot comments

Observation bandwidth

PROLABS XENPAK-10GB-SR-C

Improved 100GBASE-SR4 transmitter testing

400G-FR4 Technical Specification

TDEC for PAM4 ('TDECQ') Changes to clause 123, to replace TDP with TDECQ Draft 1. May 3rd 2016 Jonathan King

BACKPLANE ETHERNET CONSORTIUM

IEEE Draft P802.3ap/WP0.6 Draft Amendment to IEEE Std September 28, 2004

04-370r1 SAS-1.1 Merge IT and IR with XT and XR 1 December 2004

06-496r3 SAS-2 Electrical Specification Proposal. Kevin Witt SAS-2 Phy Working Group 1/16/07

IEEE Draft P802.3ap/WP0.5 Draft Amendment to IEEE Std September 24, 2004

Why new method? (stressed eye calibration)

Signal metrics for 10GBASE-LRM. Piers Dawe Agilent. John Ewen JDSU. Abhijit Shanbhag Scintera

NRZ CHIP-CHIP. CDAUI-8 Chip-Chip. Tom Palkert. MoSys 12/16/2014

Update to Alternative Specification to OCL Inductance to Control 100BASE-TX Baseline Wander

Baseline Proposal for 100G Backplane Specification Using PAM2. Mike Dudek QLogic Mike Li Altera Feb 25, 2012

Compatibility of Different Port Types at a Big IC Piers Dawe Rita Horner John Petrilla Avago Technologies

IEEE P802.3bs D Gb/s & 400 Gb/s Ethernet 3rd Sponsor recirculation ballot comments

400G-BD4.2 Multimode Fiber 8x50Gbps Technical Specifications

X2-10GB-LR-OC Transceiver, 1310nm, SC Connectors, 10km over Single-Mode Fiber.

T10/08-248r0 Considerations for Testing Jitter Tolerance Using the Inverse JTF Mask. Guillaume Fortin PMC-Sierra

04-370r0 SAS-1.1 Merge IT and IR with XT and XR 6 November 2004

100G SR4 TxVEC Update. John Petrilla: Avago Technologies May 15, 2014

IEEE 100BASE-T1 Physical Media Attachment Test Suite

IEEE P802.3bm D Gb/s & 100 Gb/s Fiber Optic TF 1st Sponsor recirculation ballot comments

SAS-2 6Gbps PHY Specification

Compliance points for XLAUI/CAUI with connector

CFORTH-X2-10GB-CX4 Specifications Rev. D00A

DWDM XENPAK Transceiver, 32 wavelengths, SC Connectors, 80km over Single Mode Fiber

10GECTHE 10 GIGABIT ETHERNET CONSORTIUM

x-mgc Part Number: FCU-022M101

BTI-10GLR-XN-AS. 10GBASE-LR XENPAK Transceiver,1310nm, SC Connectors, 10km over Single-Mode Fiber. For More Information: DATA SHEET

Introduction Identification Implementation identification Protocol summary. Supplier 1

Channel operating margin for PAM4 CDAUI-8 chip-to-chip interfaces

04-370r2 SAS-1.1 Merge IT and IR with XT and XR 9 December 2004

Multilane MM Optics: Considerations for 802.3ba. John Petrilla Avago Technologies March 2008

10GBASE-S Technical Feasibility

SAS-2 6Gbps PHY Specification

CAUI-4 Chip Chip Spec Discussion

X2 LR Optical Transponder, 10Km Reach GX LRC

Additional PAM4 transmitter constraints (comments 52, 54, 57, 59, 27) 802.3cd interim, Pittsburgh, May 2018 Jonathan King, Chris Cole, Finisar

SERIES O: SPECIFICATIONS OF MEASURING EQUIPMENT Equipment for the measurement of digital and analogue/digital parameters

SV2C 28 Gbps, 8 Lane SerDes Tester

University of New Hampshire InterOperability Laboratory Fast Ethernet Consortium

Specification of Jitter in Bit-Serial Digital Systems

Proposal for Transmitter Electrical Specifications

IEEE P802.3bm D Gb/s and 100 Gb/s Fiber Optic TF Initial Working Group ballot comments

10 Gigabit Ethernet Consortium Clause 55 PMA Conformance Test Suite v1.0 Report

Comprehensive TP2 and TP3 Testing

Features: Compliance: Applications. Warranty: B21-GT Cisco 10Gb Ethernet Base CX4 X2 Module HP Compatible

100G 4WDM-10 MSA Technical Specifications 10km Optical Specifications Release 1.0

High-Speed Link Tuning Using Signal Conditioning Circuitry in Stratix V Transceivers

OIF CEI 6G LR OVERVIEW

CAUI-4 Consensus Building, Specification Discussion. Oct 2012

SECQ and its sensitivity to measurement bandwidth

IEEE SUPPLEMENT TO IEEE STANDARD FOR INFORMATION TECHNOLOGY

Fibre Channel Consortium

XENPAK-10GB-SR XENPAK-10GBASE-SR 850nm, 300m Reach

54. Physical Medium Dependent (PMD) sublayer and baseband medium, type 10GBASE-CX4

XENPAK-10GB-LRM XENPAK-10GBASE-LRM 1310nm, 220m Reach

Transmit Waveform Calibration for Receiver Testing. Kevin Witt & Mahbubul Bari Jan 15, r1

The University of New Hampshire InterOperability Laboratory 10 GIGABIT ETHERNET CONSORTIUM. XAUI Electrical Test Suite Version 1.1 Technical Document

Achieving closure on TDECQ/SRS

DWDM XENPAK Transceivers, 32 wavelengths, SC Connectors, 80km over Single Mode Fiber

Adding a No FEC cable (CA-N) to 25GBASE-CR. Mike Dudek QLogic 3/9/15

SHF Communication Technologies AG. Wilhelm-von-Siemens-Str. 23D Berlin Germany. Phone Fax

INTERNATIONAL TELECOMMUNICATION UNION. Timing requirements of slave clocks suitable for use as node clocks in synchronization networks

10GBASE-S Technical Feasibility RECAP

Product Specification 40GE SWDM4 QSFP+ Optical Transceiver Module FTL4S1QE1C

Alignment of Tx jitter specifications, COM, and Rx interference/jitter tolerance tests

Application Note 5044

Jitter in Digital Communication Systems, Part 1

X2-10GB-LR. 10Gbps X2 Optical Transceiver, 10km Reach

Backplane Ethernet Consortium Clause 72 PMD Conformance Test Suite v1.0 Report

X2-10GB-Cxx-ER CWDM X2-10GBASE, 40km Reach

SRS test source calibration: measurement bandwidth (comment r03-9) P802.3cd ad hoc, 27 th June 2018 Jonathan King, Finisar

T A S A 1 E B 1 F A Q

Transcription:

Low frequency jitter tolerance Comments 109, 133, 140 Piers Dawe IPtronics. Charles Moore Avago Technologies

Supporters Adee Ran Mike Dudek Mike Li Intel QLogic Altera P802.3bj Jan 2012 Low frequency jitter tolerance 2

Introduction In the 100GBASE-KP4 Interference Tolerance Ad-Hoc, it was observed that transmitters are allowed to generate low frequency jitter that receivers are not required to tolerate This is the case for 100GBASE-KR4 and 100GBASE-CR4 also It was observed that the 100GBASE-KP4 transmitter jitter corner frequency may be unnecessarily high These slides survey what other PHY specifications do, and consider what such a receiver requirement might involve P802.3bj Jan 2012 Low frequency jitter tolerance 3

Comments 133 and 140 Tx, Rx LF jitter Cl 94 SC 3.12.8 P 274 L 32 # 133 TR Due to complexity of KP4 reciver allowing tracking up to Fbaud/2500 over burden the reciver when low cost oscilaltor exist to tigthen the TX loop BW SuggestedRemedy Propose to use Fbaud/10000 or 1.36 MHz for the KP4 CDR loop BW Ghiasi, Ali Broadcom [Presently it's 5 MHz or fbaud/2719 - PD] Cl 94 SC 3.13.1 P 276 L 54 # 140 TR Add standalone reciver tracking and inteference test with sinousiodal jitter SuggestedRemedy The unstress jitter tolernace test is as the following: Test patern is PRBS31 each lane must operate with BER 1E-8 or better. The applied stress is sinousiodal stress of 25 KHz with p-p jitter of 5 UI 125 Khz with p-p jitter of 1 UI See ghiasi_01_0113 Ghiasi, Ali Broadcom P802.3bj Jan 2012 Low frequency jitter tolerance 4

Comment 109 Rx LF jitter Cl 94 SC 94.3.13.3 P 276 L 40 # 109 TR Transmitter jitter is measured after a high-pass jitter filter. The receiver must be able to tolerate low frequency jitter, and the spec must require it. This could be enforced by including low frequency jitter in the receiver interference tolerance specification or by a separate jitter tolerance specification. The latter seems easier. A 2-point spec as used in e.g. 40GBASE- SR4 could be used (just two jitter frequencies rather than a mask). SuggestedRemedy Add a low frequency jitter tolerance specification to each of clauses 92, 93, 94, as a separate item (not part of receiver interference tolerance, but possibly using the same high loss channel). Make consistent with the transmitter jitter specs, in particular the 3 db frequency of the jitter measurement filter used for transmitter output jitter measurement. Dawe, Piers IPtronics P802.3bj Jan 2012 Low frequency jitter tolerance 5

Specified or not - background Many PHY types, also XAUI, XLAUI/CAUI and nppi, have low frequency jitter tolerance included in the stressed sensitivity test * (= interference tolerance test *) See next slide Some PHYs have a separate low frequency jitter tolerance spec See next slide One PHY (40GBASE-FR) uses a SONET style jitter tolerance spec Advantage: compatibility with OTN for dual-use hardware Two PHYs (1000BASE-T, 10GBASE-T) require the receiver to work with a compliant transmitter and link segment, specify transmitter jitter Advantage of implied Rx spec: thoroughness and consistency Disadvantage: difficulty in making the worst case channels, open to oversights and disputes Some PHYs filter the low frequency Tx jitter in Tx spec but don't require its tolerance in Rx spec See next slide Backup gives more detail for the various PHY types * Testing is one way of verification, but 802.3 is not a test spec, so other methods could be used. We mean that IF the test were carried out, THEN the item would have to pass. P802.3bj Jan 2012 Low frequency jitter tolerance 6

Separated or combined? The majority (17/27) of PHY types have low frequency jitter tolerance included in the stressed sensitivity test * (= interference tolerance test *) XAUI, 10GBASE-S/L/E, 10GBASE-LX4, 100BASE-LX10, 100BASE-BX10, 1000BASE-LX10, 1000BASE-BX10, 1000BASE-PX10, 1000BASE-PX20, 10GBASE PR, 10/1GBASE PRX, 40GBASE LR4, 100GBASE LR4, 100GBASE ER4, XLAUI/CAUI, nppi Advantages: relates closely to actual use, rigorous, just one test rig to calibrate Some (3/27) PHYs have a separate low frequency jitter tolerance spec 10GBASE-LRM, 40GBASE-SR4, 100GBASE-SR10 Advantages: makes the stressed sensitivity test rig a little simpler to calibrate, makes the low frequency jitter tolerance test rig simple to calibrate, allows low frequency jitter tolerance verification to be done infrequently if experience justifies it * For some PHYs, PMD and PMA are implemented in different packages by different companies, who can comply to the separate specs Some (4/27) PHYs filter the low frequency Tx jitter in Tx spec but don't require its tolerance in Rx spec 10GBASE-KX4, 10GBASE-KR, 40GBASE-CR4, 100GBASE-CR10 * Testing is one way of verification, but 802.3 is not a test spec, so other methods could be used. We mean that IF the test were carried out, THEN the item would have to pass. P802.3bj Jan 2012 Low frequency jitter tolerance 7

Example of a separated test 1/3 10GBASE-LRM, where PMD and PMA may realistically be implemented in different packages by different companies 68.6.11 Receiver jitter tolerance Including Figure 68 14 Measurement configuration for receiver jitter tolerance test (see next slide) Refers to Table 68 5 10GBASE-LRM receive characteristics Conditions of receiver jitter tolerance test: Jitter frequency and peak to peak amplitude (75, 5) (khz, UI) Jitter frequency and peak to peak amplitude (375, 1) (khz, UI) "This specification addresses the need for the receiver to track lowfrequency jitter without the occurrence of errors" 10GBASE-LRM uses a signalling rate of 10.3125 GBd; the information rate on the line is the same There is a separate 68.6.9 Comprehensive stressed receiver sensitivity and overload P802.3bj Jan 2012 Low frequency jitter tolerance 8

Example of a separated test 2/3 The clock of the test transmitter is sinusoidally modulated The frequency, amplitude pairs were chosen to match the reference CDR for transmitter specification "A clock recovery unit (CRU) should be used to trigger the oscilloscope as shown in Figure 52 9. It should have a high frequency corner bandwidth of 4 MHz and a slope of 20 db/decade. The CRU tracks acceptable levels of lowfrequency jitter and wander." No other signal impairments are mentioned The signal is attenuated to the stressed sensitivity level Which is the lowest it could be, because the receiver is not required to work at all below the stressed sensitivity level P802.3bj Jan 2012 Low frequency jitter tolerance 9

Example of a separated test 3/3 A BER of better than 10 12 shall be achieved. (This isn't a SONET style jitter tolerance test only two measurement points, no relative measurement) Various implementations may be used, provided that the resulting jitter matches that specified. Phase or frequency modulation may be applied to induce the sinusoidal jitter, and the modulation may be applied to the clock source or to the data stream itself. P802.3bj Jan 2012 Low frequency jitter tolerance 10

Patterns, electrical test, other PHYs 68.6.1 Test patterns and related subclauses for optical parameters Pattern 1 (64B/66B-like, 8448 UI long) or 3 (PRBS31) 40GBASE-SR4, 100GBASE-SR10 follow the same approach as 10GBASE-LRM, for the same reasons The next two slides sketch out what an electrical version of 68.6.11 would involve. The backup slides detail what various PHYs and similar do summarised in slides 3 and 4 P802.3bj Jan 2012 Low frequency jitter tolerance 11

Separated test possible electrical version Much of this is as for interference tolerance test, could be specified by reference, without interference stress but with low frequency jitter Seek to allow use of product transmitter as test transmitter This allows a rich, realistic, test pattern that may not be available in today's test equipment Apply SJ to its clock reference Calibrate SJ out at the two spot frequencies Because product may attenuate SJ This may need more jitter bandwidth in the test transmitter's clock multiplier than is needed for normal operation Spot frequencies depend on choice made for corner frequency for product transmitter jitter generation measurement With SJ at one of the two test condition, Add a maximum-loss channel Maybe add broadband attenuation to adjust Tx amplitude range to minimum Connect to receiver under test Allow link bring-up including training as usual Measure BER We had assumed that BER criterion would be the usual one. But see ghiasi_01_0113 Repeat for other SJ test condition What else? P802.3bj Jan 2012 Low frequency jitter tolerance 12

Possible coefficients for separated test 10GBASE-LRM 100GBASE-CR4/KR4 100GBASE-KP4 Unit Signalling rate 10.3125 25.78125 13.59375 GBd Jitter corner frequency or 3 db frequency 4 10 5 1.36 MHz Jitter frequency 75 190? 95? 25 khz SJ pk-pk 5 5? 5? 5 UI Jitter frequency 375 940? 470? 125 khz SJ pk-pk 1 1? 1? 1 UI BER 1e-12 1e-12/1e-5 1e-12/1e-5. 1e-8 The blue numbers got from existing (black) specs by scaling by the jitter corner frequency, and rounding The red numbers are from comment 140 P802.3bj Jan 2012 Low frequency jitter tolerance 13

Questions What Tx corner frequency is desired? Separated or combined Rx test? Will enough "product" Tx exist with CMU that track enough input jitter to output these amounts? What test pattern? Can test equipment deliver a suitable pattern? Any issues for calibrating a maximum loss channel? Other issues? P802.3bj Jan 2012 Low frequency jitter tolerance 14

Backup Detail of jitter tolerance or similar specifications for the PHY types surveyed, more-or-less in clause order Looked at 1G and faster PHY types P802.3bj Jan 2012 Low frequency jitter tolerance 15

PHYs and similar with low frequency jitter tolerance (combined test) 1000BASE-T 40.6.1.2.5 Transmitter timing jitter 40.6.1.3.4 Alien Crosstalk noise rejection While receiving data from a transmitter specified in 40.6.1.2 through a link segment specified in 40.7 connected to all MDI duplex channels, a receiver shall send the proper PMA_UNITDATA.indication message to the PCS when... XAUI 47.3.4.6 Jitter tolerance Test combines low frequency jitter mask and other jitters and minimum driver amplitude Figure 47 5 Single-tone sinusoidal jitter mask 10GBASE-S/L/E 52.8.1 Sinusoidal jitter for receiver conformance test Figure 52 4 Mask of the sinusoidal component of jitter tolerance (informative) Table 52 19 Applied sinusoidal jitter Sinusoidal jitter is combined with other impairments including jitter 10GBASE-LX4 53.8.2 Receive jitter tolerance specification Sinusoidal jitter is added to other jitter and stress 10GBASE-T 55.5.3.3 Transmitter timing jitter RMS period jitter over an integration time interval of 1 ms +/- 10%. 55.5.4 Receiver electrical specifications E.g. 55.5.4.4 While receiving data from a transmitter compliant with specifications in 55.5.3, through a 100 m link segment compliant with the specifications in 55.7, a receiver shall operate... 100BASE-LX10, 100BASE-BX10, 1000BASE-LX10, and 1000BASE-BX10, 1000BASE-PX10, 1000BASE-PX20, 10GBASE PR, 10/1GBASE PRX Figure 58 10 Mask of the sinusoidal component of jitter tolerance (informative) Table 58 13 Applied sinusoidal jitter f2, jitter corner frequency, in the tables for the various PHYs P802.3bj Jan 2012 Low frequency jitter tolerance 16

802.3ap Backplane PHYs 10GBASE-KX4 71.7.1.9 Transmit jitter test requirements For the purpose of jitter measurement, the effect of a single-pole high-pass filter with a 3 db point at 1.875 MHz is applied to the jitter. 71.7.2 Receiver characteristics 71.7.2.1 Receiver interference tolerance as described in Annex 69A Annex 69A (normative) Interference tolerance testing The signaling speed of the pattern generator shall be offset ±100 ppm relative to the nominal signaling speed of the port type being tested The random jitter shall be measured at the output of a single pole high-pass filter with cut-off frequency at 1/250 of the signaling speed [No mention of low-frequency sinusoidal jitter] 10GBASE-KR 72.7.1.8 Transmit jitter test requirements For the purpose of jitter measurement, the effect of a single-pole high-pass filter with a 3 db point at 4 MHz is applied to the jitter. 72.7.2.1 Receiver interference tolerance as described in Annex 69A 40GBASE-KR4 84.8 40GBASE-KR4 electrical characteristics 84.8.1 Transmitter characteristics... same as 10GBASE-KR, as detailed in 72.7.1.1 through 72.7.1.11. 84.8.2.1 Receiver interference tolerance... same as those described for 10GBASE-KR in 72.7.2.1 and Annex 69A P802.3bj Jan 2012 Low frequency jitter tolerance 17

802.3ba (See next slide for XLAUI/CAUI) 40GBASE-CR4 and 100GBASE-CR10 Table 85 5 Transmitter characteristics at TP2 summary ftotal jitter at a BER of 10 12 measured per 83A.5.1 83A.5.1 Transmit jitter For the purpose of jitter measurement, the effect of a single-pole high-pass filter with a 3 db point at 4 MHz is applied to the jitter 85.8.4.2 Receiver interference tolerance test [No mention of low-frequency sinusoidal jitter] 40GBASE-SR4 and 100GBASE-SR10 Table 86 12 Test patterns and related subclauses Receiver jitter tolerance 3 (PRBS31) or 5 (scrambled idle) 86.8.4.8 Receiver jitter tolerance Receiver jitter tolerance shall be as defined as in 68.6.11, with the following differences... 40GBASE LR4 87.8.11.1 Stressed receiver conformance test block diagram signal is conditioned (stressed)... and has sinusoidal jitter applied as specified in 87.8.11.4. The sinusoidally jittered clock represents other forms of jitter and also verifies that the receiver under test can track lowfrequency jitter 87.8.11.4 Sinusoidal jitter for receiver conformance test The amplitude of the applied sinusoidal jitter is dependent on frequency as specified in Table 87 13 and is illustrated in Figure 87 5 100GBASE LR4 and 100GBASE ER4 88.8.10 Stressed receiver sensitivity using the method defined in 87.8.11 with the following exceptions: a) Added sinusoidal jitter is as specified in Table 88 13... P802.3bj Jan 2012 Low frequency jitter tolerance 18

More 802.3ba, 802.3bg XLAUI/CAUI 83A.3.4.6 Jitter tolerance The XLAUI/CAUI receiver shall tolerate sinusoidal jitter with any frequency and amplitude defined by the mask of Figure 83A 12. This subcomponent of deterministic jitter is intended to ensure margin for low-frequency jitter, wander, noise, crosstalk, and other variable system effects 83A.5.2 Receiver tolerance The XLAUI/CAUI jitter tolerance test setup in Figure 83A 15 or its equivalent 83B.2.1 Module specifications Module input tolerance signal See 83A.5.2 83B.2.3 Host input signal tolerance sinusoidal jitter defined in 83A.3.4.6. Figure 83B 10 Stressed-eye and jitter tolerance test setup nppi The 0.05 UI Sinusoidal Jitter (SJ) component of J2 Jitter is defined for frequencies much higher than the CDR bandwidth (e.g., ~20 MHz). At lower frequencies, the CDR must track additional applied SJ as detailed in the relevant specifications (see Figure 86A 10 and 52.8.1) Figure 86A 10 Mask of the sinusoidal component of jitter tolerance Table 86A 7 Applied sinusoidal jitter 40GBASE-FR 89.7.10 Receiver jitter tolerance SONET style for dual-use (Ethernet and SONET) products P802.3bj Jan 2012 Low frequency jitter tolerance 19