Research Article A Broadband Single-Feed Circularly Polarized Patch Antenna with Wide Beamwidth

Similar documents
Research Article Modified Dual-Band Stacked Circularly Polarized Microstrip Antenna

Research Article A New Kind of Circular Polarization Leaky-Wave Antenna Based on Substrate Integrated Waveguide

Research Article A Wide-Bandwidth Monopolar Patch Antenna with Dual-Ring Couplers

STUDY ON THE PLANAR CIRCULARLY POLARIZED ANTENNAS WITH SWASTIKA SLOT

Research Article Miniaturized Circularly Polarized Microstrip RFID Antenna Using Fractal Metamaterial

Research Article Multiband Planar Monopole Antenna for LTE MIMO Systems

Research Article Compact Dual-Band Dipole Antenna with Asymmetric Arms for WLAN Applications

Research Article CPW-Fed Wideband Circular Polarized Antenna for UHF RFID Applications

Research Article A Novel CP Horn Antenna with Switchable Polarization by Single Port Feeding

First-Order Minkowski Fractal Circularly Polarized Slot Loop Antenna with Simple Feeding Network for UHF RFID Reader

Low-Profile Wideband Circularly Polarized Patch Antenna Using Asymmetric Feeding

Research Article A High-Isolation Dual-Polarization Substrate-Integrated Fabry-Pérot Cavity Antenna

SINGLE-FEEDING CIRCULARLY POLARIZED TM 21 - MODE ANNULAR-RING MICROSTRIP ANTENNA FOR MOBILE SATELLITE COMMUNICATION

Research Article Cross-Slot Antenna with U-Shaped Tuning Stub for Ultra-Wideband Applications

Research Article A Design of Wide Band and Wide Beam Cavity-Backed Slot Antenna Array with Slant Polarization

Research Article Circularly Polarized Microstrip Yagi Array Antenna with Wide Beamwidth and High Front-to-Back Ratio

Research Article Harmonic-Rejection Compact Bandpass Filter Using Defected Ground Structure for GPS Application

Research Article Analysis and Design of Leaky-Wave Antenna with Low SLL Based on Half-Mode SIW Structure

Research Article Bandwidth Extension of a Printed Square Monopole Antenna Loaded with Periodic Parallel-Plate Lines

Research Article Novel Design of Microstrip Antenna with Improved Bandwidth

A Compact Wideband Slot Antenna for Universal UHF RFID Reader

Research Article A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection

Research Article A Miniaturized Triple Band Monopole Antenna for WLAN and WiMAX Applications

Research Article Ka-Band Slot-Microstrip-Covered and Waveguide-Cavity-Backed Monopulse Antenna Array

Research Article A Miniaturized Meandered Dipole UHF RFID Tag Antenna for Flexible Application

A WIDEBAND TWIN-DIAMOND-SHAPED CIRCULARLY POLARIZED PATCH ANTENNA WITH GAP-COUPLED FEED

Research Article Suppression of Cross-Polarization of the Microstrip Integrated Balun-Fed Printed Dipole Antenna

Research Article Wideband Microstrip 90 Hybrid Coupler Using High Pass Network

Research Article Small-Size Meandered Loop Antenna for WLAN Dongle Devices

Research Article High Efficiency and Broadband Microstrip Leaky-Wave Antenna

Research Article A Compact CPW-Fed UWB Antenna with Dual Band-Notched Characteristics

Miniature Folded Printed Quadrifilar Helical Antenna with Integrated Compact Feeding Network

A Compact Circularly Polarized Microstrip Antenna with Bandwidth Enhancement

Research Article A Parallel-Strip Balun for Wideband Frequency Doubler

Compact Wide-Beam Circularly Polarized Antenna with Stepped Arc-Shaped Arms for CNSS Application

A CPW-Fed Dual-Band Slot Antenna with Circular Polarization

Research Article CPW-Fed Slot Antenna for Wideband Applications

"(c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/

Fractal-Based Triangular Slot Antennas with Broadband Circular Polarization for RFID Readers

Research Article Compact Antenna with Frequency Reconfigurability for GPS/LTE/WWAN Mobile Handset Applications

Research Article A Broadband Circularly Polarized Stacked Probe-Fed Patch Antenna for UHF RFID Applications

Research Article Compact and Wideband Parallel-Strip 180 Hybrid Coupler with Arbitrary Power Division Ratios

A NOVEL DUAL-BAND PATCH ANTENNA FOR WLAN COMMUNICATION. E. Wang Information Engineering College of NCUT China

Research Article Very Compact and Broadband Active Antenna for VHF Band Applications

A Broadband Omnidirectional Antenna Array for Base Station

Research Article A Multibeam Antenna Array Based on Printed Rotman Lens

CIRCULARLY POLARIZED PATCH ANTENNA WITH A STACKED SLOT-RING

A Wide-Beam Circularly Polarized Asymmetric-Microstrip Antenna

Broadband Circular Polarized Antenna Loaded with AMC Structure

Research Article Yagi Array of Microstrip Quarter-Wave Patch Antennas with Microstrip Lines Coupling

Research Article Integrated Filtering Microstrip Duplex Antenna Array with High Isolation

Research Article A MIMO Reversed Antenna Array Design for gsm1800/td-scdma/lte/wi-max/wilan/wifi

DESIGN OF OMNIDIRECTIONAL HIGH-GAIN AN- TENNA WITH BROADBAND RADIANT LOAD IN C WAVE BAND

Wide-Beamwidth Circularly Polarized Antenna and Its Application in a Sequential-Rotation Array with Enhanced Bandwidth

Research Article Design of a Novel UWB Omnidirectional Antenna Using Particle Swarm Optimization

A CORNER-FED SQUARE RING ANTENNA WITH AN L-SHAPED SLOT ON GROUND PLANE FOR GPS APPLICATION

NEW DESIGN OF COMPACT SHORTED ANNULAR STACKED PATCH ANTENNA FOR GLOBAL NAVIGA- TION SATELLITE SYSTEM APPLICATION

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

Application Article Improved Low-Profile Helical Antenna Design for INMARSAT Applications

Research Article Triband Omnidirectional Circularly Polarized Dielectric Resonator Antenna with Top-Loaded Alford Loop

Broadband and High Efficiency Single-Layer Reflectarray Using Circular Ring Attached Two Sets of Phase-Delay Lines

Research Article Compact Multiantenna

Design of a Novel Compact Cup Feed for Parabolic Reflector Antennas

Compact and Low Profile MIMO Antenna for Dual-WLAN-Band Access Points

Dual Feed Microstrip Patch Antenna for Wlan Applications

Wideband Double-Layered Dielectric-Loaded Dual-Polarized Magneto-Electric Dipole Antenna

Design and Development of a 2 1 Array of Slotted Microstrip Line Fed Shorted Patch Antenna for DCS Mobile Communication System

Compact Circularly Polarized Patch Antenna Using a Composite Right/Left-Handed Transmission Line Unit-Cell

A Broadband Reflectarray Using Phoenix Unit Cell

DESIGN OF A NOVEL WIDEBAND LOOP ANTENNA WITH PARASITIC RESONATORS. Microwaves, Xidian University, Xi an, Shaanxi, China

Design of Low-Index Metamaterial Lens Used for Wideband Circular Polarization Antenna

A Dual-Band Two Order Filtering Antenna

Small Planar Antenna for WLAN Applications

Broadband and Gain Enhanced Bowtie Antenna with AMC Ground

Broadband Dual Polarized Space-Fed Antenna Arrays with High Isolation

Research Article Embedded Spiral Microstrip Implantable Antenna

A novel design of a cpw fed single square loop antenna for circular polarization

A Compact Dual-Polarized Antenna for Base Station Application

A Wideband Dual-polarized Modified Bowtie Antenna for 2G/3G/LTE Base-station Applications

DESIGN AND TESTING OF HIGH-PERFORMANCE ANTENNA ARRAY WITH A NOVEL FEED NETWORK

A Compact Wideband Circularly Polarized L-Slot Antenna Edge-Fed by a Microstrip Feedline for C-Band Applications

A COMPACT DUAL INVERTED C-SHAPED SLOTS ANTENNA FOR WLAN APPLICATIONS

Emerging wideband reconfigurable antenna elements for wireless communication systems

THE DESIGN OF A DUAL-POLARIZED SMALL BASE STATION ANTENNA WITH HIGH ISOLATION HAVING DIELECTRIC FEEDING STRUCTURE

A Compact Dual Band-Notched Ultrawideband Antenna with λ/4 Stub and Open Slots

WIDEBAND CIRCULARLY POLARIZED SUSPENDED PATCH ANTENNA WITH INDENTED EDGE AND GAP- COUPLED FEED

A CPW-fed Microstrip Fork-shaped Antenna with Dual-band Circular Polarization

Circularly Polarized Square Patch Microstrip Antenna with Y- Shaped Slot for Wi-Max Application

Desktop Shaped Broadband Microstrip Patch Antennas for Wireless Communications

A Pair Dipole Antenna with Double Tapered Microstrip Balun for Wireless Communications

Multiple-Arm Dipoles Reader Antenna for UHF RFID Near-Field Applications

Progress In Electromagnetics Research C, Vol. 9, 13 23, 2009

A Phase Diversity Printed-Dipole Antenna Element for Patterns Selectivity Array Application

TRANSMITTING ANTENNA WITH DUAL CIRCULAR POLARISATION FOR INDOOR ANTENNA MEASUREMENT RANGE

Research Article Multiband Printed Asymmetric Dipole Antenna for LTE/WLAN Applications

A DUAL-BAND CIRCULAR SLOT ANTENNA WITH AN OFFSET MICROSTRIP-FED LINE FOR PCS, UMTS, IMT-2000, ISM, BLUETOOTH, RFID AND WLAN APPLI- CATIONS

Progress In Electromagnetics Research Letters, Vol. 15, , 2010

A Compact Dual-Band Dual-Polarized Antenna for Base Station Application

Compact Triple-Band Monopole Antenna with Inverted-L Slots and SRR for WLAN/WiMAX Applications

Design of a Wideband Sleeve Antenna with Symmetrical Ridges

Transcription:

International Journal of Antennas and Propagation Volume 215, Article ID 74274, 1 pages http://dx.doi.org/1.1155/215/74274 Research Article A Broadband Single-Feed Circularly Polarized Patch Antenna with Wide Beamwidth Changhong Zhang, Junping Geng, Bin Zhou, Xianling Liang, and Ronghong Jin Department of Electronic Engineering, Shanghai Jiao Tong University, No. 8 Dongchuan Road, Shanghai 224, China Correspondence should be addressed to Changhong Zhang; changhong@sjtu.edu.cn Received 24 January 215; Accepted 24 March 215 Academic Editor: Giuseppe Mazzarella Copyright 215 Changhong Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A broadband single-feed circularly polarized patch antenna with wide beamwidth is presented. The patch is coupled to four asymmetric cross slots via a microstrip ring with eight matching segments underneath the ground plane, traversing through the arms of the cross slots in a serial manner. And a coupling slice instead of a resistive load is used as matching load of the microstrip ring for higher gain. Furthermore, a metal side wall surrounding the antenna is used to improve the isolation between adjacent elements in an array. Through optimizing the four asymmetric cross slots and eight matching segments, excellent performances are achieved by the proposed antenna, especially for the broadband and wide beamwidth. Measurement results show that the antenna has 1 db reflection coefficient bandwidth of 29.7%, 3-dB axial-ratio bandwidth of 21.6%, and beamwidth of more than 9.Itcan be considered as a good candidate for the element of arrays. 1. Introduction With the rapid development of modern wireless communication systems, circularly polarized (CP) patch antennas using single-feed have received considerable attention due to the reduction of RF loss and complexity in an array feed. And high qualities are also desired in single-feed CP patch antennas, such as broadband for the high-capacity and highspeed data-rate communication, wide beamwidth to improve thecoverageareainbasestationandgpsapplications,and so on. In recent years, many designs of the CP patch antennas with improvements on the broadband and wide beamwidth have been reported. A novel leaky-wave slot antenna exhibited 1 db return loss bandwidth of 4%, 3-dB AR bandwidth of 53%, but with a tilt-beam [1]. In [2], a horizontally meandered strip feed technique was proposed to achieve an impedance bandwidth of about 25.8% and a 3-dB AR bandwidth and beamwidth of about 13.5% and 64,respectively, at the expense of four layers. A CP patch antenna with a pyramidal ground structure and a partially enclosed flat conducting wall obtained a 3-dB axial-ratio beamwidth of more than 13, but the bandwidth is narrow [3]. Slot coupled CP antennas have been intensively studied because of their advantages of wide bandwidth and feeding flexibility [4 9]. By adopting the concept of nonuniformity on the coupling slots and microstrip ring, a broadband dual circularly polarized patch antenna realized 1-dB return loss bandwidth of 24%, 3-dB axial-ratio bandwidth of 16%, and beamwidth of 11, which possessed both the advantages of broadband and wide beamwidth [1]. In this paper, a broadband single-feed CP patch antenna with wide beamwidth is presented. Based on the dual circularly polarized antenna introduced in [1], the proposed antenna has three improvements. Firstly, the parameters of the coupling slots and microstrip ring have more than two degrees of freedom; wider bandwidth is obtained by optimization. Secondly, through a coupling slice, the remainder of the energy at the end of the microstrip ring can be coupled to the patch rather than being absorbed by a resister load; thus higher gain is achieved. Finally, a metal side wall surrounding the antenna is used to suppress the coupling between adjacent elements in an array for higher isolation. The remainder of this paper is organizedas follows. Section 2 explains the basic design of the proposed antenna. In Section 3, a prototype of the antenna is fabricated and the performances are verified

2 International Journal of Antennas and Propagation based on the experiment. Finally, the conclusion is given in Section 4. 2. Antenna Configuration and Design Concept Figure 1 shows the configuration of the proposed antenna, which consists of two substrates, one side wall, and one cavity, from up to down, substrate 1, substrate 2, side wall, and cavity. A radiation patch with the radius of R 1 locates at the bottom of substrate 1, and a parasitic patch with the radius of R 2 locates at the upside of substrate 1. A metal groundplaneisonthetopsurfaceofsubstrate2,anda microstrip ring feed network is on the bottom of substrate 2. The radiation patch is separated from the ground plane with a height of h a to construct an air substrate for wideband. The ground plane is carved with four asymmetric cross slots for coupling, which have eight arms with different lengths and widths. Underneath the ground plane, the microstrip ring with a radius of R travels through the arms of cross slots and couples the electromagnetic energy to the cross slots in a serial manner. The microstrip ring contains eight matching segments with different widths corresponding to the eight arms of the cross slots and ends up with a coupling slice with radius of r 2 serving as a matching load. Besides, an additional matching segment is used to obtain 5 Ω matching with the SMA port. Furthermore, a metal side wall surrounding the antenna is used to suppress the coupling between adjacent elements in an array. Finally, a metal cavity with the same radius of R 1 as the radiation patch and height of h c is added to reduce the back radiation of coupling slots and improve the directivity. Both substrates with permittivity of 2.55, loss tangent of.18, and thickness of.762 mm are chosen. The dimension of the antenna is W g W g. The transmission line model of the antenna is illustrated in Figure 2. The couplings between the feed and slot and between the slot and patch are modelled by the two transformers with the turn ratios n fi and n pi, detailed explanation of which can be found in [11, 12]. In this design, φ 1 is equal to 9 and φ 2 is equal to 45 at the centre frequency for quarter-wave transformer and circular polarization, respectively. For circular polarization, two orthogonal modes with 9 phase difference are generated by the eight coupling points with 45 difference in phase and space in a serial manner. And the amplitude of the two orthogonal modes can reach the same level by adjusting n pi (i = 1 8), which are related to the lengths and widths of the coupling slots. Therefore the pure circular polarization can be obtained by optimization with the eight degrees of freedom. Furthermore, each coupling pointservesassecondsource,basedonwhichtheantenna has eight equivalent feeding points with 45 difference in phaseandspaceinaserialmanner,thuswideaxial-ratio beamwidth is achieved by multifeeding scheme because it can suppress the higher modes and cross polarized components of such microstrip antenna with thick substrate [13]. Refer to Figure 1; the right-hand circular polarization (RHCP) will be generated. For broadband impedance bandwidth, eight matching segments are adopted in the microstrip ring. The value of n fi relevant to Z si and the impedance transformation between adjacent segments are both controlled by the width W ci.the feed line can be well matched in broadband by optimizing the values of W ci (i =1 8).Figure 3 shows the current distribution on the microstrip ring and the ground plane in time domain. Itcanbeseenclearlythatthefeedlinegeneratesaquasi travelling wave, which proves that the microstrip ring is wellmatchedinaserialmanner.moreover,patch1servesasa radiation patch and patch 2 serves as a parasitic patch. They have two resonance frequencies close to each other, which also contributes to improve the impedance bandwidth. For higher gain, a coupling slice is applied to the antenna serving as a matching load at the end of the microstrip ring, wherearesistiveloadisusuallyplaced.throughacoupling slice, the remainder of the energy at the end of the microstrip ring can be coupled to the patch rather than absorbed by a resister; thus higher gain is achieved. Figure 4 shows the simulated gains and reflection coefficient of the antenna with coupling slice and resistive load, respectively. And the current distribution of coupling slice is also demonstrated in Figure 4, which proves that the remainder of the energy at the end of the microstrip ring can be coupled to the patch by using a coupling slice. Around the centre frequency of 3.7 GHz, the difference between the coupling slice and resistive load is very little. Because of the fact that the antenna is optimized for the best performances at the centre frequency, the remainder of the feeding energy at the end of the microstrip ring is almost negligible. Away from the centre frequency, the remainder of the feeding energy increases. The difference between the gain of the antenna with coupling slice compared to the one with resister load is about.2 dbic at the higher band from 3.8 GHz to 4.1 GHz and.2 dbic to 1.3 dbic at the lower band from 3.5 GHz to 3 GHz. The coupling slice has obvious advantage when the remainder of the feeding energy rises. At the other hand, the reflection coefficient of the antenna with coupling slice is as good as the one with resister load during the band, which proves that the coupling slice is a good substitute of a resister load for higher gain. For higher isolation between adjacent elements in an array, a metal side wall surrounding the antenna is used. With regard to small antenna arrays, the coupling between adjacent elements is mainly caused by surface wave propagation and near field radiation. In this paper, the array with only two elements is considered. Figure 5 shows the array layout and currentdistributiononthegroundplaneoftheantennaarray with and without side wall, which illustrates that the side wall can prevent the current transmit from one element to another directly. This phenomenon indirectly proves that the sidewall can suppress the surface wave propagation between adjacent elements in an array. And the simulated near field of the antenna with and without side wall at the three frequencies of 3 GHz, 3.7 GHz, and 4.2 GHz is displayed in Figure 6. It demonstrates that the side wall has some influence on the near field radiation, which will increase the near fieldcoupling.thusthesidewallhastheinfluenceoftwo aspects on the isolation. One is suppressing the surface wave propagation for higher isolation, and the other is increasing

International Journal of Antennas and Propagation 3 W g Metal side wall R 1 Cavity Slot Feed + R 2 Substrate 1 Metal side wall Substrate 2 Cavity Patch 2 Air Feed Air Patch 1 h c h a Ground W c5 W c6 W c4 R 3 W c7 + W c3 W c8 W c2 W s5 W s6 L s5 L s6 L W s4 s7 L s7 r 1 + L s3 L s8 W s8 L s2 W s4 W s3 λ g /16 W c1 L ct L c1 λ g /8 L s1 W s2 W ct W s1 (c) (d) r 2 r 3 Slice + Via (e) Figure 1: The configuration of the proposed antenna. The front view. The side view. (c) Coupling slots. (d) Microstrip ring. (e) Coupling slice.

4 International Journal of Antennas and Propagation W si Z si n fi 1 1 n pi L si Z o =R+jX W ci Microstrip Slot Patch Port Z s1 Z s2 Z s7 Z Z ct Z c1 Z c1 Z c2 Z c7 Z c8 in Z s8 φ 1 φ 2 φ 2 φ 2 φ 2 φ 2 Figure 2: Transmission line model of the antenna. Transmission line model of the slot coupling (Z si (i =1 8)expresstheequivalent impedance of the slot coupling; Z o expresses the equivalent impedance of the radiation patch). Transmission line model of the microstrip ring (Z in expresses the input impedance of the port; Z ct expresses the characteristic impedance of the transformation line for matching with 5 Ω; Z ci (i = 1 8) express the characteristic impedance of the matching segments; φ i (i = 1, 2) are the phase delay of each matching segment). thenearfieldcouplingandreducingtheisolation.figure 7 depicts the simulated isolation of the adjacent elements with and without side wall in an array. At the centre frequency, the antenna with and without side wall has the highest near field overtheband.andthenearfieldoftheantennawithside wall has a maximum value of 66.3 db, about 6 db higher than the one without side wall. The isolation with side wall has a reduction of 3 db compared to the one without side wall. It is due to the fact that the increased near field coupling overtakes the advantage of the side wall. However, the advantages of the side wall become obvious off the centre frequency, especially at the higher band. The near field of the antenna with side wall has a maximum value of 6.6 db and 62.5 db at the lower and higher band and about 5.4 db and 3.4 db higher than the one without side wall, respectively. The isolation has an improvement of about 4-dB at the lower band and 1-dB at the higher band. The advantage of the side wall overtakes the increased near field coupling, while more surface waves are generated off centre frequency. Forhigherfront-to-backratio,abackcavityislocated vertically below the slots. Figure 8 shows the simulated radiation pattern with and without back cavity. The front-toback ratio of the antenna with back cavity is 22 db and 1.6 db higher than the one without back cavity. The directivity of the antenna with back cavity is 8.46 dbic and.16 db higher than the one without back cavity. Simulation results show that the back cavity has a great improvement on the front-to-back ratioandalittleimprovementonthedirectivity. 3. Results and Discussions According to the practical application, the antenna operated at the centre frequency of 3.7 GHz. The optimization of the Table 1: Optimized parameters of the proposed antenna. Parameters R 1 R 2 R 3 r 1 r 2 r 3 h a h c L c1 Values/mm 15.4 13.1 7.7 2.6 1.9 8.1 5 5.9 Parameters L ct W ct W g W s1 W s2 W s3 W s4 W s5 W s6 Values/mm 14 1.5 53.8 1.2.7 1.2 1.3 1.1 Parameters W s7 W s8 L s1 L s2 L s3 L s4 L s5 L s6 L s7 Values/mm.8 1.4 13.2 1.5 12.2 12.7 12.5 1.7 13.6 Parameters L s8 W c1 W c2 W c3 W c4 W c5 W c6 W c7 W c8 Values/mm 11.7 1.7 2.1 1.5.9 1.5 2.2 1.7 1.4 proposed antenna is carried out with CST Microwave Studio software based on the finite integration technique (FIT) method. The optimized parameters of the antenna are listed in Table 1. Based on the parameters in Table 1, a prototype is fabricatedandmeasured.thesimulatedandmeasuredresults including reflection coefficient, radiation pattern, gain, and axial-ratio are compared. Figure 9 shows the reflection coefficient of the proposed antenna. The test antenna achieves a measured impedance bandwidth of 29.7% for reflection coefficient less than 1 db, covering the frequency range from 3 GHz to 4.1 GHz. The measured and simulated results of reflection coefficient are a little different mainly due to the fabrication error and manual assembly error. The radiation patterns in the phi = and phi = 9 planes at the centre frequency of 3.7 GHz are depicted in Figure 1. The measured results are well matched with the simulatedonesinthemainlobe.theradiationpatternshave a good symmetry with no tilted beam at the boresight. The

International Journal of Antennas and Propagation 5 14 14 (m) (m) 14 14 (m) (m) (c) (d) Figure 3: Current distribution of the feed line and the ground plane for different values of the phase angle.. 3. (c) 6. (d) 9. (The red circle shows the minimum current on the microstrip ring.) 3-dB beamwidth is about 7. The gain at the zenith versus frequency is shown in Figure 11. The measured gain is higher than 7.4 dbic across the band from 3 GHz to 4.2 GHz with the peak gain of 8.6 dbic at 4 GHz. The antenna is tested in an open space. In order to measure the axial-ratio, the tested antenna rotates slowly around the vertical line, and the linearly polarized transmitting antenna spins fast around the horizontal line. The

6 International Journal of Antennas and Propagation 9. 1 8.5 8. 2 25 7.5 3 7. 35 6.5 6. 3. 4 2 45 Jsurf (A/m) 3.2 Reflection coefficient (db) Gain (dbic) 9.5 3.4 3.6 3.8 Frequency (GHz) 4. 4.2 Coupling slice Resistive load Coupling slice Resistive load Figure 4: Comparisons of the gains and reflection coefficient of the antenna with coupling slice and resistive load, respectively. Jsurf (A/m) 2.e + 1.8575e + 1.715e + 1.5725e + 1.43e + 1.2876e + 1.1451e + 1.26e + 8.69e 1 7.176e 1 5.7511e 1 4.3262e 1 2.913e 1 1.4764e 1 5.1544e 3 Z Y X Jsurf (A/m) 2.e + 1.8579e + 1.7158e + 1.5737e + 1.4316e + 1.2895e + 1.1474e + 1.53e + 8.6318e 1 7.217e 1 5.7897e 1 4.3687e 1 2.9476e 1 1.5266e 1 1.557e 2 Z Y X Figure 5: The simulated current distribution on the ground of the antenna array at the centre frequency of 3.7 GHz. With side wall. Without side wall.

International Journal of Antennas and Propagation 7 7 6 33 3 7 6 33 3 5 4 3 6 5 4 3 6 Total near-e (db) 3 2 1 2 3 27 9 Total near-e (db) 3 2 1 2 3 27 9 4 5 24 12 4 5 24 12 6 7 21 18 15 6 7 21 18 15 3 GHz 3.7 GHz 4.2 GHz 3 GHz 3.7 GHz 4.2 GHz Figure 6: The simulated near field radiation at the three frequencies of 3 GHz, 3.7 GHz, and 4.2 GHz. With side wall. Without side wall. 36 1 33 3 32 1 3 6 Isolation (db) 28 24 Directivity (dbic) 2 3 2 27 9 2 1 24 12 3. 3.2 3.4 3.6 3.8 4. 4.2 With side wall Without side wall Frequency (GHz) Figure 7: The simulated isolation of the adjacent elements with and without side wall in an array. 1 21 With back cavity Without back cavity Figure 8: The simulated radiation pattern with and without back cavity. 18 15 axial-ratios in the phi = and phi = 9 planes at the centre frequency of 3.7 GHz are illustrated in Figure 12. The measured results of axial-ratio are worse than the simulated ones and deviate from the trend line. The deterioration of the axial-ratio is maybe caused by the fabrication and assembly error. The deviation is due to the limited speed of the spinning linearlypolarizedantenna,andthenoiseintestingenvironment, where the multipath effect has some influence on the measurement in an open space. The measured axial-ratio has 3-dB beamwidth of 9 in the plane of phi = and 1 in the plane of phi = 9. And the axial-ratio at the zenith versus

8 International Journal of Antennas and Propagation Reflection coefficient (db) 1 2 25 3 35 3. 3.2 3.4 3.6 3.8 4. 4.2 Simulated Measured Frequency (GHz) Figure 9: Reflection coefficient of the proposed antenna. 33 3 33 3 1 3 6 1 3 6 Radiation pattern (dbi) 2 25 2 27 9 Radiation pattern (dbi) 2 25 2 27 9 1 24 12 1 24 12 21 18 15 21 18 15 Simulated Measured Simulated Measured Figure 1: Radiation pattern of the proposed antenna at the centre frequency of 3.7 GHz. in the plane of.intheplaneof9. frequency is shown in Figure 13.Thesimulatedandmeasured bandwidths of 3-dB axial-ratio are about 21.6% from 3.3 GHz to 4.1 GHz. The total excellent performances of the proposed antenna are summarized in Table 2. 4. Conclusion A broadband single-feed circularly polarized patch antenna with wide beamwidth is presented in this paper. Eight matching segments are adopted to the microstrip ring for broadband, and four asymmetric cross slots are used to generate pure circular polarization with wide beamwidth. The excellent performances of the antenna are proved by a prototype, which make the antenna very suitable for array design. Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper.

International Journal of Antennas and Propagation 9 9.5 6 9. 5 Gain (dbic) 8.5 8. 7.5 Axial-ratio (db) 4 3 2 1 7. 3. 3.2 3.4 3.6 3.8 4. 4.2 Simulated Measured Frequency (GHz) Figure 11: Gain of the antenna versus frequency. 3.2 3.4 3.6 3.8 4. 4.2 Simulated Measured Frequency (GHz) Figure 13: Axial-ratio at the zenith versus frequency. Axial-ratio (db) 4. 3.5 3. 2.5 2. 1.5 1. 6 4 2 Simulated phi = Simulated phi =9 2 4 6 θ ( ) Measured phi = Measured phi =9 Figure 12: Axial-ratio in the plane of phi = and phi = 9 at the centre frequency of 3.7 GHz. Table 2: Performances of the proposed antenna. Performance Simulated Measured 1 db reflection coefficient bandwidth 27% 29.7% Peak gain 8.8 dbic 8.6 dbic 3-dB gain beamwidth 7 7 Front-to-back ratio >2dB >13dB 3-dB axial-ratio beamwidth (phi = ) >12 9 3-dB axial-ratio beamwidth (phi = 9 ) >12 1 3-dB axial-ratio bandwidth 21.6% 21.6% Acknowledgments This work was supported by the National Natural Science Foundation (612158 and 6147124), the Research and Innovation Project of Shanghai Education Commission (12Z11231), the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry,andtheProjectofSMCExcellentYoungFaculty. References [1] S.-K. Lin and Y.-C. Lin, A compact outer-fed leaky-wave antenna using exponentially tapered slots for broadside circularly polarized radiation, IEEE Transactions on Antennas and Propagation,vol.6,no.6,pp.2654 2661,212. [2]Z.Wang,S.Fang,S.Fu,andS.Jia, Single-fedbroadband circularly polarized stacked patch antenna with horizontally meandered strip for universal UHF RFID applications, IEEE Transactions on Microwave Theory and Techniques, vol.59,no. 4, pp. 166 173, 211. [3] C.-W. Su, S.-K. Huang, and C.-H. Lee, CP microstrip antenna with wide beamwidth for GPS band application, Electronics Letters,vol.43,no.2,pp.162 163,27. [4] T.-N. Chang, J.-M. Lin, and Y. G. Chen, A circularly polarized ring-antenna fed by a serially coupled square slot-ring, IEEE Transactions on Antennas and Propagation, vol.6,no.2,pp. 1132 1135, 212. [5] T. N. Chang and J. M. Lin, A novel circularly polarized patch antenna with a serial multislot type of loading, IEEE Transactions on Antennas and Propagation, vol. 55, no. 11, pp. 3345 3347, 27. [6] K.H.LuandT.-N.Chang, Circularlypolarizedarrayantenna with corporate-feed network and series-feed elements, IEEE Transactions on Antennas and Propagation, vol.53,no.1,pp. 3288 3292, 25.

1 International Journal of Antennas and Propagation [7] H.W.Lai,K.M.Mak,andK.F.Chan, Novelaperture-coupled microstrip-line feed for circularly polarized patch antenna, Progress in Electromagnetics Research,vol.144,pp.1 9,214. [8] R. Caso, A. A. Serra, M. Rodriguez-Pino, P. Nepa, and G. Manara, A wideband slot-coupled stacked-patch array for wireless communications, IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 986 989, 21. [9] A. Buffi, R. Caso, M. R. Pino, P. Nepa, and G. Manara, Singlefeed circularly polarised aperture-coupled square ring slot microstrip antenna, Electronics Letters,vol.46,no.4,pp.268 269, 21. [1] C. Zhang, X. Liang, X. Bai, J. Geng, and R. Jin, A broadband dual circularly polarized patch antenna with wide beamwidth, IEEE Antennas and Wireless Propagation Letters, vol.13,pp. 1457 146, 214. [11] L. Liu, Q. Lu, D. Wu, A. Sambell, and E. Korolkiewicz, Determinationofthetransformersturnratiosanddesignofacircular polarised cross slot coupled antenna, in Proceedings of the 7th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP 1), pp.115 118,July 21. [12] D. Jaisson, Transmission line model for the input impedance of a slot-coupled rectangular patch antenna, IEE Proceedings Microwaves, Antennas and Propagation,vol.153,no.5,pp.461 468, 26. [13] T. Chiba, Y. Suzuki, and N. Miyano, Suppression of higher modes and cross polarized component for microstrip antennas, in Proceedings of the Antennas and Propagation Society International Symposium, vol. 2, pp. 285 288, May 1982.

International Journal of Rotating Machinery The Scientific World Journal Volume 214 Engineering Journal of Volume 214 Volume 214 Advances in Mechanical Engineering Journal of Sensors Volume 214 International Journal of Distributed Sensor Networks Volume 214 Advances in Civil Engineering Volume 214 Volume 214 Submit your manuscripts at Advances in OptoElectronics Journal of Robotics Volume 214 Volume 214 VLSI Design Modelling & Simulation in Engineering International Journal of Navigation and Observation International Journal of Chemical Engineering Volume 214 Volume 214 Advances in Acoustics and Vibration Volume 214 Volume 214 Volume 214 Journal of Control Science and Engineering Active and Passive Electronic Components Volume 214 International Journal of Journal of Antennas and Propagation Shock and Vibration Volume 214 Volume 214 Volume 214 Electrical and Computer Engineering Volume 214