Experimental Performance Characterization of Photovoltaic Modules Using DAQ

Similar documents
A device for the analysis of photovoltaic panels

Volume 11 - Number 19 - May 2015 (66-71) Practical Identification of Photovoltaic Module Parameters

CHAPTER 3 CUK CONVERTER BASED MPPT SYSTEM USING ADAPTIVE PAO ALGORITHM

Available online at ScienceDirect. Energy Procedia 89 (2016 )

An electronic load for testing photovoltaic panels

DESIGN & SIMULATION OF LOW POWER HOME UTILITY GRID CONNECTED PV SYSTEM USING P&O METHOD

Comparative Study of P&O and InC MPPT Algorithms

Optical design of a low concentrator photovoltaic module

Modeling of Multi Junction Solar Cell and MPPT Methods

Simulink Based Analysis and Realization of Solar PV System

[Sathya, 2(11): November, 2013] ISSN: Impact Factor: 1.852

A near accurate solar PV emulator using dspace controller for real-time control

Measurement of the Current-Voltage Curve of Photovoltaic Cells Based on a DAQ and Python

Sliding Mode Control based Maximum Power Point Tracking of PV System

Photovoltaic Modeling and Effecting of Temperature and Irradiation on I-V and P-V Characteristics

Performance of high-eciency photovoltaic systems in a maritime climate

MODELING AND EVALUATION OF SOLAR PHOTOVOLTAIC EMULATOR BASED ON SIMULINK MODEL

Development of a Fuzzy Logic based Photovoltaic Maximum Power Point Tracking Control System using Boost Converter

Experimental analysis and Modeling of Performances of Silicon Photovoltaic Modules under the Climatic Conditions of Agadir

DESIGN AND IMPLEMENTATION OF SOLAR POWERED WATER PUMPING SYSTEM

MATLAB Based Modelling and Performance Study of Series Connected SPVA under Partial Shaded Conditions

CHAPTER 3 APPLICATION OF THE CIRCUIT MODEL FOR PHOTOVOLTAIC ENERGY CONVERSION SYSTEM

Design, construction and characterization of a steady state solar simulator

The Use of Power Gyrator Structures as Energy Processing Cells in Photovoltaic Solar Facilities

Photovoltaic Battery Charging System Based on PIC16F877A Microcontroller

An Analysis of a Photovoltaic Panel Model

Optimization of the electronic Driver and thermal management of LEDs lighting powered by solar PV

A Study of Photovoltaic Array Characteristics under Various Conditions

Chapter 4. Impact of Dust on Solar PV Module: Experimental Analysis

Comparative study of maximum power point tracking methods for photovoltaic system

Simulation based study of Maximum Power Point Tracking and Frequency Regulation for Stand-alone Solar Photovoltaic Systems

Analytical Models of Power Losses of a Three phase AC-DC Rectifier for Hybrid Electric Vehicles

FIELD MEASUREMENTS OF PV MODULE PERFORMANCE USING A HANDY TOOL

Step-By-Step Check Response of PV Module Modeling Tested by Two Selected Power Reference Modules

ScienceDirect. Fuzzy logic-based voltage controlling mini solar electric power plant as an electrical energy reserve for notebook

Development of a Low-cost, Portable, and Programmable Solar Module to Facilitate Hands-on Experiments and Improve Student Learning

Australian Journal of Basic and Applied Sciences. Evaluation of Diode Model Parameters for a Solar Panel Simulation

Anti-IslandingStrategyforaPVPowerPlant

PORTABLE LED FLASHER WITH IMPLEMENTED BYPASS DIODE TESTER

Analysis Of Mathematical Model Of PV Cell Module in Matlab/Simulink Environment

A NEW APPROACH OF MODELLING, SIMULATION OF MPPT FOR PHOTOVOLTAIC SYSTEM IN SIMULINK MODEL

EE 230 Fall 2006 Experiment 11. Small Signal Linear Operation of Nonlinear Devices

MATLAB/SIMELECTRONICS Models Based Study of Solar Cells

In this lab you will build a photovoltaic controller that controls a single panel and optimizes its operating point driving a resistive load.

Sensor System for Long-term Recording of Photovoltaic (PV) IV-curves

Behavioural Study and Analysis of a Polycrystalline Solar PV Panel under varying Temperature and Irradiance

An Interleaved High Step-Up Boost Converter With Voltage Multiplier Module for Renewable Energy System

Solar Cell I-V Characteristics

4.5 Biasing in MOS Amplifier Circuits

I-V, C-V and AC Impedance Techniques and Characterizations of Photovoltaic Cells

A Hybrid Particle Swarm Optimization Algorithm for Maximum Power Point Tracking of Solar Photovoltaic Systems

CHAPTER 6 INPUT VOLATGE REGULATION AND EXPERIMENTAL INVESTIGATION OF NON-LINEAR DYNAMICS IN PV SYSTEM

Enhancement of PV Array Performance during Partial Shading Condition

High efficiency Step-Up HVDC converter for photovoltaic generator

Design and Comparative Study of Three Photovoltaic Battery Charge Control Algorithms in MATLAB/SIMULINK Environment

AC : A LOW-COST LABORATORY EXPERIMENT TO GEN- ERATE THE I-V CHARACTERISTIC CURVES OF A SOLAR CELL

MODELING AND SIMULATION OF A PHOTOVOLTAIC CELL CONSIDERING SINGLE-DIODE MODEL

Enhanced MPPT Technique For DC-DC Luo Converter Using Model Predictive Control For Photovoltaic Systems

Measurement and Monitoring of Performance Parameters of Distributed Solar Panels using Wireless Sensors Network

Optimization of Different Solar Cell Arrangements Using Matlab/Simulink for Small Scale Systems

Curve Tracer Laboratory Assistant Using the Analog Discovery Module as A Curve Tracer

Modeling Power Converters using Hard Switched Silicon Carbide MOSFETs and Schottky Barrier Diodes

The Single Diode Model of I-V and P-V Characteristics using the Lambert W Function

Comparison of Voltage and Efficiency of a Modified SEPIC Converter without Magnetic Coupling and with Magnetic Coupling

SINGLE-DIODE AND TWO-DIODE PV CELL MODELING USING MATLAB FOR STUDYING CHARACTERISTICS OF SOLAR CELL UNDER VARYING CONDITIONS

DESIGN, SIMULATION AND HARDWARE IMPLEMENTATION OF EFFICIENT SOLAR POWER CONVERTER WITH HIGH MPP TRACKING ACCURACY FOR DC MICROGRID APPLICATIONS

Modelling of Photovoltaic Module Using Matlab Simulink

Centralized Solar PV Systems for Static Loads Using Constant Voltage Control Method

Design and Simulation of Soft Switched Converter with Current Doubler Scheme for Photovoltaic System

High Gain DC-DC Converter with Coupled Inductor for Photovoltaic Applications

Implementation of Photovoltaic Cell and Analysis of Different Grid Connection

8. Characteristics of Field Effect Transistor (MOSFET)

MODELING AND SIMULATION BASED APPROACH OF PHOTOVOLTAIC SYSTEM IN SIMULINK MODEL

Journal of Engineering Science and Technology Review 10 (2) (2017) Research Article. Modeling of Photovoltaic Panel by using Proteus

Photovoltaic testing for R&D, DV, and manufacturing

ScienceDirect. Modeling and Simulation of Solar PV and DFIG Based Wind Hybrid System

Accessing the performance. light processing projector

Design And Analysis Of Dc-Dc Converter For Photovoltaic (PV) Applications.

UNCONVENTIONAL AND OPTIMIZED MEASUREMENT OF SOLAR IRRADIANCE IN BENGALURU USING PHOTOVOLTAIC TECHNIQUES

DESIGN AND ANALYSIS OF INTERLEAVED NON-INVERTING BUCK BOOST CONVERTER FOR PV MODULE

CHAPTER-2 Photo Voltaic System - An Overview

I-V, C-V and Impedance Characterization of Photovoltaic Cells using Solartron Instrumentation

Simulation of Standalone PV System Using P&O MPPT Technique in Matlab/Simulink

High Voltage-Boosting Converter with Improved Transfer Ratio

Simulation of Perturb and Observe MPPT algorithm for FPGA

Matlab Simulation of a High Step-Up DC-DC Converter for a Micro grid Application

ISSN: X Impact factor: (Volume3, Issue2) Simulation of MPPT based Multi-level CUK converter

The Effect of Photon Flux Density and Module Temperature on Power Output of Photovoltaic Array

A High Efficiency and High Voltage Gain DC-DC Converter for Renewable Energy Connected to Induction Motor

CHAPTER 7 HARDWARE IMPLEMENTATION

Optimal Design of DC to DC Boost Converter with Closed Loop Control PID Mechanism for High Voltage Photovoltaic Application

Laboratory 2: PV Module Current-Voltage Measurements

Mathematical Modelling and Simulation of PV Penal

Course Number Section. Electronics I ELEC 311 BB Examination Date Time # of pages. Final August 12, 2005 Three hours 3 Instructor

DESIGN, SIMULATION AND REAL-TIME IMPLEMENTATION OF A MAXIMUM POWER POINT TRACKER FOR PHOTOVOLTAIC SYSTEM

Application Overview: Simplified I/V Characterization of DC-DC Converters

Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter

Investigation and Analysis of Interleaved Dc- Dc Converter for Solar Photovoltaic Module

ECE315 / ECE515 Lecture 9 Date:

ISSN No. (Print) : ISSN No. (Online) : Modeling of Inverter for Photovoltaic Module with Grid Synchronization System

Transcription:

Available online at www.sciencedirect.com ScienceDirect Energy Procedia 6 ( ) TerraGreen International Conference - Advancements in Renewable Energy and Clean Environment Experimental Performance Characterization of Photovoltaic Modules Using DAQ Anwar Sahbel a *, Naggar Hassan b, Magdy M. Abdelhameed b, Abdelhalim Zekry b a Faculty of Engineering, the British University in Egypt (BUE), El Sherouk City, 87, Cairo, Egypt b Faculty of Engineering, Ain Shams University (ASU), 78, Cairo, Egypt Abstract This paper presents a simple electronic circuit for testing the photovoltaic (PV) modules by tracing their I-V characteristics. A precise PV module electrical model is also introduced. The circuit consists of a fast varying electronic load based on power MOSFET and operational amplifier. A DAQ system with LabVIEW application was developed for controlling the MOSFET gate-source voltage. The circuit is designed, implemented and tested under real conditions. The experimental results verified with simulation results and another way of testing which is resistor method. The The Authors. Published Published by Elsevier by Elsevier Ltd. Open Ltd. access under CC BY-NC-ND license. Selection and/or peer-review under under responsibility responsibility of the TerraGreen of the TerraGreen Academy Academy. Keywords: Photovoltaic Modules; I -V and P -V Characteristics; LabVIEW. Introduction Photovoltaic (PV) is a clean and reliable source of energy and can be found in urban and rural areas where no grid is available. PV installations have been growing with a significant increase in many countries over the past five years with average annual growth rate of over % as reported in []. As the growth in the PV sector, it is essential to have accurate measuring system to evaluate the PV module performance and reliability especially for PV module designer and manufacturers to improve their modules during development. On the other hand operators and customers are targeting a faultless operation of the PV modules. The manufacturer s current voltage characteristics are utilized to obtain the PV module parameters as short circuit current (I SC ), open circuit voltage (V OC ), maximum power (P max ) and fill factor (the ratio of * Anwar Sahbel. Tel.: +---98. E-mail address: anwar.magdy@bue.edu.eg. 876-6 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license. Selection and/or peer-review under responsibility of the TerraGreen Academy doi:.6/j.egypro..7.7

Anwar Sahbel et al. / Energy Procedia 6 ( ) the actual maximum obtainable power to the product of the open circuit voltage and short circuit current). This is carried out under a standard test condition (STC) W/m of irradiance, C cell temperature and air mass.. However, this process is executed outdoor where the environmental conditions are distant from these conditions. The measurements of I-V Characteristics have been developed over the past decade. In [] a personal computer, data acquisition system with its software and programmable electronic load were proposed to trace the I-V characteristics each two hours automatically. A low cost measuring system was designed by [] for measuring the I-V characteristic of seven modules. A set of mechanical relays are used to select a parallel combination of resistors to act as resistive load another set of mechanical relays are used for PV module selection. A MOSFET based electronic load circuit was introduced in [] where a fast scanning monitoring system was achieved. In [] the work was based on the electronic load circuit presented in [] but with designing and implementing data acquisition system using AVR microcontroller. An improved MOSFET based electronic load was attained in [6] through controlling the gate voltage by a Pulse width modulation circuit. The circuit was developed in [7] with low-cost DAQ system in order to enhance the trace of the I-V characteristic. Another way is considered in studying the photovoltaic effect by modeling and simulation using two methods. The first method is mathematical modeling where the photovoltaic diode characteristic is used to study the PV behavior as in [8]. The second one is circuit modeling where the photovoltaic is represented by a combination of passive circuit components such as diode, resistors and capacitors. Using a circuit simulator the photovoltaic behavior could be determined as in [9]. In this paper, a measurement system is implemented to trace the I-V and P-V characteristics for PV modules. MOSFET acting on the active region is used as electronic load where its equivalent resistance is controlled through the gate voltage by generating a saw-tooth signal using a low cost NI-DAQ. This process is done under different configurations. The effect of fully and partially shaded PV modules is also taken into consideration.. Experimental setup The I-V and P-V characteristics of four polycrystalline PV modules were traced using the circuit shown in Fig.. The circuit is based on MOSFET IRFP6N as a varying electronic load with heat sink to dissipate the power. The characteristics of the MOSFET in both linear and saturation region are described respectively by []: I D K N (( VGS Vt ) VDS VDS ) () I K V V ) () D N ( GS t Fig.. Electronic circuit for tracing I-V and P-V characteristics of photovoltaic modules

Anwar Sahbel et al. / Energy Procedia 6 ( ) Where is the gate-source voltage, V DS the drain-source voltage, K N the device constant, V t the threshold voltage and I D the drain current of the MOSFET. As is less than the threshold voltage V t, the MOSFET will be OFF. When is increased above V t, the MOSFET will operate in the saturation region and the drain current rises quadratically with. At lower solar module voltage the operating point of the MOSFET shifts to the linear region where the drain current changes linearly with. Thus, by sweeping the gate voltage the operating point of the MOSFET sweeps the I-V characteristic of the module between V OC and I sc as shown in Fig.. I D (A) & I PV (A). I SC.. Characteristic of PV (red curve) and Characteristics of MOSFET (blue curves) =6.V =6.V =.V =.V =.V =.V =.V =.V =.V =.V V OC V DS (V) & V PV (V) Fig.. Characteristic of a PV module (red curve) and characteristics of MOSFET (blue curves) The gate voltage is controlled using DAQ system. This system is based on NI-USB 68 with a sample rate of Ks/s, laptop and LabVIEW application. The LabVIEW application shown in Fig. is used to generate a saw-tooth signal to vary the gate voltage from.v to.v through the analog output of the NI-USB 68. This range cannot be obtained as the analog output maximum voltage swing is V so an amplifier circuit LM7 with gain two was used and the voltage generated was adjusted to vary from V to V. Since the MOSFET cannot withstand a high power for more than some milliseconds the signal varied with high frequency about.66hz and points per cycle. The PV voltage is acquired through two high power resistors (R & R v ) with high value comparable with that of the electronic load to draw small current, in order not to affect the PV operating point. As the maximum input voltage allowed by the DAQ is V, the two resistors are connected as voltage divider to avoid exceeding the input range. The PV current is acquired through high power resistor with low value (R I ) so that its voltage drop could be neglected. Fig. Saw-tooth signal generated by LabVIEW application

6 Anwar Sahbel et al. / Energy Procedia 6 ( ). Simulation In this section Matlab/Simulink simulation for a single PV is presented. The equivalent circuit of the PV model is shown in Fig., where it consists of a photo current, a diode, a parallel resistor expressing a leakage current, and a series resistor describing an internal resistance to the current flow. The voltage-current characteristic equation of a solar cell is given as []. VD ( ) VT I I [ e ] () D o Fig.. The circuit diagram of PV model Current-input PV module is presented in modeling the characteristics of a PV module. The Simulink functional block diagram is shown in Fig. where the system inputs are the isolation and PV current while the output are PV voltage and power. The developed model considers the number of cells, series resistor and shunt resistor. Fig. 6 shows a masked block diagram for the model developed in Fig..The I- V and P-V characteristics outputs are shown in Fig. 7 and 8 respectively. Fig.. Current input PV module Simulink block diagram Fig. 6. Current input PV module Simulink block diagram (Mask)

Anwar Sahbel et al. / Energy Procedia 6 ( ) 7 Simulated I-V characteristics for a single PV module.8.6...8.6.. 6 7 8 9 Fig. 7. I-V characteristics using Simulink 8 P-V charateristics 7 6 6 7 8 9 Fig. 8. P-V characteristics using Simulink. Results and discussion With the aid of the electronic circuit described in the experimental setup section, the I-V characteristics was traced for polycrystalline PV modules which have the following parameters at standard test conditions AEG-TSG cells in series W, I sc =.8 A, V oc =9.6 V. The modules placed on the roof of a building with inclination, in order to achieve the best performance. The measurement was performed on single module, two modules in series, two modules in parallel and four modules connected as shown in Fig. 9 with and without shadowing. Fig. 9. Parallel series connection

8 Anwar Sahbel et al. / Energy Procedia 6 ( ) A comparison between two different I-V tracing methods was illustrated in Fig. using either an electronic load circuit or a combination of high power resistors. These output characteristics are taken under irradiance 9 W/m where the maximum power observed was about 7.9 W, I SC =. A and V oc =9. V. The first method outperforms the second one regarding accuracy and tracing speed however, more ripples appears due to high frequency and sampling rate. Power and irradiance variation across day was observed in Fig. where a maximum power of 8 W was detected... I-V charactristic curve for Polycrystalline PV module Electronic Load Resistor method 8 6 6 7 8 9 P-V charactristic curve for Polycrystalline PV module Electronic Load Resistor method 6 7 8 9 Fig.. I-V and P-V characteristics for a single PV module the red curve measured with the electronic load and the blue measured with a combination of resistors. 9 8 Power time curve Measured Data Curve fitted (Dash line) 7 6 7 8 9 Time (Hrs) Fig.. Power variation across day for a single PV module

Anwar Sahbel et al. / Energy Procedia 6 ( ) 9 Fig. and shows the I-V and P-V characteristics of two PV modules connected in parallel and series respectively. Fig. and show I-V and P-V characteristics under the effect of shadowing on same connections. As expected the shadowing effect is clearer in the case of series connected PV modules rather than the parallel connected one. This is due to the fact that shadowing in the series connected branch causing current limitation on the branch which reflects on the total output power observed. Two parallel connected PV modules I-V and P-V characteristics 6 7 8 9 6 7 8 9 Fig.. I-V and P-V characteristics of two parallel connected PV modules I-V and P-V characteristics of two series connected PV modules.. 6 8 6 8 6 8 6 8 Fig.. I-V and P-V characteristics of two series connected PV modules

Anwar Sahbel et al. / Energy Procedia 6 ( ) I-V and P-V characteristics of two parallel connected PV modules with shadowing 6 7 8 9 6 7 8 9 Fig.. I-V and P-V characteristics of two parallel connected PV modules with shadowing I-V and P-V characteristics of two modules connected in series with shadowing.. 6 8 6 8 6 8 6 8 Fig.. I-V and P-V characteristics of two series connected PV modules with shadowing The I-V and P-V characteristics of four PV modules connected as shown in Fig. 9 are shown in Fig. 6. The short circuit current is found to be I sc =. A, the open circuit voltage V oc = 8.8 V, and the maximum power about P max = W. while Fig.7 shows the I-V and P-V characteristics for the same configuration with shadowing effect on module and, where the observed reduction in the I SC and V OC is reflected on the maximum power.

Anwar Sahbel et al. / Energy Procedia 6 ( ) I-V and P-V Characteristics of four connected PV modules 6 8 6 8 6 8 6 8 Fig. 6. I-V and P-V characteristics of four connected PV modules I-V and P-V characteristcs of four connected PV modules with shadowing 6 8 6 8 6 8 6 8 Fig. 7. I-V and P-V characteristics of four connected PV modules with shadowing. Conclusion This paper presents an electronic circuit for monitoring the I-V and P-V characteristics of photovoltaic modules as that introduced in [7] with simpler circuit design, lower cost and higher tracing frequency. An electronic load based on MOSFET is used to trace the characteristics of photovoltaic modules. The MOSFET is controlled by sweeping the gate-source voltage through a saw-tooth signal. The saw-tooth signal is generated by using a LabVIEW application. For this purpose, a low-cost NI-DAQ was used. A large number of experiments with various configurations of PV modules have been conducted in actual field conditions to ensure the utility and robustness of the proposed electronic measuring setup under

Anwar Sahbel et al. / Energy Procedia 6 ( ) different field condition such as irradiance and shadowing. A current input PV model is developed using Matlab/Simulink in modeling the photovoltaic behaviour for AEG TSG panel. Given the solar insolation and the PV current, the model returns the I-V and P-V graphs using the Parameters obtained from AEG TSG photovoltaic panel. References [] IEA-PVPS. Trends in Photovoltaic Applications Survey report of selected IEA countries between 99 and. Report IEA- PVPS T-:, [Online] Available: http:// www.iea-pvps.org [] Hamza G. G., Zekry A., El-Ghuitani H., El-Shazly A. A full automatic measurement setup for solar cells modules. Ain Shams University International Conference on Environmental Engineering., p. 88-. [] Van Dyk E.E., Gxasheka A. R., Meyer E.L. Monitoring Current Voltage Characteristics and Energy Output of Silicon Photovoltaic Modules. ELSEVIER, Renewable Energy,. p. 99, [] Kuai Y., Yuvarajan S. An Electronic Load for Testing Photovoltaic Panels. ELSEVIER, Journal of Power Sources, 6. p. 8. [] Atia Y., Zahran M., Al-Hossain A. Solar Cell Emulator and Solar Cell Characteristics Measurements in Dark and Illuminated Conditions. Wseas Transactions On Systems And Control, Issue, Volume 6, ISSN: 99-876. April. [6] Leite V., Chenlo F. An Improved Electronic Circuit for Tracing the I-V Characteristics of Photovoltaic Modules and Strings. in Proc. of the International Conference on Renewable Energies and Power Quality (ICREPQ'), March -,. [7] Leite V., Batista J., Chenlo F., Afonso J. Low-Cost Instrument for Tracing Current-Voltage Characteristics of Photovoltaic Modules. in Proc. of the International Conference on Renewable Energies and Power Quality (ICREPQ'), March 8-,. [8] Rustemli S., Dincer F. Modeling of Photovoltaic Panel and Examining Effects of Temperature in Matlab/Simulink. Electronics and Electrical Engineering, ISSN 9,. [9] Zekry A., Al-Mazroo A. Y. A Distributed SPICE-Model of a Solar Cell. IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL., NO., MAY 996 [] Hambley A. R. Electronics. nd edition. Prentice Hall. upper saddle river. New Jersey 78.. [] PV Module Simulink models, ECEN 6, spring 8, [online] Available: http://ecee.colorado.edu/~ecen6/materials/simulink/pv/pv_module_model.pdf