A WIDEBAND AND DUAL FREQUENCY THREE- DIMENSIONAL TRANSITION-FED CIRCULAR PATCH ANTENNA FOR INDOOR BASE STATION APPLICA- TION

Similar documents
TRIPLE-BAND OMNI-DIRECTIONAL ANTENNA FOR WLAN APPLICATION

DESIGN OF A NOVEL WIDEBAND LOOP ANTENNA WITH PARASITIC RESONATORS. Microwaves, Xidian University, Xi an, Shaanxi, China

A Broadband Omnidirectional Antenna Array for Base Station

DESIGN OF A NOVEL MICROSTRIP-FED DUAL-BAND SLOT ANTENNA FOR WLAN APPLICATIONS

A COMPACT DUAL INVERTED C-SHAPED SLOTS ANTENNA FOR WLAN APPLICATIONS

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

X. Li, L. Yang, S.-X. Gong, and Y.-J. Yang National Key Laboratory of Antennas and Microwave Technology Xidian University Xi an, Shaanxi, China

A Wideband Dual-polarized Modified Bowtie Antenna for 2G/3G/LTE Base-station Applications

Wideband Bow-Tie Slot Antennas with Tapered Tuning Stubs

DESIGN OF TRI-BAND PRINTED MONOPOLE ANTENNA FOR WLAN AND WIMAX APPLICATIONS

Wideband Double-Layered Dielectric-Loaded Dual-Polarized Magneto-Electric Dipole Antenna

COMPACT TRIPLE-BAND MONOPOLE ANTENNA WITH C-SHAPED AND S-SHAPED MEANDER STRIPS FOR WLAN/WIMAX APPLICATIONS

ANALYSIS OF ELECTRICALLY SMALL SIZE CONICAL ANTENNAS. Y. K. Yu and J. Li Temasek Laboratories National University of Singapore Singapore

A Very Wideband Dipole-Loop Composite Patch Antenna with Simple Feed

Compact Wide-Beam Circularly Polarized Antenna with Stepped Arc-Shaped Arms for CNSS Application

RECTANGULAR SLOT ANTENNA WITH PATCH STUB FOR ULTRA WIDEBAND APPLICATIONS AND PHASED ARRAY SYSTEMS

DUAL-WIDEBAND MONOPOLE LOADED WITH SPLIT RING FOR WLAN APPLICATION

COMPACT WIDE-SLOT TRI-BAND ANTENNA FOR WLAN/WIMAX APPLICATIONS

New Design of CPW-Fed Rectangular Slot Antenna for Ultra Wideband Applications

A Simple Dual-Wideband Magneto-Electric Dipole Directional Antenna

Broadband Designs of a Triangular Microstrip Antenna with a Capacitive Feed

A NOVEL COMPACT ARCHIMEDEAN SPIRAL ANTENNA WITH GAP-LOADING

A MINIATURIZED INTERNAL WIDEBAND ANTENNA FOR WIRELESS USB DONGLE APPLICATION

R. Zhang, G. Fu, Z.-Y. Zhang, and Q.-X. Wang Key Laboratory of Antennas and Microwave Technology Xidian University, Xi an, Shaanxi , China

High gain W-shaped microstrip patch antenna

Compact Triple-Band Monopole Antenna with Inverted-L Slots and SRR for WLAN/WiMAX Applications

DUAL-WIDEBAND SQUARE SLOT ANTENNA WITH A U-SHAPED PRINTED TUNING STUB FOR PERSONAL WIRELESS COMMUNICATION SYSTEMS

L-strip Proximity Fed Broadband Circular Disk Patch Antenna

PRINTED BLUETOOTH AND UWB ANTENNA WITH DUAL BAND-NOTCHED FUNCTIONS

A Low-Profile Planar Monopole Antenna for Multiband Operation of Mobile Handsets

Broadband low cross-polarization patch antenna

A Compact Dual-Polarized Antenna for Base Station Application

A DUAL-BAND CIRCULAR SLOT ANTENNA WITH AN OFFSET MICROSTRIP-FED LINE FOR PCS, UMTS, IMT-2000, ISM, BLUETOOTH, RFID AND WLAN APPLI- CATIONS

S. Zhou, J. Ma, J. Deng, and Q. Liu National Key Laboratory of Antenna and Microwave Technology Xidian University Xi an, Shaanxi, P. R.

Couple-fed Circular Polarization Bow Tie Microstrip Antenna

DUAL-BAND LOW PROFILE DIRECTIONAL ANTENNA WITH HIGH IMPEDANCE SURFACE REFLECTOR

Wideband Unidirectional Bowtie Antenna with Pattern Improvement

MINIATURIZED MODIFIED DIPOLES ANTENNA FOR WLAN APPLICATIONS

A CPW-fed Microstrip Fork-shaped Antenna with Dual-band Circular Polarization

Design of a Wideband Sleeve Antenna with Symmetrical Ridges

Broadband Circular Polarized Antenna Loaded with AMC Structure

SINGLE-FEEDING CIRCULARLY POLARIZED TM 21 - MODE ANNULAR-RING MICROSTRIP ANTENNA FOR MOBILE SATELLITE COMMUNICATION

ENHANCEMENT OF PRINTED DIPOLE ANTENNAS CHARACTERISTICS USING SEMI-EBG GROUND PLANE

Design of Frequency and Polarization Tunable Microstrip Antenna

RCS Reduction of Patch Array Antenna by Complementary Split-Ring Resonators Structure

Desktop Shaped Broadband Microstrip Patch Antennas for Wireless Communications

A New Dual Band E-shaped Slot Antenna Design for Wireless Applications

CYLINDRICAL-RECTANGULAR MICROSTRIP ARRAY WITH HIGH-GAIN OPERATION FOR IEEE J MIMO APPLICATIONS

Design of a Novel Dual - Band Planar Inverted F Antenna for Mobile Radio Applications

Single-Feed Triangular Slotted Microstrip Bowtie Antenna for Quad-bands Applications

A Compact Dual-Band Dual-Polarized Antenna for Base Station Application

Antenna Theory and Design

A NOVEL DUAL-BAND PATCH ANTENNA FOR WLAN COMMUNICATION. E. Wang Information Engineering College of NCUT China

Low-Profile Wideband Circularly Polarized Patch Antenna Using Asymmetric Feeding

COMPACT SLOT ANTENNA WITH EBG FEEDING LINE FOR WLAN APPLICATIONS

CPW- fed Hexagonal Shaped Slot Antenna for UWB Applications

A Wideband suspended Microstrip Patch Antenna

RESEARCH AND DESIGN OF QUADRUPLE-RIDGED HORN ANTENNA. of Aeronautics and Astronautics, Nanjing , China

A Broadband Dual-Polarized Magneto-Electric Dipole Antenna for 2G/3G/LTE/WiMAX Applications

DUAL BAND COPLANAR CAPACITIVE COUPLED MICROSTRIP ANTENNAS WITH AND WITHOUT AIR GAP FOR WIRELESS APPLICATIONS

BROADBAND SERIES-FED DIPOLE PAIR ANTENNA WITH PARASITIC STRIP PAIR DIRECTOR

A COMPACT UWB MONOPOLE ANTENNA WITH WIMAX AND WLAN BAND REJECTIONS

Design and Application of Triple-Band Planar Dipole Antennas

ENHANCEMENT OF PHASED ARRAY SIZE AND RADIATION PROPERTIES USING STAGGERED ARRAY CONFIGURATIONS

Broadband Balanced Microstrip Antenna Fed by a Waveguide Coupler

STUDY ON THE PLANAR CIRCULARLY POLARIZED ANTENNAS WITH SWASTIKA SLOT

NEW DESIGN OF COMPACT SHORTED ANNULAR STACKED PATCH ANTENNA FOR GLOBAL NAVIGA- TION SATELLITE SYSTEM APPLICATION

International Journal of Microwaves Applications Available Online at

CIRCULARLY POLARIZED SLOTTED APERTURE ANTENNA WITH COPLANAR WAVEGUIDE FED FOR BROADBAND APPLICATIONS

Dual-band bow-tie antenna with parasitic elements for WLAN applications

H. Sabri and Z. Atlasbaf Faculty of Engineering, Department of Electrical Engineering Tarbiat Modares University (TMU) Tehran, Iran

Compact Double-ring Slot Antenna with Ring-fed for Multiband Applications

Analysis and Design of Microstrip Patch Antenna For Triple Band Applications

Slot Antennas For Dual And Wideband Operation In Wireless Communication Systems

DESIGN OF SEVERAL POWER DIVIDERS USING CPW- TO-MICROSTRIP TRANSITION

Proximity fed gap-coupled half E-shaped microstrip antenna array

INTERNAL SHORTED PATCH ANTENNA INTEGRATED WITH A SHIELDING METAL CASE FOR UMTS OPER- ATION IN A PDA PHONE

A Phase Diversity Printed-Dipole Antenna Element for Patterns Selectivity Array Application

A CIRCULARLY POLARIZED QUASI-LOOP ANTENNA

Slots and Notch Loaded Rectangular Stacked Microstrip Antenna for Multiband Operations

A WIDEBAND TWIN-DIAMOND-SHAPED CIRCULARLY POLARIZED PATCH ANTENNA WITH GAP-COUPLED FEED

A Multiband Four-Antenna System for the Mobile Phones Applications

DESIGN OF WIDEBAND TRIANGLE SLOT ANTENNAS WITH TUNING STUB

COMPACT PLANAR MULTIBAND ANTENNA FOR GPS,DCS,2.4/5.8 GHz WLAN APPLICATIONS

GPS Patch Antenna Loaded with Fractal EBG Structure Using Organic Magnetic Substrate

RECTANGULAR SLOT ANTENNA WITH PATCH STUB FOR ULTRA WIDEBAND APPLICATIONS AND PHASED ARRAY SYSTEMS

THE DESIGN OF A DUAL-POLARIZED SMALL BASE STATION ANTENNA WITH HIGH ISOLATION HAVING DIELECTRIC FEEDING STRUCTURE

COMPACT HALF U-SLOT LOADED SHORTED RECTAN- GULAR PATCH ANTENNA FOR BROADBAND OPERA- TION

Size Reduction of Octa-Band WWAN/LTE Antenna using Slotted Spirals with Non Uniform Width for Tablets

A Dual-Band Two Order Filtering Antenna

A 2.3/3.3 GHz Dual Band Antenna Design for WiMax Applications

A Spiral Antenna with Integrated Parallel-Plane Feeding Structure

Proximity Coupled Equilateral Triangular Microstrip Antenna with Diamond Shape Slot for Dual Band Operation

A COMPACT CPW-FED MONOPOLE ANTENNA WITH A U-SHAPED STRIP AND A PAIR OF L-SLITS GROUND FOR WLAN AND WIMAX APPLICATIONS

Compact and Broadband Microstrip Antennas

HYBRID ARRAY ANTENNA FOR BROADBAND MILLIMETER-WAVE APPLICATIONS

A Compact Wideband Circularly Polarized L-Slot Antenna Edge-Fed by a Microstrip Feedline for C-Band Applications

Broadband and Gain Enhanced Bowtie Antenna with AMC Ground

HIGH GAIN AND LOW COST ELECTROMAGNETICALLY COUPLED RECTAGULAR PATCH ANTENNA

Compact and Low Profile MIMO Antenna for Dual-WLAN-Band Access Points

Transcription:

Progress In Electromagnetics Research Letters, Vol. 11, 47 54, 2009 A WIDEBAND AND DUAL FREQUENCY THREE- DIMENSIONAL TRANSITION-FED CIRCULAR PATCH ANTENNA FOR INDOOR BASE STATION APPLICA- TION Y.-H. Huang, Q.-Z. Liu, and S.-G. Zhou National Key Laboratory of Antenna and Microwave Technology Xidian University Xi an, Shaanxi, China Abstract The design and performance of a stacked patch antenna for wideband and dual-frequency operation are presented in this paper. The proposed antenna consists of a three dimensional (3D) circular transition-fed patch that is excited by a coaxial probe. By introducing a regular patch and a ring patch above the 3D circular transition-fed patch, good input impedance matching has been achieved over two frequency bands. The lower band possesses an impedance bandwidth (VSWR < 2) of 22.8% (0.775 to 0.975 GHz) and a peak gain of 5.2 dbi, while the upper band has an impedance bandwidth (VSWR < 2) of 65.8% (1.425 to 2.825 GHz) and a peak gain of 7.4 dbi. Other than the wideband and dual-band operation features, this antenna also has a beam tilted downward with a broadside beam pattern on the horizontal plane. Therefore, this antenna is very suitable for the indoor base station that is required to service several wireless communication systems, included CDMA800, GSM900, 3G, PCS, UMTS, BLUETOOTH and WLAN, by a single antenna. 1. INTRODUCTION Patch antennas are receiving increasing interest in various mobile communication systems since they can provide advantages over traditional whip and helix antennas in terms of high efficiency, low profile and increased mechanical reliability [1]. In indoor base station applications, the requirement on bandwidth is quite stringent. Typically, the antenna is required to have a bandwidth exceeding Corresponding author: Y.-H. Huang (huangyouhuo@sina.com).

48 Huang, Liu, and Zhou 17% (806 960 MHz) and 37% (1710 2500 MHz). During the last two decades, many investigators have dedicated their efforts to creating new design or variations to the original antenna that produce either wider bandwidths or multiple frequency operation in a single element [2 14]. Regarding the bandwidth enhancement of patch antennas, several techniques have been proposed, the use of multiple resonators [2], and the use of thick substrates [3]. For an electrically thick substrate patch antenna, coaxial feed is typically used. However, the increased inductance introduced by the longer probe will limit the achievable bandwidth to less than 10% of the resonant frequency. For this reason, several other methods [4, 5] have been proposed to solve this problem, including cutting a U-slot [4] on a patch, and the use of an L-probe feed [5]. Both the U-slot patch and the L- probe feed patch can attain over 30% bandwidth. Meanwhile, many solutions to achieve multiple-frequency operation were carried out [6 9], such as the multilayer stacked-patch antenna [6], the reactiveloading patch antennas by adding shorting pins and/or etching slots on a patch [7 9]. However, previous investigations either addressed the problem of widening the bandwidth or forming multiple-frequency operation, but seldom both simultaneously. In additional, when the antennas are installed in the upper area of the wall or near the ceiling vertically, as is usually the case, the radio waves radiated toward most mobile terminals are off the maximum radiation angle. Therefore, it is desirable for the base station antenna to have a beam tilted downward with a broadside beam pattern on the horizontal plane [15]. 2. ANTENNA DESIGN AND GEOMETRY STRUCTURE In this paper, a novel three dimentional cicular patch transition-fed antenna with a regular stacked pach and a ring stacked patch is proposed to achieve broadband and dual frequency operation. The design achieves 22.8% bandwidth in the lower bands and 65.8% bandwidth in the uper bands. The fed circular element can be very high above the ground plane (so that the electrical volume can be significantly increased) and be matched using the 3-D transition structure feed which avoids the long probe or extremely wide coplanar feeding microstrip line. A regular patch and a ring patch are stacked above the fed circular patch, which operate at higher-frequency band and at lower-frequency band, respectively. A reflected section and a directional section are introduced to have a beam tilted downward with a fan beam pattern on the horizontal plane. All the metal sections are made of aluminium with the thickness of 0.5 mm. The geometry of the antenna, which operates at both 0.775 to

Progress In Electromagnetics Research Letters, Vol. 11, 2009 49 0.975 GHz (lower band) and 1.425 to 2.825 GHz MHz (upper band), is shown in Fig. 1. For the proposed radiator structure, there are three sections within it (see Figs. 1(a), (b) and Fig. 2): the upper ring patch with a inner radius of r 1, a outer radius of r 2 and two patch stub for support with one side length l s and the other side length w s. The upper ring patch is suspended over the middle regular patch by two plastic sticks. The middle regular patch has a side length of l 1, which is suspended over the lower section by two plastic sticks too. The lower section consists of a folded circular patch with a radius of r 3, which is suspended over the ground plane and supported by a nonconductive pin. It is fed by a three dimensional (3-D) transition connecting the circular patch to a horizontal connector. In order to enhance the matching of the antenna, a small 7 mm length metallic cylinder with a 1 mm diameter has been added under this three dimensional (3-D) transition. A metal strip with a width of 6 mm and a length 15 mm located at the feed position is utilized to tune reactance of the dual frequency. The left hand side of the antenna consists of two directional metal plates with high h 1 & h 2, and width w 1 & w 2, respectively. The right hand side of the antenna consists of a quadrate Figure 1. The geometry of the proposed antenna.

50 Huang, Liu, and Zhou Figure 2. The photo of the constructed antenna. Figure 3. The VSWR and gain of the proposed antenna. plate and a circular segment plate which is utilized to increase reflected area, but has no effect on the size of an ornamental and disguised radome (not shown in this paper). The proposed antenna has the following detailed parameters: W = 170 mm, W 1 = 98 mm, W 2 = 98 mm, W 3 = 98 mm, W 4 = 100 mm, W 5 = 17.8 mm, L = 196 mm, h 1 = 17 mm, h 2 = 22.5 mm, h 3 = 4 mm, h 4 = 30 mm, h 5 = 3.2 mm, h 6 = 30 mm, R = 65.6 mm, R 2 = 52 mm. l s = 26 mm, w s = 13.6 mm, r 1 = 42.5 mm, r 2 = 57 mm, l 1 = 60 mm, d 1 = 19 mm, d 2 = 19.5 mm, r 3 = 45 mm.

Progress In Electromagnetics Research Letters, Vol. 11, 2009 51 3. EXPERIMENT RESULTS As we have mentioned above, the proposed antenna can operate at both 806 960 MHz and 1710 2500 MHz. The antenna performance is 0 0 180 (a) (b) 0 180 (c) (d) (e) (f) xz plane E φ xz plane E θ... yz plane E θ yz plane Eφ Figure 4. (a) 0.806 GHz, (b) 0.90 GHz, (c) 0.96 GHz, (d) 1.71 GHz, (e) 2.17 GHz, (f) 2.5 GHz.

52 Huang, Liu, and Zhou calculated with the aid of a commercial software HFSS Ver. 10. Also, it is measured by the HP 8510C Network Analyzer and a 128 Multiprobes Spherical Near Field Measure System. Fig. 2 is the photograph of the proposed antenna. Fig. 3 shows the voltage standing wave ratio and gain against frequency curves at the operation bands, respectively. From the VSWR curves, it is clearly seen that this antenna has one resonance in the lower band and two resonances in upper band. Wide simulated and measured impedance bandwidths (VSWR < 2) of 18.5% (0.80 to 0.963 GHz) and 22.8% (0.775 to 0.975 GHz), 63.7% (1.41 to 2.73 GHz) and 65.8% (1.425 to 2.825 GHz) are obtained in the lower and the upper bands, respectively. In the same figure, it can also be observed that the simulated and measured peak gains are 5.9 dbi and 5.6 dbi, 7.9 dbi and 7.4 dbi for the lower and the upper bands, respectively. From Fig. 3, good agreements between the measured and simulated VSWR and gain are obtained. The xz-plane radiation patterns at several frequencies across the lower and the upper bands, included 0.806 GHz, 0.90 GHz, 0.96 GHz, 1.71 GHz, 2.017 GHz and 2.5 GHz, are shown in Fig. 4. For the measured radiation patterns, the main beams are tilted about at 4 at 0.806 GHz, 6 at 0.9 GHz, 7 at 0.96 GHz, 5 at 1.71 GHz, 15 at 2.17 GHz, 25 at 2.5 GHz, respectively. Therefore, the tilt angles are increased with the frequency in the lower and the upper bands. The yz-plane radiation patterns at these frequency are also shown in Fig. 4. It is clearly seen that the simulated and measured patterns in this plane are broadside beam. 4. CONCLUSION A wideband dual-band three-dimensional circular patch transition fed antenna is designed and implemented successfully. The experimental results reveal that it has wide impedance bandwidths (VSWR < 2) of 22.8% (0.775 to 0.975 GHz) and 65.8% (1.425 to 2.825 GHz) in the lower and the upper frequency bands, respectively. Therefore, it is capable to cover the operating bandwidths of several wireless communication systems included CDMA800, GSM900, PCS, UMTS, 3G, BLUETOOTH and WLAN. Other than the wideband and dualband features, it also has peak gains of 5.6 dbi and 7.4 dbi in the two frequency bands. Furthermore, it has a beam tilted downward with a broadside beam pattern on the horizontal plane. Consequently, this antenna should find applications in the modern multi-band indoor wireless communication systems.

Progress In Electromagnetics Research Letters, Vol. 11, 2009 53 REFERENCES 1. Guo, Y.-X., K.-M. Luk, K.-F. Lee, and R. Chair, A quarter-wave U-shaped patch antenna with two unequal arms for wideband and dual-frequency operation, IEEE Antennas Propagat. Mag., Vol. 50, 1082 1087, Aug. 2002. 2. Lee, R. Q., K. F. Lee, and J. Bobinchak, Characteristics of a twolayer electro-magnetically coupled rectangular patch antenna, Electron. Lett., Vol. 23, No. 20, 1070 1072, Sept. 1987. 3. Chang, E., S. A. Long, and W. F. Richards, Experimental investigation of electrically thick rectangular microstrip antennas, IEEE Trans. Antennas Propagat., Vol. 34, 767 772, Jun. 1986. 4. Guo, Y. X., C. L. Mak, K. M. Luk, and K. F. Lee, Analysis and design of L-probe proximity fed patch antennas, IEEE Trans. Antennas Propagat., Vol. 49, 145 149, Feb. 2001. 5. Tong, K. F., K. M. Luk, K. F. Lee, and R. Q. Lee, A broadband U-slot rectangular patch antenna on a microwave substrate, IEEE Trans. Antennas Propagat., Vol. 48, 954 960, Jun. 2000. 6. Dahele, J. S., K. F. Lee, and D. P. Wong, Dual frequency stacked annular-ring microstrip antenna, IEEE Trans. Antennas Propagat., Vol. 35, 1281 1285, Nov. 2000. 7. Wang, B. F. and Y. T. Lo, Microstrip antenna for dual-frequency operation, IEEE Trans. Antennas Propagat., Vol. 32, 938 943, Sept. 1984. 8. Maci, S. and G. B. Gentili, Dual-frequency patch antennas, IEEE Antennas Propagat. Mag., Vol. 39, 13 20, Dec. 1997. 9. Guo, Y. X., K. M. Luk, and K. F. Lee, A dual-band patch antenna with two U-shaped slots, Microwave Opt. Technol. Lett., Vol. 26, No. 2, 73 75, Jul. 2000. 10. Eldek, A. A., A. Z. Elsherbeni, and C. E. Smith, Dualwideband square slot antenna with a U-shaped printed tuning stub for personal wireless communication systems, Progress In Electromagnetics Research, Vol. 53, 319 333, 2005. 11. Lee, Y.-C. and J.-S. Sun, Compact prined slot antennas for wireless dulal-band multi-band operations, Progress In Electromagnetics Research, PIER 88, 289 305, 2008. 12. Eldek, A. A., A. Z. Elsherbeni, and C. E. Smith, Characteristics of bow-tie slot antenna with tapered tuning stubs for wideband opreration, Progress In Electromagnetics Research, PIER 49, 53 69, 2004. 13. Wang, F. J. and J. S. Zhang, Wide band cavity-backed

54 Huang, Liu, and Zhou patch antenna for pcs/imi2000/2.4 GHz WLAN FOR PCS/IMI2000/2.4 GHz WLAN, Progress In Electromagnetics Research, PIER 74, 39 46, 2007. 14. Wang, Y. J. and C. K. Lee, Compact and broadband microstip patch antenna for the 3G IMT-2000 handsets applying styrofoam and shorting-posts, Progress In Electromagnetics Research, PIER 47, 75 85, 2004. 15. Ogawa, K. and T. Uwano, A variable tilted fan beam antenna for indoor base stations, Antennas and Propagation Society International Symposium, Vol. 1, 332 335, Jun. 1994.