A tunable and switchable single-longitudinalmode dual-wavelength fiber laser with a simple linear cavity

Similar documents
A broadband fiber ring laser technique with stable and tunable signal-frequency operation

Multiwavelength Single-Longitudinal-Mode Ytterbium-Doped Fiber Laser. Citation IEEE Photon. Technol. Lett., 2013, v. 25, p.

Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode

I. INTRODUCTION II. FABRICATION AND OPERATION OF SLM FIBER LASER

Single-longitudinal mode laser structure based on a very narrow filtering technique

Single mode EDF fiber laser using an ultra-narrow bandwidth tunable optical filter

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber

Stabilisation of Linear-cavity Fibre Laser Using a Saturable Absorber

Optical fiber-fault surveillance for passive optical networks in S-band operation window

Linear cavity erbium-doped fiber laser with over 100 nm tuning range

Tunable single frequency fiber laser based on FP-LD injection locking

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity

Microwave Photonics: Photonic Generation of Microwave and Millimeter-wave Signals

Tunable Multiwavelength Erbium-Doped Fiber Laser Employing PM-FBG and Mach Zehnder Interferometer with Optical Fiber Delay Line

CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER

Channel wavelength selectable singleõdualwavelength erbium-doped fiber ring laser

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

OPTICAL generation of microwave and millimeter-wave

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE

All-Optical Clock Division Using Period-one Oscillation of Optically Injected Semiconductor Laser

Ultra-short distributed Bragg reflector fiber laser for sensing applications

To generate a broadband light source by using mutually injection-locked Fabry-Perot laser diodes

Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers

Dual wavelength single longitudinal mode Ytterbium-doped fiber laser using a dual-tapered Mach-Zehnder interferometer

Tunable single-frequency fiber laser based on the spectral narrowing effect in a nonlinear semiconductor optical amplifier

DESIGN AND CHARACTERIZATION OF HIGH PERFORMANCE C AND L BAND ERBIUM DOPED FIBER AMPLIFIERS (C,L-EDFAs)

Single-Frequency, 2-cm, Yb-Doped Silica-Fiber Laser

Long-distance fiber grating sensor system using a fiber ring laser with EDWA and SOA

Wavelength switching using multicavity semiconductor laser diodes

Observation of Wavelength Tuning and Bound States in Fiber Lasers

Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source

DIRECT MODULATION WITH SIDE-MODE INJECTION IN OPTICAL CATV TRANSPORT SYSTEMS

RECENTLY, studies have begun that are designed to meet

Intensity-demodulated fiber-ring laser sensor system for acoustic emission detection

MICROWAVE photonics is an interdisciplinary area

Mechanism of intrinsic wavelength tuning and sideband asymmetry in a passively mode-locked soliton fiber ring laser

Gain-clamping techniques in two-stage double-pass L-band EDFA

Communication using Synchronization of Chaos in Semiconductor Lasers with optoelectronic feedback

Wavelength spacing tenable capability of optical comb filter using Polarization Maintaining Fiber

OPTICAL generation and distribution of millimeter-wave

FIBER OPTICAL PARAMETRIC OSCILLATOR WITH SWITCHABLE AND WAVELENGTH-SPACING TUN- ABLE MULTI-WAVELENGTH

Thermal treatment method for tuning the lasing wavelength of a DFB fiber laser using coil heaters

Timing Noise Measurement of High-Repetition-Rate Optical Pulses

Novel High-Q Spectrum Sliced Photonic Microwave Transversal Filter Using Cascaded Fabry-Pérot Filters

High-power semiconductor lasers for applications requiring GHz linewidth source

Multiwavelength and Switchable Erbium-Doped Fiber Lasers

Tunable and switchable dual-wavelength Tmdoped mode-locked fiber laser by nonlinear polarization evolution

All-Optical Signal Processing and Optical Regeneration

Multiwatts narrow linewidth fiber Raman amplifiers

Demonstration of multi-cavity optoelectronic oscillators based on multicore fibers

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender

Optical monitoring technique based on scanning the gain profiles of erbium-doped fiber amplifiers for WDM networks

MULTIFREQUENCY CONTINUOUS WAVE ERBIUM DOPED FIBER NON-RESONANT OPTICAL SOURCE

Index Terms WDM, multi-wavelength Erbium Doped fiber laser.

DBR based passively mode-locked 1.5m semiconductor laser with 9 nm tuning range Moskalenko, V.; Williams, K.A.; Bente, E.A.J.M.

Low Phase Noise Laser Synthesizer with Simple Configuration Adopting Phase Modulator and Fiber Bragg Gratings

Photonic Generation of Millimeter-Wave Signals With Tunable Phase Shift

A WDM passive optical network enabling multicasting with color-free ONUs

Swept Wavelength Testing:

Linewidth Measurements of Brillouin Fiber Lasers

R. J. Jones Optical Sciences OPTI 511L Fall 2017

A bidirectional radio over fiber system with multiband-signal generation using one singledrive

Spurious-Mode Suppression in Optoelectronic Oscillators

Performance of optical automatic gain control EDFA with dual-oscillating control lasers

soliton fiber ring lasers

A novel 3-stage structure for a low-noise, high-gain and gain-flattened L-band erbium doped fiber amplifier *

Wavelength and bandwidth-tunable silicon comb filter based on Sagnac loop mirrors with Mach- Zehnder interferometer couplers

FI..,. HEWLETT. High-Frequency Photodiode Characterization using a Filtered Intensity Noise Technique

Sensitivity enhancement of Faraday effect based heterodyning fiber laser magnetic field sensor by lowering linear birefringence

Optoelectronic Oscillator Topologies based on Resonant Tunneling Diode Fiber Optic Links

CSO/CTB PERFORMANCE IMPROVEMENT BY USING FABRY-PEROT ETALON AT THE RECEIVING SITE

A novel tunable diode laser using volume holographic gratings

Loop Mirror Multi-wavelength Brillouin Fiber Laser Utilizing Semiconductor Optical Amplifier and Fiber Bragg Grating

Photonic Microwave Harmonic Generator driven by an Optoelectronic Ring Oscillator

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p.

Theoretical Analysis of Tunable Single-Core Comb Filter Based on MZI

Pulse breaking recovery in fiber lasers

A NOVEL SCHEME FOR OPTICAL MILLIMETER WAVE GENERATION USING MZM

SIGNAL processing in the optical domain is considered

22-Channel Capacity of 2.5Gbit/s DWDM-PON ONU Transmitter by Direct-Modularly Side-Mode Injection Locked FPLD

Mode analysis of Oxide-Confined VCSELs using near-far field approaches

Research Article Tunable Single-Longitudinal-Mode High-Power Fiber Laser

Synchronization in Chaotic Vertical-Cavity Surface-Emitting Semiconductor Lasers

The Theta Laser A Low Noise Chirped Pulse Laser. Dimitrios Mandridis

Simultaneous Measurements for Tunable Laser Source Linewidth with Homodyne Detection

Application Instruction 002. Superluminescent Light Emitting Diodes: Device Fundamentals and Reliability

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

Utilizing Self-Seeding RSOA with Faraday Rotator Mirror for Colorless Access Network

High order cascaded Raman random fiber laser with high spectral purity

A 100 W all-fiber linearly-polarized Yb-doped single-mode fiber laser at 1120 nm

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

1014 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 40, NO. 8, AUGUST 2004

Recent Developments in Fiber Optic Spectral White-Light Interferometry

Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT

SIMULTANEOUS INTERROGATION OF MULTIPLE FIBER BRAGG GRATING SENSORS FOR DYNAMIC STRAIN MEASUREMENTS

Transcription:

A tunable and switchable single-longitudinalmode dual-wavelength fiber laser with a simple linear cavity Xiaoying He, 1 Xia Fang, 1 Changrui Liao, 1 D. N. Wang, 1,* and Junqiang Sun 2 1 Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 2 Wuhan national Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China * eednwang@polyu.edu.hk Abstract: A simple linear cavity erbium-doped fiber laser based on a Fabry-Perot filter which consists of a pair of fiber Bragg gratings is proposed for tunable and switchable single-longitudinal-mode dualwavelength operation. The single-longitudinal-mode is obtained by the saturable absorption of an unpumed erbium-doped fiber together with a narrow-band fiber Bragg grating. Under the high pump power (>166mW) condition, the stable dual-wavelength oscillation with uniform amplitude can be realized by carefully adjusting the polarization controller in the cavity. Wavelength selection and switching are achieved by tuning the narrow-band fiber Bragg grating in the system. The spacing of the dualwavelength can be selected at 0.20nm (~ 25.62GHz), 0.22nm (~ 28.19GHz) and 0.54nm (~ 69.19GHz). 2009 Optical Society of America OCIS codes: (000.0000) General; (000.2700) General science. References and links 1. N. J. C. Libatique, and R. K. Jain, Precisely and rapidly wavelength-switchable narrow-linewidth 1.5µm laser source for wavelength division multiplexing applications, IEEE Photon. Technol. Lett. 11(12), 1584 1586 (1999). 2. Z. Chen, S. Ma, and N. K. Dutta, Stable dual wavelength mode-locked Erbium-doped fiber ring laser, in Frontiers in Optics, OSA Technical Digest, paper FTuG6 3. P.-C. Peng, H.-Y. Tseng, and S. Chi, A tunable dual-wavelength erbium-doped fiber ring laser using a selfseeded fabrycprot laser diode, IEEE Photon. Technol. Lett. 15(5), 661 663 (2003). 4. J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, single-longitudinal-mode multiwavelength fiber ring laser, IEEE Photon. Technol. Lett. 16(4), 1020 1022 (2004). 5. S. Pan, and J. P. Yao, A wavelength-switchable single-longitudinal-mode dual-wavelength erbium-doped fiber laser for switchable microwave generation, Opt. Express 17(7), 5414 5419 (2009). 6. Y. Yao, X. Chen, and S. Xie, Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation, IEEE Photon. Technol. Lett. 18(1), 187 189 (2006). 7. G. Chen, D. Huang, X. Zhang, and H. Cao, Photonic generation of a microwave signal by incorporating a delay interferometer and a saturable absorber, Opt. Lett. 33(6), 554 556 (2008). 8. S. L. Pan, X. F. Zhao, and C. Y. Lou, Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser incorporating a semiconductor optical amplifier, Opt. Lett. 33(8), 764 766 (2008). 9. C. C. Lee, Y. K. Chen, and S. K. Liaw, Single-longitudinal-mode fiber laser with a passive multiple-ring cavity and its application for video transmission, Opt. Lett. 23(5), 358 360 (1998). 10. M. Matsuura, and N. Kishi, Frequency control characteristics of a single-frequency fiber laser with an external light injection, IEEE J. Sel. Top. Quantum Electron. 7(1), 55 58 (2001). 11. Y. Cheng, J. T. Kringlebotn, W. H. Loh, R. I. Laming, and D. N. Payne, Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter, Opt. Lett. 20(8), 875 877 (1995). 12. H. Y. Ryu, W. K. Lee, H. S. Moon, S. K. Kim, H. S. Suh, and D. Lee, Stable single-frequency fiber ring laser for 25-GHz ITU-T utilizing saturable absorber filter, IEEE Photon. Technol. Lett. 17(9), 1824 1826 (2005). 13. K. Zhang, and J. U. Kang, C-band wavelength-swept single-longitudinalmode erbium-doped fiber ring laser, Opt. Express 16(18), 14173 14179 (2008). (C) 2009 OSA 23 November 2009 / Vol. 17, No. 24 / OPTICS EXPRESS 21773

14. X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, R, F. Wu, and J. Zhang, Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber bragg grating Fabry- Perot Etalon, IEEE Photon. Technol. Lett. 20(12), 976 978 (2008). 15. J. Sun, X. Yuan, X. Zhang, and D. Huang, Single-longitudinal-mode fiber ring laser using fiber grating-based Fabry-Perot filters and variable saturable absorbers, Opt. Commun. 267(1), 177 181 (2006). 16. K. Murasawa, and T. Hidaka, Extension of dual-wavelength region in semiconductor laser with distributed Bragg Reflector, Jpn. J. Appl. Phys. 48(1), 010208 1 (2009). 17. Y. Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan, Study of spectral and annealing properties of fiber Bragg gratings written in H 2-free and H 2- loaded fibers by use of femtosecond laser pulses, Opt. Express 16(26), 21239 21247 (2008). 18. T. Erdogan, Fiber grating spectra, J. Lightwave Technol. 15(8), 1277 1294 (1997). 1. Introduction Dual-wavelength fiber laser with narrow line-width single-longitudinal-mode (SLM) operation and uniform amplitude output has attracted a lot of research interests because of its potential applications in optical communications, optical instrument testing and optical fiber sensors [1 3]. Especially, a wavelength tunable or switchable SLM dual-wavelength fiber laser is considered to be a desirable candidate for frequency-tunable, high-power, and low phase noise microwave or millimeter-wave generation [4 7], as microwave generation in this way does not require a high-quality frequency-tunable microwave reference source and thus reducing the system cost and complexity. However, to ensure a stable operation of the erbium-doped fiber (EDF) laser, two major issues need to be carefully addressed. Firstly, the strong homogeneous line broadening and cross-gain saturation in the EDF would lead to an unstable SLM dual-wavelength oscillation. A number of approaches have been proposed to overcome this difficulty such as the use of a hybrid gain medium [8], a passive multiple ring cavity [8], an external light injection [9], an unpumped EDF as a saturable absorber (SA) based narrow bandwidth filter [5,10 12], etc. Secondly, an ultranarrow mode selecting mechanism should be utilized to eliminate the multi-longitudinal-mode oscillation and mode competition, caused by the long cavity length and hence the narrow longitudinal mode spacing. Such an ultranarrow bandpass filter can be obtained by using a phase shifted fiber Bragg grating (FBG) [6], an SA based Sagnac loop [13], or an FBG-based Fabry-Perot (F-P) filter [14,15]. Although the FBG based F-P filter has been utilized in the ring cavity of fiber laser to realize the SLM operation [14,15], no single to dual wavelength switching can be achieved. However, either no SA element is used for stabilizing the output power [14], or a segment of gain fiber and a pump diode are employed to function as the SA element [15]. Despite the capability of supporting a dual-wavelength oscillation by some semiconductor lasers, it is still not convenient to achieve a reliable dual-wavelength oscillation because of the strong competition between the two wavelengths [16]. In this paper, we propose a novel linear-cavity EDF laser based on an FBG-based F-P filter, which generates a wavelength tunable and switchable SLM dual-wavelength lasing. The operating wavelengths and their spacing can be selected by use of an FBG-based F-P filter together with a narrow-band FBG in the laser cavity. An umpumed EDF is used as an SA which, together with a narrow-band FBG, helps in achieving stable SLM operation. When compared with the ring cavity laser with an FBG-based F-P filter and the same length of SA with FBG, our system exhibits the advantage of providing double optical gain in the EDF. Thus, our system has high potential in frequency-tunable microwave generation. 2. Operation principle and experimental setup Figure 1 shows the configuration of the proposed tunable and switchable dual-wavelength SLM EDF laser. The EDF (Highwave-tech EDF-741) with a length of 12 meters is used as the gain medium, pumped with a 980nm laser diode (LD) through a 980nm/1550nm wavelength division multiplexing (WDM) coupler (50:50). The absorption coefficient of the EDF at 1530nm is ~ 6-8 db/m. The laser output is monitored by an optical spectrum analyzer (ANDO AQ6319) with 0.01nm resolution. By adjusting the narrow-band FBG, the lasing wavelengths can be tuned and switched. The experiment is carried out at room temperature and the results obtained show good stability. (C) 2009 OSA 23 November 2009 / Vol. 17, No. 24 / OPTICS EXPRESS 21774

Fig.1. Schematic diagram of the proposed tunable and switchable dual-wavelength Erbiumdoped fiber laser with a simple linear cavity 2.1 narrow-band FBG and FBG-based F-P filter The narrow-band FBG shown in Fig. 1 has a reflection peak at 1569.81nm, with peak reflectivity of over 90% and a 3-dB band width of 0.71nm. Such an FBG is used to form a standing wave in the SA, to reflect the desirable wavelengths, and it is type-ii grating written in H 2 -free SMF-28 fiber by use of 800nm/120fs femto-second laser pulses and a phase mask (Ibsen Photonics). The laser pulse energy is 400-480µJ, with 1/e Gaussian beam radius of 3mm, and exposure time of ~45 min. This type of FBG exhibits high temperature stability and good spectral quality [17]. The reflection spectrum of this narrow-band FBG is shown in Fig. 2. 15 Optical power (dbm) 10 5 0-5 1564 1566 1568 1570 1572 1574 Fig. 2. Reflectivity spectrum of the narrow-band FBG Fig. 3. Scheme of the fiber Bragg grating based Fabry-Perot filter As shown in Fig. 3, the FBG-based F-P filter used in the configuration is composed of a pair of FBGs with a short length of 3mm and a position separation of 1.7mm, fabricated also by use of femtosecond laser pulses through a phase mask (Ibsen Photonics). The two FBGs with the same length of 3mm are fabricated under the same condition of ~25 min exposure time. Such an F-P filter has two transmission peaks represented by channel C2 and C3 respectively, and several side-lobes at the wavelengths indicated by, and C4, (C) 2009 OSA 23 November 2009 / Vol. 17, No. 24 / OPTICS EXPRESS 21775

respectively, as shown in Fig. 4. The line-width of the two transmission peaks is less than 0.01nm, which is beyond the resolution limit of the OSA used. The transfer matrixes of the two FBGs are expressed as [18]: σ κ cosh( Lg1(2) ) j sinh( Lg1(2) ) j sinh( Lg1(2) ) F1 = κ σ j sinh( Lg1(2) ) cosh( Lg) j sinh( Lg1(2) ) + (1) 2 2 where κ is the couple coefficient and = κ σ. L g1(2) is the length of grating 1 and grating 2. The transfer matrix of the position separation between two FBGs can be expressed as [18]: jβ L e 0 F2 = jβ L 0 e where, L is the position separation of the two FBGs. Using the transfer matrix method, the transmission of the FBG-based F-P filter can be expressed as: κ σ 2 j sinh( Lg) cosh( Lg) cos( β L) sinh( Lg) sin( β L) T = 2 2 σ jβ L κ 2 jβ L cosh( Lg) j sinh( Lg) e + sinh 2 ( Lg) e By use of Eq.(3), the transmission spectrum of the FBG-based F-P filter can be simulated and its result is shown in Fig.4, where the index change value is 1.6 10-4. It can be seen from Fig.4 that, the measured spectrum shows a good agreement with the calculated one. The free spectral range (FSR) is readily derived as: c FSR= 2n eff L+ c τ λ + τ λ ( 1( ) 2 ( )) where c is the velocity of the light in vacuum. τ 1 (λ) and τ 2 (λ) are the time delays of the two grating, defined as: (2) (3) (4) 2 λ dϕ τ1 ( 2) ( λ) = (5) 2π c dλ -48 0-49 Transmissionpower (dbm) -51-52 -53-54 -55-56 Tranmission Power (dbm) -5-10 -15-25 -57 1568.0 1568.5 1569.0 1569.5 1570.0 1570.5 1571.0 1568 1568.5 1569 1569.5 1570 1570.5 1571 Fig. 4. Transmission spectrum of the FBG F-P filter, two FBG length of 3mm; the interval between two FBG of 1.7mm measured spectrum (OSA resolution: 0.01nm); calculated spectrum by transfer matrix method (C) 2009 OSA 23 November 2009 / Vol. 17, No. 24 / OPTICS EXPRESS 21776

The FSR of the FBG-based F-P filter is mainly determined by the length of the position separation L and varies with the resonance wavelengths in the FBG. 2.2 Operation principle of saturable absorbers In the setup, a 2-m long unpumped EDF is used as an SA. Because the absorption coefficient of an EDF is inversely proportional to the intensity of the optical light in the fiber laser, when a standing wave is formed, the spatial optical power would distribute periodically along the EDF. Therefore, an absorption coefficient with periodic variation along the SA would be created, which would results in a periodic refractive index change based on the well-known Karamer-Kronig relation, a weakly coupled longer FBG is thus generated [13]. Such a weakly coupled and narrowband FBG would form a self-tracking FBG, which can stabilize single or dual mode output. In our system, considering two waves counter-propagating in the linear arm, the whole cavity length is ~30.5m, and the laser cavity FSR is close to 6.6MHz. However, considering the unpumped EDF length of L e 2m, and the effective refraction index of the EDF n eff 1.48, the 3-dB bandwidth of the self-tracking FBG should be less than 6.6MHz (FSR of the laser cavity), indicating that the SLM condition would be well satisfied. In other words, simultaneous SLM lasing at dual-wavelength is ensured. Thus, the unpumped EDF of two meter length in the linear cavity is utilized in our system as a SA which, together with a narrow-band FBG, can enhance the SLM performance and balance the optical powers of the lasing wavelengths. 3. Experimental results and discussion The tunable and switchable dual-wavelength emission for the fiber laser is shown in Fig. 5. When the reflection peak of the narrow-band FBG overlaps with one transmission peak (C3) and the adjacent sidelobe (C4) as shown in Fig. 5, a dual-wavelength emission can be obtained at 1569.61nm and 1569.81nm with a wavelength spacing of 0.20nm (~ 25.62GHz). If the reflection peak of the narrow-band FBG is shifted to overlap only with C3, a single wavelength emission at 1569.60 nm can be observed as shown in Fig. 5. When the reflection peak of the narrow-band FBG overlap with two transmission peaks (C2 and C3) of the F-P filter, another dual-wavelength operation can be established at 1569.38nm and 1569.60nm with the wavelength spacing of 0.22nm (~ 28.19 GHz), as shown in Fig.5(c). If the narrow-band FBG peak overlaps with only C2, a single wavelength emission at 1569.38 nm appears as shown in Fig. 5(d). Finally, by shifting the reflection peak of the narrow-band FBG to overlap with the channels,, and C2, dual-wavelength operation builds up again. Since the channel of has a relatively large loss in this linear cavity than that of other channels and C2, the wavelength in is suppressed by the mode competitions in pumped EDF. Thus, a dual-wavelength emission is obtained in the and C2 of the FBG-based F-P filter at 1568.84nm and 1569.38nm, corresponding to the wavelength spacing of 0.54nm (~ 67.19 GHz). By tuning the reflection peak of the narrow-band FBG, laser wavelength switching and dual-wavelength operation can be achieved and, the spacing of the dualwavelength can be selected at 0.20nm (~ 25.62GHz), 0.22nm (~ 28.19GHz) and 0.54nm (~ 67.19 GHz). The wavelengths outside of the reflection band of the FBG would pass through the FBGbased F-P filter, and then travel back into the linear cavity gain medium, and it could also transmit through the narrow-band FBG at the other end of the linear cavity and then leaks out. Thus, the wavelengths outside of the reflection band of the FBG cannot oscillate in the fiber laser system. (C) 2009 OSA 23 November 2009 / Vol. 17, No. 24 / OPTICS EXPRESS 21777

1569.61nm 1569.81nm 1569.60nm (c) Output Power (dbm) 1569.38nm 1569.60nm (d) 1569.38nm (e) 1568.84nm 1569.38nm -100 Fig. 5. Operation principle about the fiber laser with the tunable and switchable dualwavelength emitting with pump power of 166mW; dual-wavelength emitting at 1569.61 and 1569.81nm; single wavelength emitting at 1569.60nm; (c) dual-wavelength emitting at 1569.38 and 1569.60nm; (d) single wavelength emitting at 1569.38nm; (e) dual-wavelength emitting at 1568.84 and 1569.38nm (C) 2009 OSA 23 November 2009 / Vol. 17, No. 24 / OPTICS EXPRESS 21778

RF power (dbm) -100-120 RF power (dbm) -100-120 -140 10 20 30 40 50 60 70 80 90 100 RF frequency (MHz) -140 10 20 30 40 50 60 70 80 90 100 RF frequency (MHz) Fig. 6. Electrical spectrum of the beating signal observed at the output of the photodetector SLM operation mode competition and hopping To verify the SLM operation condition of our system, we have measured the beating RF spectrum by injecting the laser output into a high speed photodetector (< 25GHz) and a 3 GHz RF spectrum analyzer [13,15], as shown in Fig. 6. There is no beating signal generation between the main lasing mode and the side modes in Fig. 6, as expected. Fig. 6 presents mode competition and hopping in the fiber laser. Thus, the SLM operation of our laser system is ensured. In order to investigate the laser output stability and amplitude-equilibrium, the output power of the dual-wavelength at 1569.38 and 1569.60nm have been measured for different pump power levels. Under the pump power of 166mW at 980nm, the measured output spectrum at dualwavelengths of 1569.38 and 1569.60nm for 10 minutes is shown in Fig. 7, in which the stability time is longer than that reported in the literature [6]. Thus, the microwave local oscillator frequency can be generated in this fiber laser. The output power is ~ -25dB and the signal-to-noise ratio is ~50dB. In the situation of room temperature, the maximum power fluctuation at dual-wavelength is ~2dB, and the wavelength fluctuation is beyond the resolution limit of our OSA, as shown in Fig. 7. We believe that a more stable dualwavelength lasing can be achieved if the stability of the pump LD is improved. 1568.75 1569.00 1569.25 1569.50 1569.75 1570.00 1570.25 0-10 1 2 3 4 5 6 7 8 9 10 Sweep time (min.) Output power(dbm) -22-24 -26 0 2 4 6 8 10 1569.6 1569.5 1569.4 0 2 4 6 8 10 Time (min.) Fig. 7.. Measured output spectrum at fixed wavelengths of 1569.38 and 1569.60nm every 1 minutes for 10 minutes, pump power of 166mW;. Fluctuation of output power and wavelength during 10 minutes Under the pump power of 133mW, by carefully adjusting the state of the PC, singlewavelength or dual-wavelength operations can be obtained, as shown in Fig. 8. Fig. 9 demonstrates the dual-wavelength operations with the pump power of 166mW, where the switching from dual-wavelength to single-wavelength lasing cannot be reached by adjusting (C) 2009 OSA 23 November 2009 / Vol. 17, No. 24 / OPTICS EXPRESS 21779

the state of the PC. That is because, under the low pump power, the unpumed EDF in the linear cavity does not reach the saturated absorption condition, and when the polarization state in the fiber cavity is adjusted, one of emitting wavelengths can be easily suppressed. When the pump power becomes high, the unpumped EDF reaches its saturated absorption condition, and the function of the PC is to balance the gain and loss corresponding to the polarization state, hence, a uniform amplitude dual-wavelength laser operation can be obtained. Output Power (dbm) -100 (c) (d) Fig. 8. Wavelength switching of the fiber laser by adjusting the PC, with low pump power of 133mW (c) (d) Fig. 9. Dual-wavelength emission of the fiber laser by adjusting the PC, with high pump power of 166mW By changing the pump power from 133mW to 188.4mW, the output power variation of the dual-wavelength lasing at 1569.38 and 1569.60nm is shown in Fig. 10. When the pump power is lower than 155mW, as shown in the inset (two dimensional graph showing output wavelength power vs. pump power) of Fig. 10, a large output power variation can be observed, which indicates a large output power competition may exist in these two emitting wavelengths. Thus, the uniform amplitude dual-wavelength laser operation cannot be maintained. When the pump power is larger than 155mW, the SA plays a significant role, and an uniform amplitude and stable dual-wavelength operation can be maintained. (C) 2009 OSA 23 November 2009 / Vol. 17, No. 24 / OPTICS EXPRESS 21780

Output power of dual-wavelength -24-26 -28-32 -34-36 -38 130 140 150 160 170 180 190 Pump power (mw) 0-10 1568.8 1569.0 1569.2 1569.4 1569.6 1569.8 1570.0 1570.2 184.2 176 158.8 150.2 Pump power (mw) 4. Conclusion Fig. 10. Measured output spectrum at fixed wavelengths of 1569.38 and 1569.60nm with changing the pump power from 133mW to 188.4mW; Inset: red line corresponds to the wavelength of 1569.38 nm and blue line corresponds to the wavelength of 1569.60 nm A novel EDF laser with tunable and switchable dual-wavelength SLM operation is proposed and experimentally demonstrated. The main components of the system include an F-P filter based on a pair of FBGs, an umpumped EDF and a narrow-band FBG. The unpumped EDF together with the narrow-band FBG are used to ensure the SLM operation and balance the lasing wavelength power. The lasing wavelength and their spacing are selected by use of the F-P filter and the narrow-band FBG. The single-wavelength or dual-wavelength operation can be switched by controlling the overlap of the narrow-band FBG reflection peak and the transmission peaks of the F-P filter. When the pump power is lowered to 133mW, the laser can operate in either single-wavelength or dual-wavelength by adjusting the PC. Under the high pump power (>166mW) condition, the uniform amplitude dual-wavelength lasing can be obtained by carefully adjusting the PC. The system has high potential in generation of frequency-tunable microwave signal for radio-over-fiber systems and wireless networks. Acknowledgment This work is supported by the Hong Kong Polytechnic University research grants G-YX2N and A-PJ22. (C) 2009 OSA 23 November 2009 / Vol. 17, No. 24 / OPTICS EXPRESS 21781