Rectangular QPSK for generation of optical eight-ary phase-shift keying

Similar documents
40-Gbaud 16-QAM transmitter using tandem IQ modulators with binary driving electronic signals

Proposal of A Star-16QAM System Based on Intersymbol Interference (ISI) Suppression and Coherent Detection

SCIENCE CHINA Technological Sciences. A flexible multi-16qam transmitter based on cascaded dual-parallel Mach-Zehnder modulator and phase modulator

Next-Generation Optical Fiber Network Communication

Phasor monitoring of DxPSK signals using software-based synchronization technique

Mrs. G.Sangeetha Lakshmi 1,Mrs. C.Vinodhini 2. Assistant Professor, Department of Computer Science and Applications, D.K.M College for Women

Received 6 December 2017 Accepted 10 January 2018 Published 6 February 2018

COHERENT DETECTION OPTICAL OFDM SYSTEM

Single channel and WDM transmission of 28 Gbaud zero-guard-interval CO-OFDM

Full-duplex bidirectional transmission of 10-Gb/s millimeter-wave QPSK signal in E-band optical wireless link

SHF Communication Technologies AG

π code 0 Changchun,130000,China Key Laboratory of National Defense.Changchun,130000,China Keywords:DPSK; CSRZ; atmospheric channel

Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise

Next Generation Optical Communication Systems

Optical Complex Spectrum Analyzer (OCSA)

Performance Analysis Of Hybrid Optical OFDM System With High Order Dispersion Compensation

Direct Demodulation of Optical BPSK/QPSK Signal without Digital Signal Processing

Simple Self-Homodyne Detection Scheme for Optical OFDM With Inserted Pilot Subframes and Application in Optical Access Networks

60 Gbit/s 64 QAM-OFDM coherent optical transmission with a 5.3 GHz bandwidth

Emerging Subsea Networks

Lecture 7 Fiber Optical Communication Lecture 7, Slide 1

Phase Noise Compensation for Coherent Orthogonal Frequency Division Multiplexing in Optical Fiber Communications Systems

40Gb/s & 100Gb/s Transport in the WAN Dr. Olga Vassilieva Fujitsu Laboratories of America, Inc. Richardson, Texas

Estimation of BER from Error Vector Magnitude for Optical Coherent Systems

Phase Modulator for Higher Order Dispersion Compensation in Optical OFDM System

Novel coherent self-heterodyne receiver based on phase modulation detection

Evaluation of Multilevel Modulation Formats for 100Gbps Transmission with Direct Detection

A NOVEL SCHEME FOR OPTICAL MILLIMETER WAVE GENERATION USING MZM

SHF Communication Technologies AG

Multi-format all-optical-3r-regeneration technology

Channel Equalization and Phase Noise Compensation Free DAPSK-OFDM Transmission for Coherent PON System

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Chalmers Publication Library. Copyright Notice. (Article begins on next page)

All-VCSEL based digital coherent detection link for multi Gbit/s WDM passive optical networks

Digital back-propagation for spectrally efficient WDM 112 Gbit/s PM m-ary QAM transmission

Document Version Publisher s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Low-voltage, high speed, compact silicon modulator for BPSK modulation

Chalmers Publication Library. Copyright Notice. (Article begins on next page)

Optical Fiber Technology

120-Gb/s NRZ-DQPSK signal generation by a thin-lithiumniobate-substrate

SIMULATIVE INVESTIGATION OF SINGLE-TONE ROF SYSTEM USING VARIOUS DUOBINARY MODULATION FORMATS

Lecture 2 Fiber Optical Communication Lecture 2, Slide 1

Investigation of a novel structure for 6PolSK-QPSK modulation

Novel OBI noise reduction technique by using similar-obi estimation in optical multiple access uplink

Fiber-wireless links supporting high-capacity W-band channels

from ocean to cloud Fraunhofer Institute for Telecommunications, Heinrich-Hertz-Institut, Einsteinufer 37, D-10587, Berlin, Germany

Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration

Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion

Generation of square or hexagonal 16-QAM signals using a dual-drive IQ modulator driven by binary signals

Effects of phase noise of monolithic tunable laser on coherent communication systems

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016

Optical performance monitoring technique using software-based synchronous amplitude histograms

FWM Suppression in WDM Systems Using Advanced Modulation Formats

Photoneco white papers: Single-modulator RZ-DQPSK transmitter Description of the prior art

Performance Analysis of 112 Gb/s PDM- DQPSK Optical System with Frequency Swept Coherent Detected Spectral Amplitude Labels

Real-time 93.8-Gb/s polarization-multiplexed OFDM transmitter with 1024-point IFFT

Single- versus Dual-Carrier Transmission for Installed Submarine Cable Upgrades

QAM Transmitter 1 OBJECTIVE 2 PRE-LAB. Investigate the method for measuring the BER accurately and the distortions present in coherent modulators.

A continuously tunable and filterless optical millimeter-wave generation via frequency octupling

Robust 9-QAM digital recovery for spectrum shaped coherent QPSK signal

A WDM passive optical network enabling multicasting with color-free ONUs

Design and Analysis of Binary Driven Coherent M- ary Qam Transmitter for Next Generation Optical Networks

Digital non-linear equalization for flexible capacity ultradense WDM channels for metro core networking

SHF Communication Technologies AG

Three-level Code Division Multiplex for Local Area Networks

Experimental demonstration of both inverted and non-inverted wavelength conversion based on transient cross phase modulation of SOA

Eye-Diagram-Based Evaluation of RZ and NRZ Modulation Methods in a 10-Gb/s Single-Channel and a 160-Gb/s WDM Optical Networks

Analytical Estimation in Differential Optical Transmission Systems Influenced by Equalization Enhanced Phase Noise

The secondary MZM used to modulate the quadrature phase carrier produces a phase shifted version:

Effects of Polarization Tracker on 80 and 112 Gb/s PDM-DQPSK with Spectral Amplitude Code Labels

High-Speed Optical Modulators and Photonic Sideband Management

40Gb/s Optical Transmission System Testbed

Ultra high speed optical transmission using subcarrier-multiplexed four-dimensional LDPCcoded

Wavelength Interleaving Based Dispersion Tolerant RoF System with Double Sideband Carrier Suppression

REDUCTION OF CROSSTALK IN WAVELENGTH DIVISION MULTIPLEXED FIBER OPTIC COMMUNICATION SYSTEMS

Implementation and analysis of 2 Tbps MDRZ DWDM system at ultra narrow channel spacing

The Challenges of Data Transmission toward Tbps Line rate in DWDM System for Long haul Transmission

Department of Electrical and Computer Systems Engineering

ITEE Journal Information Technology & Electrical Engineering

Investigation of Different Optical Modulation Schemes

Theoretical study of all-optical RZ-OOK to NRZ-OOK format conversion in uniform FBG for mixed line-rate DWDM systems

All-Optical Signal Processing and Optical Regeneration

Chapter 4. Advanced Modulation Formats

ModBox-CBand-10Gb/s-MultiFormats C-Band, Multi-formats 10 Gb/s Optical Reference Transmitter

Pilot-based blind phase estimation for coherent optical OFDM system

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 29, NO. 21, NOVEMBER 1, Impact of Channel Count and PMD on Polarization-Multiplexed QPSK Transmission

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

A 24-Dimensional Modulation Format Achieving 6 db Asymptotic Power Efficiency

Slow light on Gbit/s differential-phase-shiftkeying

SPM mitigation in 16-ary amplitude-anddifferential-phase. transmission systems

Spectrally-Efficient 17.6-Tb/s DWDM Optical Transmission System over 678 km with Pre-Filtering Analysis

High bit-rate combined FSK/IM modulated optical signal generation by using GCSR tunable laser sources

All-Optical Clock Division Using Period-one Oscillation of Optically Injected Semiconductor Laser

Digital Optical. Communications. Le Nguyen Binh. CRC Press Taylor &. Francis Group. Boca Raton London New York

PSO-200 OPTICAL MODULATION ANALYZER

An improved optical costas loop PSK receiver: Simulation analysis

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

Performance Analysis of Chromatic Dispersion Compensation of a Chirped Fiber Grating on a Differential Phase-shift-keyed Transmission

Extending the Offset Frequency Range of the D2-135 Offset Phase Lock Servo by Indirect Locking

CD-insensitive PMD monitoring based on RF power measurement

Transcription:

Rectangular QPSK for generation of optical eight-ary phase-shift keying Guo-Wei Lu, * Takahide Sakamoto, and Tetsuya Kawanishi National Institute of Information and Communications Technology (NICT), 4-2-1 Nukui-Kitamchi, Koganei, Tokyo, 184-8795, Japan * gwlu@nict.go.jp Abstract: Quadrature phase-shift keying (QPSK) is usually generated using an in-phase/quadrature (IQ) modulator in a balanced driving-condition, showing a square-shape constellation in complex plane. This conventional QPSK is referred to as square QPSK (S-QPSK) in this paper. On the other hand, when an IQ modulator is driven in an un-balanced manner with different amplitudes in in-phase (I) and quadrature (Q) branches, a rectangular QPSK (R-QPSK) could be synthesized. The concept of R- QPSK is proposed for the first time and applied to optical eight-ary phaseshift keying (8PSK) transmitter. By cascading an S-QPSK and an R-QPSK, an optical 8PSK could be synthesized. The transmitter configuration is based on two cascaded IQ modulators, which also could be used to generate other advanced multi-level formats like quadrature amplitude modulation (QAM) when different driving and bias conditions are applied. Therefore, the proposed transmitter structure has potential to be deployed as a versatile transmitter for synthesis of several different multi-level modulation formats for the future dynamic optical networks. A 30-Gb/s optical 8PSK is experimentally demonstrated using the proposed solution. 2011 Optical Society of America OCIS codes: (060.0060) Fiber optics and optical communications; (060.5060) Phase modulation; (060.1660) Coherent communications. References and links 1. S. Tsukamoto, K. Katoh, and K. Kikuchi, Coherent Demodulation of Optical 8-Phase Shift-Keying Signals Using Homodyne Detection and Digital Signal Processing, in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OThR5. http://www.opticsinfobase.org/abstract.cfm?uri=ofc-2006-othr5 2. M. Nakamura, Y. Kamio, and T. Miyazaki, Pilot-carrier based linewidth-tolerant 8PSK self-homodyne using only one modulator in Proc. European Conference on Optical Communication (ECOC2007), Berlin, Germany, paper 8.3.6 (2007). 3. X. Zhou, J. Yu, D. Qian, T. Wang, G. Zhang, and P. Magill, 8x114 Gb/s, 25-GHz-Spaced, PolMux-RZ-8PSK Transmission over 640 km of SSMF Employing Digital Coherent Detection and EDFA-Only Amplification, in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper PDP1. http://www.opticsinfobase.org/abstract.cfm?uri=nfoec-2008-pdp1 4. T. Sakamoto, A. Chiba, and T. Kawanishi, Electro-Optic Synthesis of 8PSK by Quad-Parallel Mach-Zehnder Modulator, in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuG4. http://www.opticsinfobase.org/abstract.cfm?uri=ofc-2009-otug4 5. Y. Yang, L. Cheng, Z. Li, C. Lu, Q. Xiong, X. Xu, L. Liu, H.Y. Tam, and P.K.A. Wai, An optical differential 8- PSK modulator using cascaded QPSK modulators, in Proc. European Conference on Optical Communication, paper P3.19 (2009). 6. R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, Real-Time Software-Defined Multi Format Transmitter Generating 64QAM at 28 GBd, IEEE Photon. Technol. Lett. 22(21), 1601 1603 (2010). 7. N. Kikuchi, K. Sekine, and S. Sasaki, Multilevel Signalling for High-Speed Optical Transmission, in Proc. European Conference on Optical Communications (ECOC 2006), paper Tu3.2.1(2006). 8. C. Kim and G. Li, Direct-detection optical differential 8-level phase-shift keying (OD8PSK) for spectrally efficient transmission, Opt. Express 12(15), 3415 3421 (2004), http://www.opticsinfobase.org/abstract.cfm?uri=oe-12-15-3415. 9. G.-W. Lu, M. Sköld, P. Johannisson, J. Zhao, M. Sjödin, H. Sunnerud, M. Westlund, A. Ellis, and P. A. Andrekson, 40-Gbaud 16-QAM transmitter using tandem IQ modulators with binary driving electronic signals, (C) 2011 OSA 12 September 2011 / Vol. 19, No. 19 / OPTICS EXPRESS 18479

Opt. Express 18(22), 23062 23069 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-22- 23062. 10. I. Kang, L. Mollenauer, B. Greene, and A. Grant, A novel method for synchronizing the pulse carver and electroabsorption data modulator for ultralong-haul DWDM transmission, IEEE Photon. Technol. Lett. 14(9), 1357 1359 (2002). 11. N. Kikuchi and S. Sasaki, Sensitivity Improvement of Incoherent Multilevel (30-Gbit/s 8QAM and 40-Gbit/s 16QAM) Signaling with Non-Euclidean Metric and MSPE (Multi Symbol Phase Estimation), in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWG1. http://www.opticsinfobase.org/abstract.cfm?uri=ofc-2009-owg1 1. Introduction Advanced optical multi-level modulations formats, such as quadrature phase-shift keying (QPSK), eight-ary phase-shift keying (8PSK), and quadrature amplitude modulation (QAM), become promising to meet the increasing demand on spectral efficiency and high throughout in optical communication systems. Among existing multi-level formats, 8PSK becomes attractive for its high tolerance against fiber nonlinearities, moderate implementation complexity, and flexibility for de-modulation in either coherent approaches [1 6] or direct detection [7-8]. Several schemes have been reported to generate optical 8PSK, including: i) a cascade of a partially-driven (π/4-shift or π/2-shift) phase modulator (PM) with inphase/quadrature (IQ) modulator, or Mach-Zehnder modulator (MZM) [1 3,7,8]; ii) highorder integrated quad-parallel MZM [4]; iii) two cascaded QPSK modulators with an interferometer in between [5], iv) single IQ modulator with multilevel electrical signals [6,7]. However, these techniques usually suffer from one of the following drawbacks: i) the deployment of PM may introduce extra phase chirp, degrading the tolerance against dispersion and the modulation bandwidth limitations, ii) implementation complexity and cost are relatively high for the highly-integrated modulator; iii) extra insertion loss is introduced due to the use of an interferometer in the transmitter side; iv) the performance requirement for both the modulator and electrical drivers is high when handling multi-level electrical signals. Recently, we have proposed and successfully demonstrated an optical 16-ary QAM transmitter using two tandem IQ modulators [9]. In this paper, we demonstrate that an optical 8PSK could also be synthesized using the same optical frontend. In other words, the transmitter could be configured to generate different optical multi-level formats. Therefore, it offers the flexibility in the modulation formats for adapting to the dynamics in future optical networks. Moreover, compared with the 8PSK transmitter schemes using PM, the generated optical 8PSK using the proposed scheme has superior tolerance against bandwidth limitation, and less phase chirp, thus offering higher dispersion tolerance. 2. Operation principle Usually QPSK is generated using an IQ modulator in a balanced driving-condition, resulting in the square-shaped constellation in complex plane (referred to as S-QPSK in this paper). When an IQ modulator is driven in an unbalanced manner, a rectangular constellation could be obtained (referred to as R-QPSK in this paper). By cascading S-QPSK and R-QPSK, an optical 8PSK could be synthesized from two tandem IQ modulators under different driving conditions. The operation principle of the proposed R-QPSK and 8PSK transmitter is illustrated in Fig. 1. Two pairs of independent data streams, (D1, D2) and (D3, D4), are applied to two cascaded IQ modulators (IQ-1 and IQ-2) to generate R-QPSK and S-QPSK, respectively. In IQ-1, unbalanced driving electrical signals are applied to in-phase (I) and quadrature (Q) branches to generate R-QPSK. One of the sub MZMs in IQ-1, e.g. MZM-I, is under-driven by a peak-to-peak voltage of 0.8Vπ and biased at the null point, whereas the other one, e.g. MZM-Q, is fully-driven by 2Vπ. Both of these two embedded sub MZMs are biased at the null point of the transmission curve. This unbalanced configuration would result in the unequal amplitudes between I and Q branches with an amplitude ratio a:b of ~0.4, thus generating a R-QPSK constellation in complex plane. The amplitude ratio between I and Q branches could be finely tuned by properly adjusting the driving voltage in the sub-mzm of I branch. The relative phase angle between the four phase symbols is 45 or 135 degree. The (C) 2011 OSA 12 September 2011 / Vol. 19, No. 19 / OPTICS EXPRESS 18480

other IQ modulator (IQ-2) is configured as a standard QPSK transmitter, generating four phase states in a symmetric square shape, i.e. S-QPSK. In the S-QPSK constellation, the same amplitudes are obtained for the generated symbols in I and Q branches of IQ-2, i.e. amplitude ratio c:d = 1. Four phase rotations, i.e. 45, 225, 135 and 315, are introduced for the incoming R-QPSK generated in IQ-1. Four symbols in different shapes are used to denote the phase states generated in IQ-2. Because of the symmetric features of both R-QPSK and S- QPSK, two sets of R-QPSK symbols overlap each other (45 and 225, 135 and 315 ) in the resultant phase pattern after the two tandem IQ modulators. Therefore, the S-QPSK actually provides a binary 90 phase rotation, although four phase states are generated in IQ-2. Assuming gray coding is applied, the 90 phase rotation is logically determined by the result of XOR operation between the two driving sequences of the S-QPSK, i.e. D3 D4. Thus, the symbol definition in the obtained optical 8PSK is logically determined by binary driving steams through (D1, D2, D3 D4). The symbol definitions of the generated R-QPSK, S- QPSK and optical 8PSK are illustrated in Fig. 1 as well. The required coding is relatively simple, compared with those deployed in other reported schemes like [4, 8]. Besides, since only conventional IQ modulators are deployed in the 8PSK transmitter, compared with the scheme based on high-order integrated modulator [4], it is relatively easier to offer stable performance against temperature fluctuation by simply deploying commercially-available bias controllers. Fig. 1. Operation principle of the proposed 8PSK transmitter scheme using cascaded R-QPSK and S-QPSK. Figure 2(a) shows a complex-envelope plot of 8PSK obtained from the proposed transmitter, which consists of two cascaded IQ modulators (known as 2-IQ scheme here). For comparison, Fig. 2(b) plots another 8PSK constellation generated using three PMs in series (referred to as 3-PM) [7]. The same parameters such as the bandwidth of deployed electrical drivers and optical modulators were applied for these two schemes. To assess the constellation and phase transition, the optical field is plotted directly after the modulator without introducing any noise. In the ideal case where rectangular impulse electronics are applied, these two transmitters would produce the same output with no difference in the phase transition. When low-pass Gaussian filtering with a cut-off frequency of 0.6 times the symbol (C) 2011 OSA 12 September 2011 / Vol. 19, No. 19 / OPTICS EXPRESS 18481

rate is applied at the driving electronics, different transition patterns among symbols are obtained for these two transmitter schemes. It hence results in different constellations, which in turn gives different system performances such as bit-error rate (BER) and tolerance against dispersion or electrical bandwidth. Note that, the inter-symbol interference (ISI) mentioned in this paper is merely caused by the finite frequency bandwidth in the transmitter side. Obviously, for the scheme 3-PM, the symbol clouds are more spread and dislocated than the scheme 2-IQ due to the narrowed electronic bandwidth. Therefore, it is clear that the scheme 3-PM is more sensitive to the bandwidth limitation occurred in both electrical drivers and optical modulators. Besides, strongly-curved phase transitions are observed in the scheme deploying PM (3-PM), indicating that less phase chirp is obtained in the 2-IQ scheme. It then results in superior dispersion tolerance. More comprehensive performance comparison among these reported 8PSK transmitters are now under investigation. Fig. 2. Simulated constellation and phase transitions of (a) the proposed scheme (2-IQ); (b) the three-cascaded PM scheme (3-PM). 3. Experiment and results Fig. 3. Experimental setup. An experiment at 10 Gbaud was carried out to verify the proposed scheme. Figure 3 illustrates the schematic diagram of the experimental setup. Light from an external cavity laser (ECL) with around 100-kHz line-width was fed into the proposed 8PSK transmitter, which consists of two LiNbO3 IQ modulators (IQ-1 and IQ-2) in series. The deployed IQ modulator has a 3dB electro-optic modulation bandwidth of around 16 GHz, and a half-wave voltage (Vπ) of around 5.5 V. Four binary electrical signals (D1~D4) with pseudorandom binary sequence #151557 - $15.00 USD (C) 2011 OSA Received 22 Jul 2011; revised 14 Aug 2011; accepted 14 Aug 2011; published 6 Sep 2011 12 September 2011 / Vol. 19, No. 19 / OPTICS EXPRESS 18482

(PRBS) 2 15-1 were applied to drive these two IQ modulators. To obtain an R-QPSK, the two embedded sub-mzm in the modulator IQ-1 were driven in an unbalanced manner by two electrical signals (D1, D2) with different peak-to-peak voltages of around 4 V and 11 V, respectively. The following IQ modulator, IQ-2, was fully-driven by the other two streams (D3, D4) to generate an S-QPSK phase pattern. An erbium-doped fiber amplifier (EDFA) and a tunable optical delay line were inserted between the two IQ modulators for maintaining a high OSNR and time-domain synchronization. To avoid device damage or performance degradation in the transmitter, the output power of EDFA was set at less than 8 dbm. In order to maintain the correct timing between the cascaded IQ modulators over time, we can simply deploy a feedback control system, which is similar to the technology typically used in twostage return-to-zero transmitters for synchronizing pulse-carver and data modulator [10]. At the receiver side, the generated 8PSK was demodulated by using a coherent phase-diversity digital receiver, which includes a local oscillator (LO), an optical 90 hybrid, two pairs of balanced-detectors, high-speed analog-to-digital converters (ADCs) and offline digital signal processing (DSP) unit. A polarization- and phase-diversity coherent receiver could be deployed, to fully solve the polarization-dependent issue in the receiver. The LO also has a narrow line-width of around 100 khz with a <500 MHz frequency offset from input 8PSK signal. The power of LO and input signal was set at around 9 dbm and 3 dbm, respectively. After optical-to-electrical (OE) conversion, the signal was then sampled for A/D conversion using a real-time oscilloscope (sampling rate: 50 Gsamples/s; analog bandwidth: 12.5 GHz; resolution: 8 bits). The captured data was then processed offline by DSP. It performs several functions, such as clock recovery, oversampling, retiming, the carrier-phase estimation, FIR filtering and so on. I and Q components were finally recovered for constellation reconstruction and BER estimation. Fig. 4. Recovered constellation of (a) R-QPSK, (b) S-QPSK, and (c) 8PSK at OSNR of around 27 db (0.1nm). The recovered R-QPSK and S-QPSK constellations are shown in Fig. 4(a) and (b), respectively. As shown in Fig. 4(c), an optical 8PSK constellation was synthesized when both of the IQ modulators were activated. Instead of coherent detection, it is also possible to directly detect 8PSK after delay-interferometer. The captured eye diagram after directdetection is depicted in Fig. 5 (a). The clear eye-opening was observed after direct detection. The eye diagram of 8PSK just after the transmitter is also presented in Fig. 5(b), showing a constant envelope. (C) 2011 OSA 12 September 2011 / Vol. 19, No. 19 / OPTICS EXPRESS 18483

Fig. 5. (a) de-modulated eye diagram using direct detection, and (b) the eye diagram of generated 8PSK after transmitter (scale: 50ps/div). Fig. 6. Theoretical (solid line) and measured (symbol) BERs of 30-Gb/s 8PSK. By adjusting the optical signal-to-noise ratio (OSNR, 0.1 nm) of input signal at the coherent receiver, the BER of 30-Gb/s optical 8PSK was evaluated using offline processing. The theoretical and measured BERs as function of receiver OSNR are depicted in Fig. 6. Around 40 000 symbols were used for BER counting, corresponding to the evaluable minimum BER of around 8x10 6. Compared with the theoretical value, around 7-dB power penalty was found at BER of 10 3. The reasons for the power penalty include: i) The equalization and decision technology used in the coherent receiver was not optimized for 8PSK; ii) Since one of the IQ modulators was not fully driven, the system performance was much easier to be affected by the impairments in driving electronics. The BER performance could be further improved by optimizing the equalizer and decision boundaries [11] for 8PSK in the deployed coherent receiver, and deploying specially-designed unbalanced IQ modulator for generating R-QPSK. Around 20-GHz-wide main lobe is observed in the measured optical spectrum (Fig. 7). It confirms that the optical bandwidth of 8PSK is similar to that of binary or quadrature phase-shift keying at the same symbol rate. (C) 2011 OSA 12 September 2011 / Vol. 19, No. 19 / OPTICS EXPRESS 18484

4. Conclusion Fig. 7. Optical spectrum of 30-Gb/s optical 8PSK. In this paper, we have introduced the R-QPSK for generating optical 8PSK, which has not been proposed in existing literatures before. In addition, we have also demonstrated that with different driving and bias conditions, the optical frontend could be re-configured to generate several different advanced multi-level formats, offering flexibility for the system design in dynamic optical networks. Moreover, since the configuration just requires feeding binary electronics, which are widely deployed in traditional systems, it provides an alternative approach to upgrade the existing systems for providing advanced multi-level formats in the physical layer. Acknowledgements The authors wish to thank Dr. A. Chiba of Shizuoka University, Mr. M. Sudo of Sumitomo Osaka Cement and Dr. A. Kanno of National Institute of Information and Communications Technology for their fruitful discussion. (C) 2011 OSA 12 September 2011 / Vol. 19, No. 19 / OPTICS EXPRESS 18485