POWER DELIVERY SYSTEMS

Similar documents
Enhancing Power Delivery System Designs with CMOS-Based Isolated Gate Drivers

Two Switch Forward. Switching Topology. Figure 1. Switch Mode Topologies vs. Maximum Output Power

Gate Drive Optimisation

Digital Isolators: A Space-Saving Alternative to Gate-Drive Transformers in DC-DC Converters

The Quest for High Power Density

Akermann Electronic BG JSC. Module 3: Power Management. Part II: MOSFET and IGBT Drivers. Power Management from Texas Instruments Inc.

INPUT DIE V DDI V DD2 ISOLATION ISOLATION XMIT GND2. Si8710 Digital Isolator. Figure 1. Si8710 Digital Isolator Block Diagram

PULSE CONTROLLED INVERTER

The First Step to Success Selecting the Optimal Topology Brian King

MAXREFDES121# Isolated 24V to 3.3V 33W Power Supply

Chapter 10 Switching DC Power Supplies

BAP1551 Gate Drive Board

Applications of 1EDNx550 single-channel lowside EiceDRIVER with truly differential inputs

Meeting The Standby Power Specification In LED TVs With A Single Power Supply

Highly Efficient Ultra-Compact Isolated DC-DC Converter with Fully Integrated Active Clamping H-Bridge and Synchronous Rectifier

High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications

Why and How Isolated Gate Drivers

High Accurate non-isolated Buck LED Driver

MAXREFDES116# ISOLATED 24V TO 5V 40W POWER SUPPLY

SiC Transistor Basics: FAQs

Design and implementation of a LLC-ZCS Converter for Hybrid/Electric Vehicles

AC-DC SMPS: Up to 15W Application Solutions

AN4564 Application note

How to Design Multi-kW Converters for Electric Vehicles

Conventional Single-Switch Forward Converter Design


15 W HVDCP Quick Charge 3.0 Compatible CV/CC Charger

Demonstration. Agenda

1X6610 Signal/Power Management IC for Integrated Driver Module

Application Note 0009

MIC38C42A/43A/44A/45A

PIEZOELECTRIC TRANSFORMER FOR INTEGRATED MOSFET AND IGBT GATE DRIVER

Features MIC2193BM. Si9803 ( 2) 6.3V ( 2) VDD OUTP COMP OUTN. Si9804 ( 2) Adjustable Output Synchronous Buck Converter

CONTENTS. Chapter 1. Introduction to Power Conversion 1. Basso_FM.qxd 11/20/07 8:39 PM Page v. Foreword xiii Preface xv Nomenclature

REFERENCE DESIGN 4669 INCLUDES:

The FMMT718 Range, Features and Applications

DESCRIPTION FEATURES PROTECTION FEATURES APPLICATIONS. RS2320 High Accurate Non-Isolated Buck LED Driver

SiC Power Schottky Diodes in Power Factor Correction Circuits

New Current-Sense Amplifiers Aid Measurement and Control

Power Management. Introduction. Courtesy of Dr. Sanchez-Sinencio s Group. ECEN 489: Power Management Circuits and Systems

Driving egan TM Transistors for Maximum Performance

Very high voltage AC-DC power: From 3-phase to single phase offline bias supplies. Bernard Keogh, Billy Long

ACT111A. 4.8V to 30V Input, 1.5A LED Driver with Dimming Control GENERAL DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION CIRCUIT

Design and Applications of HCPL-3020 and HCPL-0302 Gate Drive Optocouplers

Power 'n Motors. Critical aspects in power applications design, proper component selection & experimental results

PC Krause and Associates, Inc.

Other Electronic Devices

Features. 5V Reference UVLO. Oscillator S R

A Highly Versatile Laboratory Setup for Teaching Basics of Power Electronics in Industry Related Form

Importance of measuring parasitic capacitance in isolated gate drive applications. W. Frank Infineon Technologies

Effective Design Techniques for Signal and Power Supply Isolation

Optocoupler 8. Shield. Optical Receiver. Figure 1. Optocoupler Block Diagram

Simple Power IC for the Switched Current Power Converter: Its Fabrication and Other Applications March 3, 2006 Edward Herbert Canton, CT 06019

HIGH SPEED, 100V, SELF OSCILLATING 50% DUTY CYCLE, HALF-BRIDGE DRIVER

Isolated Interface Solutions for Industrial Sensor and Monitoring Applications

Industrial and Outdoor (>15W)

Isolated Power Supplies for PLC I/O Modules. Industrial Systems - Factory Automation and Control

Detail of Signal Input/Output Terminals

RAPID DESIGN KITS FOR THREE PHASE MOTOR DRIVES. Nicholas Clark Applications Engineer Powerex, Inc.

Presentation Content Review of Active Clamp and Reset Technique in Single-Ended Forward Converters Design Material/Tools Design procedure and concern

High Side Driver for Buck Converter with an LDO

Experiment (1) Principles of Switching

PRODUCT DESCRIPTION A NEW SERIAL-CONTROLLED MOTOR-DRIVER IC. by Thomas Truax and Robert Stoddard

Chapter 2 LITERATURE REVIEW

Applications for Isolated Gate Drivers

Chapter 6: Converter circuits

6. HARDWARE PROTOTYPE AND EXPERIMENTAL RESULTS

results at the output, disrupting safe, precise measurements.

Powering IGBT Gate Drives with DC-DC converters

A Solution to Simplify 60A Multiphase Designs By John Lambert & Chris Bull, International Rectifier, USA

DC Link. Charge Controller/ DC-DC Converter. Gate Driver. Battery Cells. System Controller

Appendix: Power Loss Calculation

Green mode PWM Flyback Controller with External Over Temperature Protection

Digital Controller Chip Set for Isolated DC Power Supplies

Lecture 19 - Single-phase square-wave inverter

Infineon Technologies New Products Introduction

IR3101 Series 1.6A, 500V

SRM TM A Synchronous Rectifier Module. Figure 1 Figure 2

Gate drive card converts logic level turn on/off commands. Gate Drive Card for High Power Three Phase PWM Converters. Engineer R&D

A new way to PFC and an even better way to LLC Bosheng Sun

Type Ordering Code Package TDA Q67000-A5066 P-DIP-8-1

Designing A Medium-Power Resonant LLC Converter Using The NCP1395

High Efficiency 8A Synchronous Boost Convertor

Adaptive Power MOSFET Driver 1

TRENCHSTOP 5 boosts efficiency in Home Appliance, Solar and Welding Applications

Designing High density Power Solutions with GaN Created by: Masoud Beheshti Presented by: Xaver Arbinger

20 AMP, 200 VOLT MOSFET SMART POWER 3-PHASE

±32V Triple-Output Supply for LCDs, CCDs and LEDs Includes Fault Protection in a 3mm 3mm QFN

DESIGN TIP DT Managing Transients in Control IC Driven Power Stages 2. PARASITIC ELEMENTS OF THE BRIDGE CIRCUIT 1. CONTROL IC PRODUCT RANGE

Downsizing Technology for General-Purpose Inverters

Engineer-to-Engineer Note

Designing with the Si9976DY N-Channel Half-Bridge Driver and LITTLE FOOT Dual MOSFETs

3 Hints for application

PHD Description and Application Manual for PHD HV high power IGBT driver

Chapter 1: Introduction

AN Analog Power USA Applications Department

Features. RAMP Feed Forward Ramp/ Volt Sec Clamp Reference & Isolation. Voltage-Mode Half-Bridge Converter CIrcuit

Testing and Stabilizing Feedback Loops in Today s Power Supplies

Fundamentals of Power Electronics

Doing More with Buck Regulator ICs

Transcription:

www.silabs.com Smart. Connected. Energy-Friendly. CMOS ISOLATED GATE S ENHANCE POWER DELIVERY SYSTEMS

CMOS Isolated Gate Drivers (ISOdrivers) Enhance Power Delivery Systems Fully integrated isolated gate drivers can significantly increase the efficiency, performance, and reliability of switch-mode power supplies compared to legacy solutions. Table of Contents Introduction... 2 Anatomy of an Isolated Power Converter... 2 Gate Drive Solution Options... 3 An Optimum Isolated Gate Drive Solution... 3 Maximizing System Efficiency... 5 Dual ISOdriver... 6 Conclusion... 8 www.silabs.com CMOS Isolated Gate Drivers (ISOdrivers) Enhance Power Delivery Systems 1

Introduction Green standards are challenging power designers to deliver more energy-efficient, cost-effective, smaller, and more reliable power delivery systems. A critical building block within ac-dc and isolated dc-dc power supplies is the isolated gate driver. These trends push the need for greater power efficiency and increased isolation-device integration. Optocoupler-based solutions and gate-drive transformers have been the mainstay for switch-mode power supply (SMPS) systems for many years, but fully integrated isolated gate driver products based on RF technology and mainstream CMOS provide more reliable, smaller, and power-efficient solutions. Legacy optocouplers and gate-drive transformers are quickly being replaced by fully integrated CMOS-based isolated gate drivers that provide more reliability in smaller, more power-efficient packages. Anatomy of an Isolated Power Converter Isolated power converters require power stage and signal isolation to comply with safety standards. Figure 1 shows an example of a typical ac-dc converter for 500 W to 5 kw power systems, such as those used in highefficiency data center power supplies. From a high-level perspective, this two-stage system has a power factor correction (PFC) circuit that forces power system ac line current draw to be sinusoidal and in-phase with the ac line voltage; thus, it appears to the line as a purely resistive load for greater input power efficiency. Rectifier PFC 400VDC V IN FULL BRIDGE TOPOLOGY PRIMARY SECONDARY Local VDD AC LINE IN SMPS Controller HIGH SIDE HIGH SIDE LOW SIDE LOW SIDE V S V S Q1 Q4 I1 XFMR PRIMARY Q3 Q2 I2 BARRIER XFMR SECONDARY SYNCHRONOUS RECTIFIERS Q5 Q6 OUTPUT AC CURRENT SENSOR AC CURRENT SENSOR ISOLATED ISOLATED FEEDBACK PMBus 4 PMBus INTERFACE Figure 1: AC/DC Converter Based on Full Bridge Topology The high-side switch driver inputs in Figure 1 are referenced to the primary-side ground, and its outputs are referenced to the high-side MOSFET source pins. The high-side drivers must be able to withstand the 400 VDC www.silabs.com CMOS Isolated Gate Drivers (ISOdrivers) Enhance Power Delivery Systems 2

common-mode voltage present at the source pin during high-side drive, a need traditionally served by highvoltage drivers (HVIC). The corresponding low-side drivers operate from a low voltage supply (e.g., 18 V) and are referenced to the primary-side ground. The two ac current sensors in the low-side legs of the bridge monitor the current in each leg to facilitate flux balancing when voltage mode control is used. The isolation barrier is provided to ensure that there is no current flow between the primary- and secondary-side grounds; consequently, the drivers for synchronous MOSFETs Q5 and Q6 must be isolated. The secondary-side feedback path must also be isolated for the same reason. Gate Drive Solution Options Optocouplers Although optocouplers are commonly used for feedback isolation, their propagation delay performance is not fast enough to achieve the full benefit of the synchronous MOSFET gate-drive isolation circuit. Optocouplers with faster delay-time specifications are available, but they tend to be expensive while still exhibiting some of the same performance and reliability issues found in lower-cost optocouplers. This includes unstable operating characteristics over temperature, device aging, and marginal common mode transient current (CMTI) resulting from a single-ended architecture with high internal coupling capacitance. In addition, Gallium Arsenidebased process technologies common in optocouplers create an intrinsic wear-out mechanism ( Light Output or LOP) that causes the LED to lose brightness over time. Gate drive transformers Given the above considerations, gate drive transformers have become a more popular method of providing isolated gate drive. Gate drive transformers are miniature toroidal transformers that are preferred over optocouplers because of their shorter delay times. They are faster than optocouplers, but cannot propagate a dc level or low-frequency ac signal. They can pass only a finite voltage-time product across the isolation boundary, thereby restricting ON time (ton) and duty cycle ranges. These transformers must also be reset after each ON cycle to prevent core saturation, necessitating external circuitry. Finally, transformer-based designs are inefficient, have high EMI, and occupy excessive board space. An Optimum Isolated Gate Drive Solution CMOS-based isolated gate drivers Fortunately, better alternatives to gate drive transformers and optocouplers are now available. Advancements in CMOS-based isolation technology have enabled isolated gate drive solutions that offer exceptional performance, power efficiency, integration, and reliability. Isolated gate drivers, such as Silicon Labs Si823x ISOdriver family, combine isolation technology with gate driver circuits, providing integrated, low-latency isolated driver solutions for MOSFET and insulated-gate bipolar transistor (IGBT) applications. ISOdriver isolated gate driver solutions The Si823x ISOdriver products are available in three basic configurations (see Figure 2), including: 1) high-side and low-side isolated drivers with separate control inputs for each output 2) high-side and low-side isolated drivers with a single PWM input 3) dual isolated driver www.silabs.com CMOS Isolated Gate Drivers (ISOdrivers) Enhance Power Delivery Systems 3

The Si823x ISOdriver family supports 0.5 A and 4.0 A peak output drive options and is available in 1 kv, 2.5 kv and 5 kv isolation ratings. The high-side/low-side versions have built-in overlap protection and an adjustable dead time generator (dual ISOdriver versions contain no overlap protection or dead time generator). As such, the dual ISOdriver can be used as a dual low-side, dual high-side or high-side/low-side isolated driver. These devices have a three-die architecture (see Figure 3) that causes each drive channel to be isolated from the others as well as from the input side. This allows the polarity of the high-side and low-side channel to reverse without latch-up or other damage. PWM LPWM CONTROL & OVERLAP PROTECTION STEERING LOGIC & CONTROL VDD1 VDD1 VDD1 LPWM GND GND GND HS/LS Two Wire Input ISOdriver HS/LS PWM Input ISOdriver Dual ISOdriver Two-Wire Input High-Side/Low-Side One-Wire Input High-Side/Low-Side Dual ISOdriver Figure 2: ISOdriver Family For example, the high-side driver () might ride on a common-mode voltage of 100 V while an adjacent driver () might ride on a common-mode voltage of 200 V. These two common-mode voltages can reverse (i.e., = 200 V, = 100 V) without damaging or upsetting the driver. This feature makes the ISOdriver useful in systems with fast-changing common-mode voltages or when the input is a bipolar supply. www.silabs.com CMOS Isolated Gate Drivers (ISOdrivers) Enhance Power Delivery Systems 4

Figure 3: De-capsulated Three-Die ISOdriver Maximizing System Efficiency The switching mode in high-side/low-side drive applications must be break-before-make to avoid efficiency loss from both MOSFETs being on at the same time (i.e., shoot-through current ). This time period between switch transitions where both switches are off is referred to as dead time (Figure 4). A Q1 Must avoid shootthrough current (Q1, Q2 on simultaneously) IOUT = 10A VOUT A B Q2 power loss when ON = I OUT 2 x R DSON = 0.5W Q2 Q2 Power loss when OFF = V T x I OUT = 7W!!! BODY DIODE (V T ) B Dead Time Figure 4: Dead Time While an optimum amount of dead time can increase system efficiency, excessive amounts of dead time can reduce efficiency. As shown in Figure 4, the power dissipation of Q2 is only 0.5 W when Q2 is on but increases to 7 W when the body diode conducts while Q2 is off. Therefore, the amount of dead time added to the circuit timing must be only large enough to prevent shoot-through current. Figure 4 shows Q2 ON power dissipation is only 0.5 W. It increases to 7 W when Q2 is OFF. OFF = Dead Time. Fine-tuning dead time is crucial for power-efficient designs. High-side/low-side Si823x ISOdrivers have an integrated dead time generator that can be adjusted from 0.4 ns to 2µs using an external resistor, allowing the user to optimize dead time. www.silabs.com CMOS Isolated Gate Drivers (ISOdrivers) Enhance Power Delivery Systems 5

OVERLAP OVERLAP 50% 10% 90% 90% 10% Normal Dead Time Behavior Dead Time Behavior during Overlap Figure 5: ISOdriver Dead Time Behavior The Si823x ISOdrivers also contain overlap protection that causes outputs and to unconditionally go low in the event and simultaneously go high, as shown above. Dual ISOdriver While dead time optimization can increase efficiency by as much as +4%, additional efficiency gains can be achieved by arranging MOSFETs in parallel or by increasing gate driver strength to a single, larger MOSFET. In both cases, a dual ISOdriver can be useful in providing additional drive capability. This is another advantage of the ISOdriver family of dual ISOdrivers as each have no restrictive, built-in overlap protection or dead time setting. The state of each driver output unconditionally follows that of its input as long as the device is powered. The two driver output circuits are isolated from each other and from the input, allowing the common-mode voltage of one driver to reverse polarity with respect to the other without damage (i.e., latch-up) or output errors. Figure 6 shows a common-mode voltage inversion where the polarity of the two drivers reverses without damage or upset, which can be helpful in systems with bipolar input supplies. From Controller 5V Si8232/5/6 GNDI OUT A OUT B Common Mode Voltage (V) Output Signal Common Mode Voltage V1 Output Signal Common Mode Voltage V2 Output Signal Output Signal Time Figure 6: Common Mode Voltage Inversion www.silabs.com CMOS Isolated Gate Drivers (ISOdrivers) Enhance Power Delivery Systems 6

In many power applications, such as UPS systems and inverters, switches must be designed in parallel to enable the system to deliver rated power at high operating efficiencies. The combined capacitive loading of these switches requires either a higher-peak current driver or a less desirable method of distributing the switches over multiple gate driver ICs. The circuit in Figure 7 shows each Si823x Dual ISOdriver output driving several common ground switches in parallel. When connected in this way, the dual ISOdriver can provide an equivalent peak drive current of 8 A while 60 ns of maximum propagation delay time ensures that all switches are driven OFF and ON simultaneously. Isolated 24VDC LOAD 5V Si8232/5/6 GNDI From Controller Figure 7: Paralleled Outputs for Increased Peak Output Current Power circuits in high-voltage systems, such as industrial motor control, have split ground systems to isolate higher voltages from lower voltages. In many cases, local supply regulators are built using a dedicated controller for each regulator. In other cases, the regulators may use a transformer-coupled multi-output design, using flyback or other transformer-coupled topology. Figure 8 shows a dual output isolated buck converter using the dual ISOdriver Si8232/5/6. A single two-loop controller is used with the ISOdriver to generate two stepped-down output voltages. The ISOdriver operates as an isolated dual high-side driver with each output isolated from both the adjacent output and the primary side. www.silabs.com CMOS Isolated Gate Drivers (ISOdrivers) Enhance Power Delivery Systems 7

Isolated V1 5V Si8232/5/6 HV GNDI Isolated V2 VOUT 1 TWO-LOOP CONTROLLER OUT1 LV OUT2 VOUT 2 I/O VFB1 ANALOG SIGNAL VFB2 Figure 8: Dual Isolated Buck Converter Using the Si8232/5/6 Dual ISOdriver While this circuit uses a low-cost Shottkey freewheeling diode, a second dual ISOdriver can be added to control output synchronous rectifiers for higher efficiency. Conclusion CMOS-based isolated gate drive technology, exemplified by Silicon Labs ISOdriver family, offers substantial performance, reliability, integration, and per-channel cost advantages over legacy isolation technologies such as optocouplers and gate drive transformers. The Si823x ISOdrivers are single-chip, isolated gate drivers that feature ultra-fast 60 ns of maximum propagation delays for increased timing margins. They also offer programmable dead time control for higher system efficiency, stable operation over temperature and time, lower BOM costs, and smaller PCB footprints. The ISOdriver family is engineered to deliver industry-leading performance, high integration and exceptional value, providing an optimal isolated gate drive solution for a wide range of power delivery systems. With up to 5 kv of isolation, the ISOdriver products are well-suited to safety-critical applications requiring high maximum continuous working voltages. Supporting output power supplies up to 24 V and 0.5 or 4.0 A peak output current, ISOdrivers efficiently drive MOSFET and IGBT power stages in high-performance, isolated switch mode power supplies. Check out the Si82xx ISOdriver family. www.silabs.com CMOS Isolated Gate Drivers (ISOdrivers) Enhance Power Delivery Systems 8