Terahertz Spectral Range

Similar documents
THz-Imaging on its way to industrial application

Instruction manual and data sheet ipca h

Imaging with terahertz waves

Monitoring the plant water status with terahertz waves

AIR-COUPLED PHOTOCONDUCTIVE ANTENNAS

Terahertz Wave Spectroscopy and Analysis Platform. Full Coverage of Applications From R&D to Industrial Testing

Photomixer as a self-oscillating mixer

Development of a high-power coherent THz sources and THz-TDS system on the basis of a compact electron linac

Arūnas Krotkus Center for Physical Sciences & Technology, Vilnius, Lithuania

z t h l g 2009 John Wiley & Sons, Inc. Published 2009 by John Wiley & Sons, Inc.

The field of optics has had significant impact on a wide

Combless broadband terahertz generation with conventional laser diodes

Terahertz Wave Spectroscopy and Analysis Platform. Full Coverage of Applications From R&D to Industrial Testing

Terahertz Technologies for Industrial Applications. Dr. Anselm Deninger TOPTICA Photonics AG

Terahertz spectroscopy measurements

Microprobe-enabled Terahertz sensing applications

Photomixing THz Spectrometer Review

Broadband Beamforming of Terahertz Pulses with a Single-Chip 4 2 Array in Silicon

Fabrication of antenna integrated UTC-PDs as THz sources

CALIBRATION OF TERAHERTZ SPECTROMETERS

Lecture 19 Optical Characterization 1

Terahertz Subsurface Imaging System

IN RECENT YEARS, there has been a growing interest

Terahertz Technologies

Improvement of terahertz imaging with a dynamic subtraction technique

THz Signal Generators Based on Lift-Off LT-GaAs on Transparent Substrates H.-M. Heiliger, M. Vollebfirger, H. G. Roskos,

Generation of Terahertz Radiation via Nonlinear Optical Methods

ALMA MEMO 399 Millimeter Wave Generation Using a Uni-Traveling-Carrier Photodiode

Measurements of Schottky-Diode Based THz Video Detectors

Ultra-sensitive, room-temperature THz detector using nonlinear parametric upconversion

Continuous-wave Terahertz Spectroscopy System Based on Photodiodes

STUDY OF APPLICATION OF THZ TIME DOMAIN SPECTROSCOPY IN FOOD SAFETY

Introduction to Optoelectronic Devices

Supporting Information for Gbps terahertz external. modulator based on a composite metamaterial with a. double-channel heterostructure

A new picosecond Laser pulse generation method.

Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter

THz Radiation: Opportunity with ERL Prototype

Research Article Influence of Substrate Material on Radiation Characteristics of THz Photoconductive Emitters

Micro-sensors - what happens when you make "classical" devices "small": MEMS devices and integrated bolometric IR detectors

THE VERSATILE TERAHERTZ-SPECTROMETERS T-SPECTRALYZER. HÜBNER Photonics Coherence Matters.

HOSAKO Iwao. Keywords Terahertz-wave, Semiconductor device, Terahertz time domain spectroscopy, Spectral database, Atmospheric propagation model

Data sheet for TDS 10XX system THz Time Domain Spectrometer TDS 10XX

Testing with Femtosecond Pulses

Surface-Emitting Single-Mode Quantum Cascade Lasers

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

CHARACTERIZATION AND MODELING OF LASER MICRO-MACHINED METALLIC TERAHERTZ WIRE WAVEGUIDES

Quantifying the energy of Terahertz fields using Electro-Optical Sampling. Tom George. LCLS, Science Undergraduate Laboratory Internship Program

A CW seeded femtosecond optical parametric amplifier

Supplementary Materials for

High power and single frequency quantum. cascade lasers for gas sensing. Stéphane Blaser

Slot waveguide-based splitters for broadband terahertz radiation

bias laser ω 2 ω 1 active area GaAs substrate antenna LTG-GaAs layer THz waves (ω 1 - ω 2 ) interdigitated electrode R L V C to antenna

Fast Raman Spectral Imaging Using Chirped Femtosecond Lasers

Coherent Receivers Principles Downconversion

Components of Optical Instruments 1

Spontaneous Hyper Emission: Title of Talk

Luminous Equivalent of Radiation

THz Radiation: Opportunity with ERL Prototype (Part II)

Frozen wave generation of bandwidth-tunable two-cycle THz radiation

Lecture 4 INTEGRATED PHOTONICS

TERAHERTZ TIME-DOMAIN SPECTROSCOPY AND FRESNEL COEFFICIENT BASED PREDICTIVE MODEL

12/08/2003 H. Schlarb, DESY, Hamburg

Terahertz Spectroscopic/ Imaging Analysis Systems

Nuclear Instruments and Methods in Physics Research A

PGx11 series. Transform Limited Broadly Tunable Picosecond OPA APPLICATIONS. Available models

THz Components and Systems

Monitoring Terahertz Technology

Vertical External Cavity Surface Emitting Laser

picoemerald Tunable Two-Color ps Light Source Microscopy & Spectroscopy CARS SRS

Bioimaging of cells and tissues using accelerator-based sources

Enhancement in the spectral irradiance of photoconducting terahertz emitters by chirped-pulse mixing

Sub-Millimeter RF Receiver. Sub-Millimeter 19Receiver. balanced using Polarization Vectors. Intrel Service Company

Theoretical Approach. Why do we need ultra short technology?? INTRODUCTION:

Optically reconfigurable balanced dipole antenna

MILLIMETER WAVE RADIATION GENERATED BY OPTICAL MIXING IN FETs INTEGRATED WITH PRINTED CIRCUIT ANTENNAS

PHOTONIC GENERATION OF TERAHERTZ WAVES FOR COMMUNICATIONS AND SENSING

SUPPLEMENTARY INFORMATION

Detection of the mm-wave radiation using a low-cost LWIR microbolometer camera from a multiplied Schottky diode based source

Tunable THz Generation by the Interaction of a Super-luminous Laser Pulse with Biased Semiconductor Plasma

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

Designing for Femtosecond Pulses

SUPPLEMENTARY INFORMATION

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade:

Lecture 18: Photodetectors

On the dielectric properties of substrates with different surface conditions for submillimeter-wave and terahertz applications

THz Emission Characteristics of Photoconductive Antennas with. Different Gap Size Fabricated on Arsenic-Ion-Implanted GaAs

How to build an Er:fiber femtosecond laser

Chapter 3 OPTICAL SOURCES AND DETECTORS

Microprobe-enabled Terahertz sensing applications

Detection of Lower Hybrid Waves on Alcator C-Mod with Phase Contrast Imaging Using Electro-Optic Modulators

Phase-sensitive high-speed THz imaging

Non-destructive Inspection with Terahertz

Optical Receivers Theory and Operation

Timing Noise Measurement of High-Repetition-Rate Optical Pulses

Figure1. To construct a light pulse, the electric component of the plane wave should be multiplied with a bell shaped function.

Today s Outline - January 25, C. Segre (IIT) PHYS Spring 2018 January 25, / 26

Romania and High Power Lasers Towards Extreme Light Infrastructure in Romania

Nanoscale Systems for Opto-Electronics

Advanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay

Design, Fabrication and Measurement of a Plasmonic Enhanced Terahertz Photoconductive Antenna

Transcription:

Inhalt 1. Einleitung 2. Wechselwirkung Licht-Materie 3. Bilanzgleichungen 4. Kontinuierlicher Betrieb 5. Relaxationsoszillationen 6. Güteschaltung 7. Modenkopplung 8. Laserresonatoren 9. Eigenschaften von Laserlicht 9.1 Kohärenz 9.2 Photonenstatistik 10.Lasertypen 10.1 Festkörperlaser 10.2 Flüssikgkeitslaser 10.3 Gaslaser 11. Anwendungen 11.1 Erweiterung des Frequenzbereiches 11.1.1 Terahertz-Strahlung 11.1.2 Nichtlineare optische Frequenzkonversion

Terahertz Spectral Range LaserphysikWS09/10 2

Absorption of the Atmosphere Atmospheric absorption spectrum Long distance atmospheric transmission is very challenging (but possible for ~100 m or so). LaserphysikWS09/10 3

Material Properties at THz Frequencies THz radiation is non ionizing no modification of chemical properties of organic compounds important for living cells charactereristic absorptions of almost all polar molecules specific detection of substances also for complex molecules detection of changes medicals, drugs, explosives Absorptionskoeffizient [b. E.] 1,0 0,8 0,6 0,4 0,2 0,0 H 2 O 0,5 1,0 1,5 2,0 2,5 Frequenz [THz] Absorption z/2[a. u.] 3 2 1 0 CO + NO CO NO 0,6 0,8 1,0 1,2 Frequency [THz] LaserphysikWS09/10 4

Material Properties at THz Frequencies strong absorption of polar liquids (like water) small penetration depth for water containing substances quantitative determination of water content metals are not transparent for THz dielectrics (paper, plastics, textiles, etc.) are transparent detection of substances inside objects (through packages or cloths) LaserphysikWS09/10 5

Material Properties at THz Frequencies Higher spatial resolution in comparison with microwave imaging THz Dave Zimdars, Picometrix, Inc. High potential for applications fundamental research, nondestructive testing, security technology,. LaserphysikWS09/10 6

Material properties at THz frequencies Advantages: THz radiation is non ionizing dielectrics are transparent location of substances in packaging characteristic absorption of polar molecules higher spatial resolution compared to microwaves 1 THz 330 µm 33 cm -1 1 ps 6.4 mev Limitations: metals reflect THz strong absorption of polar liquids (water) LaserphysikWS09/10 7

Terahertz Technology for Sensing Applications THz Sources and Detectors LaserphysikWS09/10 8

Blackbody Radiation Natural sources of THz are very weak. Emissivity (J/m 2 ) 10-8 10-10 10-12 10-14 10-16 10-18 3000K 300K T=30K.01.1 1 10 100 1000 Frequency (THz) LaserphysikWS09/10 9

Typical THz Sources short pulses (< 1 ps) broad band PCS, surface emitter, opt. rectification, pulsed long pulses (>10 ps) narrow band opt. rectification in PPLN, GaAs, OPOs, DFG, photomixing, continuous wave direct lasers: gas, Ge, QCL,. backward oszillators Electric field [a. u.] Spectral amplitude [b. E.] 1,0 0,8 0,6 0,4 0,2 0,0-0,2-0,4 0 2 4 6 8 10 12 14 10-2 10-3 10-4 Delay [ps] 0,5 1,0 1,5 2,0 2,5 3,0 Frequency [THz] Field amplitude [a. u.] 10 5 0-5 -10 0 10 20 30 40 50 60 Delay [ps] LaserphysikWS09/10 10

THz and Optical Parametric Generators THz picks up where OPG s leave off. Gavin D. Reid, University of Leeds, and Klaas Wynne, University of Strathclyde LaserphysikWS09/10 11

Mixing of Optical Sources Photomixer Electrodes LTG-GaAs Epitaxial Layer on One-Inch Semi-Insulating GaAs Substrate Silicon Hyper- Hemispherical Lens Pump Beams Spiral Antenna 10 µm Fiber Photomixer Terahertz Signal S. Duffy & K. McIntosh, MIT Lincoln Labs Diode Lasers LaserphysikWS09/10 12

Hyperhemispherical Lens Total internall reflection: = arcsin(n-1) ~ 17.1 Increasing the collection angle LaserphysikWS09/10 13

Photonic Terahertz Technologies THz spectral range: 100 GHz < < 20 THz 3 mm < < 15 µm Photonic THz Sources Photoconductive switches Surface emitter Nonlinear optics DFG, OPO, OPG Lasers QCL, Ge, Gas D. Auston D. Grischkowski X.-C. Zhang B y J. Faist, Q. Hu, F. Tredicucci, z E D LaserphysikWS09/10 14

Photonic THz Technologies Opto-electronics: Optical: photoconductive switches, surface emitter (magnetic field enhanced) optical rectification, optical rectification in PPLN, difference frequency generation, OPOs, quantum cascade lasers, THz lasers Detectors: photoconductive switches opto-electronic methods coherent detection (amplitude and phase) bolometer golay cell, etc. incoherent detection (intensity only) LaserphysikWS09/10 15

Terahertz Technology for Sensing Applications Photoconductive Switches LaserphysikWS09/10 16

Photoconductive Switch as Emitter 80 m 2 P E( t) 2 t P( t) N( t) e x( t) + - Semiconductor chip (GaAs) with applied voltage between electrodes - + Laser pulse generates free carriers Accelerated carriers emit electromagnetic wave (THz pulse) LaserphysikWS09/10 17

Photoconductive Switch as Emitter Generation Transient photoconductivity: 80 µm Ultrashort pulse generates free carriers in semiconductor Acceleration of free carriers by external electric field Transient photocurrent j(t) Radiation of a THz-pulse Laser Laserintensität intensity I(t) I(t) Stromdichte j(t) Current density j(t) V E( t) j j( t) t P t D. Grischkowsky et al. Time t Zeit LaserphysikWS09/10 18

Photoconductive Switch as Detector Coherent detection Femtosecond pulse Photoconductive antenna THz wave THz Pulse train A Ampere meter No current without voltage Current depends on field strength of THz pulse However: fs pulse is much shorter than THz pulse (100 x) Only the instantenous field is accelerating the charges fs Pulse train Temporal sampling of the THz pulse via averaging over many pulses LaserphysikWS09/10 19

THz Antenna Current I(t) Photoconductive antenna: Ultrashort pulse generates free carriers in semiconductor Acceleration of free carriers by electric field of synchronized THz pulse THz pulse leading nir pulse Transiente photocurrent j(t) proportional to THz field Current ampl. Lock-In Measurement of phase and amplitude RyMess Time t THz pulse trailing nir pulse LaserphysikWS09/10 20

THz Antenna Current I(t) Photoconductive antenna: Generation THz pulse leading nir pulse t j ( ) E( t) g( t ) dt finite length of NIR pulse carrier lifetime averaging over electric field dipole structure also determines frequency response Current ampl. Lock-In RyMess Time t THz pulse trailing nir pulse LaserphysikWS09/10 21

Photoconductive Switches as Detector fs-nir Generation ps-thz Repetition rate Sampling rate 50... 100 MHz, 1 10 khz LaserphysikWS09/10 22

Photoconductive Switches as Detector t = 0 fs-nir Generation Generation I t t ps-thz Repetition rate 50... 100 MHz, t = 0 Sampling rate 1 10 khz LaserphysikWS09/10 23

Photoconductive Switches as Detector t = 0 fs-nir Generation Generation t I t ps-thz Repetition rate 50... 100 MHz, t = 0 Sampling rate 1 10 khz LaserphysikWS09/10 24

Photoconductive Switches as Detector t = 0 fs-nir Generation Generation t I t ps-thz Repetition rate 50... 100 MHz, t = 0 Sampling rate 1 10 khz LaserphysikWS09/10 25

Photoconductive Switches as Detector t = 0 fs-nir Generation Generation t I t ps-thz Repetition rate 50... 100 MHz, t = 0 Sampling rate 1 10 khz LaserphysikWS09/10 26

Components of a Broadband THz System Laser Emitter Detector THz Optics fs Laser, diode laser pumped/diode laser/ir laser Photoconductive switch (surface emitter, PPLN, ) Photoconductive switches, EOS Depending on application Emitter Probe Probe Receiver optics Delay Fs/ps Laser Delay Beam splitter LaserphysikWS09/10 27

Empfängerchip Empfängerchip THz System receiver (SOS) transmitter (GaAs) absorption cell Empfängerchip Si - lens Empfängerchip receiver transmitter current ampl. Lock-In lens chopper DC-Bias (10 kv/cm) beam splitter RyMess delay fs laser: Puls length: Average power: Repetition rate: ~ 20 150 fs ~ 10 100 mw ~ 10 100 MHz LaserphysikWS09/10 28

Terahertz Technology for Sensing Applications Time Domain Spectroscopy LaserphysikWS09/10 29

THz Time Domain Spectroscopy (TDS) Measuring principle Start End Emitter Receiver Time Start arrival Start LaserphysikWS09/10 30

THz Time Domain Spectroscopy (TDS) Measuring principle Start End Emitter Receiver Time Start arrival Start LaserphysikWS09/10 31

THz Time Domain Spectroscopy (TDS) Measuring principle Start End smaller amplitude delay absorption and/or thickness thickness and/or index of refraction Emitter Receiver Time Start Start arrival additional modulations spectroscopic information LaserphysikWS09/10 32

THz Time Domain Spectroscopy (TDS) Measuring the electric field in the time domain Coherent detection with high S/N ratio Informationen about: Amplitude/Intensity Time delay Spectral content electric field [arb. u.] 1.0 0.8 0.6 0.4 0.2 0.0-0.2-0.4 amplitude delay time spectral features echos -0.6 0 5 10 15 20 25 time [ps] reference with sample LaserphysikWS09/10 33

THz Time Domain Spectroscopy (TDS) Time domain direct measurement of electric field (amplitude and phase) Pulse duration < 1 ps Signal-to-Noise > 10 3 :1 (30 ms integration time) Fourier Transformation Frequency domain Spectral amplitude Phase information Usable bandwidth 100 GHz < < 4 THz LaserphysikWS09/10 34

THz Time Domain Spectroscopy (TDS) (a) (b) Intramolecular Electric Field [a.u.] 0.8 0.4 0.0-0.4 60-5 0 5 10 15 20 25 30 (c) Time Delay Reference Sample FFT (d) Reference Sample 0.5 1.0 1.5 2.0 2.5 3.0 Frequency [THz] 0.01 1E-3 1E-4 1.75 1.70 Amplitude Spectrum [a.u.] THz-Messtechnik und Systeme Abs.coeff. [cm -1 ] 40 20 1.65 1.60 Refractive Index Intermolecular 0 0.5 1.0 1.5 2.0 2.5 3.0 Frequency [THz] 0.5 1.0 1.5 2.0 2.5 3.0 Frequency [THz] 1.55 LaserphysikWS09/10 35

Electromagnetic Waves in Matter The interaction of electromagnetic radiation with matter: permittivity ~ ~ 2 r n n i 2 ε r : Relative permittivity n: refractive index : extinction coefficient ~ i kx t Plane wave in vacuum: (k = ω / c) dispersion absorption Plan wave in matter: TDS measures: E E 0 e ~ i n~ kx t in kx kx i t E E e 0 ~ E t ~ E E 0 i nkx t ~ sample E e i n~ 0 e i kx t ref E 0 e ~ e e 1 kx e LaserphysikWS09/10 36

Electromagnetic Waves in Matter TDS measures ~ E i nkx t ~ sample E e i n~ 0 t ~ e i kx t E ref E 0 e ~ 1 kx Conventional spectroscopy measures: T P P e i sample ref ~ sample ref sample ref * n 1 kx i n 1 kx 2 kx x e ~ E ~ E ~ ~ E ~ E e Absorption is seen, but phase information is lost: No information on real part of refractive index, n. * * e n(ω) can be derived from (ω) with the Kramers-Kronig Kronig relation in some cases and not completely. LaserphysikWS09/10 37

Time Domain Spectroscopy of CO Electric field [a. u.] Absorptionskoeffizient /2 [cm -1 ] 3 2 1 0-1 0 20 40 60 80 Delay [ps] 0,12 0,10 0,08 Absorption 0,06 0,04 0,02 0,00 0,5 1,0 1,5 2,0 2,5 FFT Spectral amplitude [a. u.] 10-1 10-2 10-3 CO spectrum devided by reference spectrum: Frequenz [THz] Dispersion k [rad/cm -1 ] 0,06 0,5 1,0 1,5 2,0 2,5 Frequency [THz] Dispersion 0,04 0,02 0,00-0,02-0,04 0,5 1,0 1,5 2,0 2,5 Frequenz [THz] LaserphysikWS09/10 38

Time Domain Spectroscopy: FFT o Fast Fouriertransformation (FFT) N 1 n 0 n m i N k E (m ) E(n t) e N 2 k 0, 1, 2,... o Step width: o Spectral resolution - frequency domain - time domain t 1 N t o Zero filling E E k k 1 (2 1) t,..., E (2 ) t 0 k 1 k 2 (2 1) t,..., E (2 ) t 0 interpolation between neighboring data points LaserphysikWS09/10 39

Time Domain Spectroscopy: spectral resolution o Resolution depends on number of data points: 1 N t reduction of data points increase in line width 1,140 1,145 1,150 1,155 1,160 1,165 Absorption [(35 cm) -1 ] 2,0 1,5 1,0 0,5 1067 ps 533,5 ps 267 ps 133,5 ps 67 ps 2,0 1,5 1,0 0,5 0,0 0,0 1,140 1,145 1,150 1,155 1,160 1,165 Frequency [THz] LaserphysikWS09/10 40

Time domain Spectroscopy: spectral resolution 0,75 0,80 0,85 0,90 0,95 1,00 1,05 1,10 0,75 0,80 0,85 0,90 0,95 1,00 1,05 1,10 Absorption [(35 cm) -1 ] 0,20 0,15 0,10 0,05 1067 ps 0,20 0,15 0,10 0,05 Absorption [(35 cm) -1 ] 0,20 0,15 0,10 0,05 533 ps 0,20 0,15 0,10 0,05 0,00 0,00 0,00 0,00-0,05-0,05 0,75 0,80 0,85 0,90 0,95 1,00 1,05 1,10 Frequency [THz] -0,05-0,05 0,75 0,80 0,85 0,90 0,95 1,00 1,05 1,10 Frequency [THz] 0,75 0,80 0,85 0,90 0,95 1,00 1,05 1,10 0,75 0,80 0,85 0,90 0,95 1,00 1,05 1,10 Absorption [(35 cm) -1 ] 0,20 0,15 0,10 0,05 133 ps 0,20 0,15 0,10 0,05 Absorption [(35 cm) -1 ] 0,20 0,15 0,10 0,05 67 ps 0,20 0,15 0,10 0,05 0,00 0,00 0,00 0,00-0,05-0,05-0,05-0,05 0,75 0,80 0,85 0,90 0,95 1,00 1,05 1,10 0,75 0,80 0,85 0,90 0,95 1,00 1,05 1,10 Frequency [THz] Frequency [THz] LaserphysikWS09/10 41

THz Spectroscopy of CO and NO Feldstärke [b. E.] Feldstärke [b. E.] 3000 2000 1000 0-1000 -2000-3000 3000 2000 1000 0-1000 -2000-3000 2000 1000 0-1000 -2000 2000 1000 0-1000 -2000 Messung 20 40 60 80 100 Rechnung 20 40 60 80 100 Verzögerung [ps] Messung 20 40 60 80 100 Rechnung Absorption /2 [cm -1 ] Dispersion [rad/cm] Absorption /2 [cm -1 ] Dispersion [rad/cm] 500mbar NO 0,02 0,00 0,3 0,4 0,5 0,6 0,7 0,8 0,06 0,04 0,02 0,00 0,3 0,4 0,5 0,6 0,7 0,8 Frequenz [THz] 400mbar CO 0,00 20 40 60 80 100 0,3 0,4 0,5 0,6 0,7 0,8 0,9 LaserphysikWS09/10 Verzögerung [ps] Frequenz [THz] 42 0,06 0,04 0,04 0,02 0,00 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0,04 0,02

THz Spectroscopy of CO and NO Electric Feldstärke field [a. [b. u.] E.] 1500 1000 500 0-500 -1000-1500 20 40 60 80 100 Delay [ps] 3 Delay [ps] Verzögerung [ps] Rechnung calc. Messung meas. FFT Absorption /2 [cm -1 ] Dispersion [rad/cm] 0,06 0,04 500mbar NO 0,02 0,00 0,3 0,4 0,5 0,6 0,7 0,8 0,06 0,04 0,02 0,00 0,3 0,4 0,5 0,6 0,7 0,8 Frequenz [THz] Frequency [THz] Absorption z/2 [a. u.] 2 CO NO 1 0 0,6 0,8 1,0 1,2 Frequency [THz] LaserphysikWS09/10 43