Simplifying DC-DC Converter Characterization using a 2600B System SourceMeter SMU Instrument and MSO/DPO5000 or DPO7000 Series Scope APPLICATION NOTE

Similar documents
Automated Frequency Response Measurement with AFG31000, MDO3000 and TekBench Instrument Control Software APPLICATION NOTE

Simplifying FET Testing with 2600B System SourceMeter SMU Instruments APPLICATION NOTE

Verifying Power Supply Sequencing with an 8-Channel Oscilloscope APPLICATION NOTE

Using the Model 4225-RPM Remote Amplifier/ Switch to Automate Switching Between DC I-V, C-V, and Pulsed I-V Measurements APPLICATION NOTE

SOURCE MEASURE UNITS. Make Multiple Measurements Accurately Using a Single Instrument All While Saving Space, Time and Money

KickStart Instrument Control Software Datasheet

Measuring Vgs on Wide Bandgap Semiconductors APPLICATION NOTE

Using the Ramp Rate Method for Making Quasistatic C-V Measurements with the 4200A-SCS Parameter Analyzer APPLICATION NOTE

Isolation Addresses Common Sources of Differential Measurement Error

Performing Safe Operating Area Analysis on MOSFETs and Other Switching Devices with an Oscilloscope APPLICATION NOTE

Power Analysis Application Module DPO4PWR MDO3PWR Datasheet

In-circuit Measurements of Inductors and Transformers in Switch Mode Power Supplies APPLICATION NOTE

Using the 4200A-CVIV Multi-Switch to Make High Voltage and High Current C-V Measurements APPLICATION NOTE

Debugging SENT Automotive Buses with an Oscilloscope APPLICATION NOTE

Trouble-shooting Radio Links in Unlicensed Frequency Bands TUTORIAL

Power Measurement and Analysis Software

Switching Between C-V and I-V Measurements Using the 4200A-CVIV Multi-Switch and 4200A-SCS Parameter Analyzer APPLICATION NOTE

Active Power Factor Correction Verification Measurements with an Oscilloscope APPLICATION NOTE

Passive High Voltage Probes P5100A-TPP0850-P5122-P5150-P6015A Datasheet

Don t Let EMI/EMC Compliance Certification Slow You Down TUTORIAL

S540 Power Semiconductor Test System Datasheet

PatternPro Error Detector PED3200 and PED4000 Series Datasheet

20X Low Capacitance Probe P6158 Datasheet

Tire Pressure Monitoring Systems and Remote/Passive Keyless Entry

S540 Power Semiconductor Test System Datasheet

10 GHz Linear Amplifier PSPL5866 Datasheet

Soldering a P7500 to a Nexus DDR Component Interposer

Passive Voltage Probes

Measuring Power Supply Switching Loss with an Oscilloscope

Sophisticated Power Loss Analysis Using A Digital Phosphor Oscilloscope

Ethernet Transmitter Test Application Software TekExpress 10GBASE-T and NBASE-T Datasheet

P7500 Series Probes Tip Selection, Rework and Soldering Guide

1.5 GHz Active Probe TAP1500 Datasheet

io n Data Sheet or The P5205 is a 100 MHz Active Differential Probe capable of measuring fast rise times of signals in floating circuits. This 1,300 V

30 A AC/DC Current Probe TCP0030A Datasheet

AC/DC Current Probe TCP0150 Datasheet

High-voltage Differential Probes

12.5 Gb/s Driver Amplifier LABware Module PSPL8001 Datasheet

Low Capacitance Probes Minimize Impact on Circuit Operation

Stress Calibration for Jitter >1UI A Practical Method

12.5 Gb/s PatternPro Programmable Pattern Generator PPG1251 Series Datasheet

12.5 Gb/s PatternPro Programmable Pattern Generator PPG1251 Series Datasheet

TekConnect Adapters TCA75 TCA-BNC TCA-SMA TCA-N TCA-292MM TCA292D Datasheet

High-voltage Differential Probes TMDP THDP THDP P5200A - P5202A - P5205A - P5210A

12.5 Gb/s Driver Amplifier PSPL5865 Datasheet

100GBASE-KR4/CR4 & CAUI-4 Compliance and Characterization Solution

AC Current Probes CT1 CT2 CT6 Data Sheet

Programmable Pulse Generators PSPL10050A, PSPL10060A, PSPL10070A Datasheet

Measurement Statistics, Histograms and Trend Plot Analysis Modes

GENERAL PURPOSE POWER SUPPLIES, SPECIAL PURPOSE POWER SUPPLIES, AND ELECTRONIC LOADS SELECTOR GUIDE

100GBASE-KR4, 100GBASE-CR4, & CAUI-4 Compliance and Characterization Solution for Real Time Scopes

van der Pauw and Hall Voltage Measurements with the 4200A-SCS Parameter Analyzer APPLICATION NOTE

P7600 Series TriMode Probes

Visual Triggering. Technical Brief

DPO7OE1 33 GHz Optical Probe

Automotive EMI/EMC Pre-compliance Tests

16 Gb/s, 30 Gb/s Gb/s, and 32 Gb/s Programmable PatternPro Pattern Generator PPG PPG1600, PPG3000, and PPG3200 Series Datasheet Key features

Low Cost RF Sensors. application note

Performing Cyclic Voltammetry Measurements Using Model 2450-EC or 2460-EC Electrochemistry Lab System

Time and Frequency Measurements for Oscillator Manufacturers

16 Gb/s, 30 Gb/s, and 32 Gb/s PatternPro Pattern Generator PPG1600, PPG3000, and PPG3200 Series Datasheet Notice to EU customers

Programmable DC Electronic Loads. Series Programmable DC Electronic Loads. Programmable DC electronic loads DC POWER SUPPLIES

Be Sure to Capture the Complete Picture

LE160 LE320 Linear Equalizer Datasheet Tektronix Linear Equalizer

High-impedance Buffer Amplifier System

Fundamentals of AC Power Measurements

AC/DC Current Measurement Systems TCPA300, TCP312A, TCP305A, TCP303, TCPA400, TCP404XL Datasheet

Differential Probes P6248 P6247 P6246 Datasheet

Measuring Wireless Power Charging Systems for Portable Electronics

Tektronix Logic Analyzer Probes P6800/P6900 Series Datasheet

TriMode Probe Family P7700 Series TriMode Probes

30 Gb/s and 32 Gb/s Programmable Pattern Generator PPG Series Datasheet

16 Gb/s, 30 Gb/s, and 32 Gb/s PatternPro Pattern Generator PPG1600, PPG3000, and PPG3200 Series Datasheet Key features

Replicating Real World Signals with an Arbitrary/Function Generator

AC/DC Current Measurement Systems TCPA300, TCP312A, TCP305A, TCP303, TCPA400, TCP404XL Datasheet

Programmable Pulse/Pattern Generator PSPL1P601 and PSPL1P602 Datasheet

Passive High Voltage Probes P5100 P5102 P5120 P6015A

Choosing an Oscilloscope for Coherent Optical Modulation Analysis

10GBASE-KR/KR4 Compliance and Debug Solution

Advanced Power Measurement and Analysis 5 Series MSO Option 5-PWR Datasheet

Characterize Phase-Locked Loop Systems Using Real Time Oscilloscopes

Z-Active Differential Probe Family P7313 P7380A P7360A P7340A Datasheet

AC/DC Current Measurement Systems

Advanced Test Equipment Rentals ATEC (2832)

46 GBaud Multi-Format Optical Transmitter OM5110 Datasheet

Making Accurate Current Measurements on Power Supplies with Oscilloscopes APPLICATION NOTE

Introduction to VNA Basics PRIMER

50MHz arbitrary waveform/function generator

How to Troubleshoot System Problems Using an Oscilloscope with I 2 C and SPI Decoding

Overcoming RF Signal Generation Challenges with New DAC Technologies WHITE PAPER

e-guide to RF Signals UNLICENSED & ISM BANDS LAND MOBILE & PUBLIC SAFETY CELLULAR AERONAUTICAL RADIO & TELEVISION BROADCAST WEATHER RADAR

Laser Diode Array Test for 3D Sensing with a 2602B System SourceMeter Instrument and DMM7510 Graphical Sampling DMM APPLICATION NOTE

TriMode Probe Family. P7500 Series Data Sheet. Features & Benefits. Applications

Basics of Using the NetTek YBA250

PA1000 Single Phase AC/DC Power Analyzer Datasheet

Achieving Maximum Throughput with Keithley S530 Parametric Test Systems

Creating Calibrated UWB WiMedia Signals

TriMode Probe Family. P7500 Series Datasheet. Features & Benefits. Applications

AC/DC Current Measurement Systems

Advanced Statistical Analysis Using Waveform Database Acquisition

Transcription:

Simplifying DC-DC Characterization using a 2600B System SourceMeter SMU Instrument and MSO/DPO5000 or DPO7000 Series Scope

Introduction DC-DC converters are widely used electronic components that convert DC power from one voltage level to another while regulating the output voltage. The output provides a constant voltage to a circuit, regardless of variations in the input voltage or the load current. These power management devices are used in a wide variety of electronic products, including laptops, mobile phones, and instrumentation. Given the increased pressure to develop products that consume less power and have longer battery life, design engineers need to achieve higher power conversion efficiencies. As a result, numerous measurements are required to characterize the electrical parameters of DC-DC converters. The tests performed include line regulation, load regulation, input and output voltage accuracy, quiescent current, efficiency, turn-on time, ripple, and transient response. Some of these tests require DC test instruments for sourcing and measuring; others require an oscilloscope, and some may require both. This application note explains how to simplify DC-DC converter testing using a Keithley two-channel Series 2600B System SourceMeter SMU Instrument and a Tektronix MSO/ DPO5000 or DPO7000 Series Oscilloscope. The DPOPWR Application Software developed for these scopes supports measurement and analysis of common power management device parameters. Figure 1 illustrates a typical configuration for testing DC-DC converters. Figure 1. Complete solution: MSO5204 scope and 2612B two-channel SMU for testing DC-DC converter circuits. The DC-DC DC-DC converters are useful for generating output voltages that are either higher or lower than the input voltage. A step-down (or buck) converter produces an output voltage lower than the input voltage; a step-up (or boost) converter produces an output voltage higher than the input voltage. Ideally, this conversion should be performed with high efficiency to avoid wasting energy. Figure 2 is a simplified diagram of a DC-DC converter. The V IN terminal is the input voltage node of the device, which is referenced to the common GND terminal. The V OUT terminal is the regulated voltage output with respect to the common terminal. V IN V OUT Common GND V OUT > V IN (step-up or boost converter) V OUT < V IN (step-down or buck converter) Figure 2. Simplified diagram of DC-DC converter. Using Series 2600B SMUs for DC-DC Parameter Testing Typically, electrical characterization of DC-DC converters involves sourcing and measuring input voltage (V IN ), measuring input current (I IN ), measuring the output voltage (V OUT ), and sinking a load current (I OUT ). From these measurements, the efficiency and other parameters can be determined. The efficiency is important for most designs, especially battery-powered products, because it directly affects the running time of the device. The efficiency of a converter is the output power divided by the input power: P OUT (V OUT I OUT ) Efficiency = = P IN (V IN I IN ) Traditionally, the DC characterization of these devices required the use of a couple of digital multimeters, a power supply, and an electronic load. However, the DC characterization can be simplified by replacing all of these electronic instruments with a single two-channel Series 2600B System SourceMeter SMU. SMUs are ideal for testing a wide variety of I-V parameters of DC-DC converters because they can source and measure both current and 2 WWW.TEK.COM

voltage, as well as function as an electronic load. Using one instrument rather than multiple units simplifies the test implementation, software, and synchronization, as well as taking up less rack or bench space. As shown in Figure 3, using one SMU channel (CH1) on the input terminal and another SMU channel (CH2) on the output terminal of the DC-DC converter replaces several instruments. Source V Measure I Measure V V IN V OUT Sink I (Load) Measure I Measure V Figure 3. Parameter testing a DC-DC converter using two SMUs. Although DC-DC converter characterization involves testing many electrical parameters, load regulation and line regulation are discussed in more detail because these are very common tests. Load Regulation Load regulation tests characterize a DC-DC converter s ability to maintain the specified output voltage as the load current (I LOAD ) varies under a constant input voltage (V IN ). The load regulation test is typically performed over the entire range of load currents. Figure 4 shows a typical load regulation test using two SMU channels. supplies the input voltage and monitors the input current. SMU CH2 is configured as an electronic load by setting it to sink current (source a negative current). In this mode, the Series 2600B SMU will operate in the fourth quadrant and sink current. The SMUs are configured using the remote sense, or fourwire, connection. Using a four-wire connection eliminates the lead resistance that would otherwise affect measurement accuracy. With the four-wire method, the source outputs using one pair of test leads (between and Output LO), and the voltage drop is measured across a second set of leads (across and ). The sense leads should be connected as close to the device as possible to ensure the lead resistance is not added to the measurement. Figure 5 shows the results of a typical load regulation test. In this particular example, the DC-DC converter was configured to output a constant 3.6V. was set to bias 5V (nominal value) to the voltage input terminal. SMU CH2 was configured to sweep a load current from 0 to 1A and measure the resulting output voltage. These measurements were taken under the control of the embedded TSP Express software, which enables quick and easy I-V testing. Users can easily calculate the load regulation percentage from the I-V data. Output Voltage (Volts) Output Voltage vs. Load Current Load Regulation 3.610 3.609 3.608 3.607 3.606 3.605 3.604 3.603 3.602 3.601 3.600 0.0 0.2 0.4 0.6 0.8 1.0 Load Current (Amps) Figure 5. Plot of DC-DC converter load regulation using a two-channel 2612B SourceMeter SMU Instrument. A V IN V OUT I LOAD Source Voltage Monitor Current Monitor Voltage SMU CH2 Sink Current (Load) Measure Output Voltage Figure 4. Load regulation test using two Series 2600B System SourceMeter SMU Instruments. WWW.TEK.COM 3

Line Regulation Line regulation is the ability of a DC-DC converter to maintain the specified output voltage as the input voltage is varied. The output voltage should remain constant, within a few millivolts, while the input voltage is varied over the specified voltage input range. For the line regulation test, both SMUs are connected to the DC-DC converter in the same way they were for the load regulation test. However, for this test, the input voltage is swept over the specified input voltage range and the output voltage is measured. The load current is typically set to 0A. Figure 6 shows the result from a typical line regulation test. This test was performed using a Model 2612B SMU. One channel of the Model 2612B () was configured to sweep voltage on the input terminal of the device. The second channel of the SMU (SMU CH2) was configured to measure the output voltage. From the I-V data, the line regulation percentage can be easily calculated. 4 Output Voltage vs. Input Voltage Line Regulation DPO7000 Series Scope for DC-DC Testing In addition to the DC parameter testing performed by the SMUs, some DC-DC converter tests require the use of an oscilloscope. These AC tests include measuring the turn-on time, ripple, spectral analysis, and transient response. For many of the scope tests, the SMUs can provide the input voltage and the load current. Figure 7 illustrates a typical test configuration showing both the SMUs and the scope connected to the device. The particular scope probes used depend on the device and the complete test circuit. To simplify device testing, the scope s optional DPOPWR Application Software provides automated power measurements and analysis for DC-DC converters, AC-DC converters, power supplies and other power management devices. This software, when used with a Tektronix MSO/ DPO5000 or DPO7000 Series Scope, can provide common power measurement device measurements and calculations for magnetic, electrical, and input/output analysis. The following example tests for turn-on time and spectral analysis of the DC-DC converter can help illustrate the capabilities of this software. Output Voltage (Volts) 3 2 1 0 A HI Scope CH1 VIN VOUT HI Scope CH2 1 3.5 4.0 4.5 5.0 5.5 6.0 Input Voltage (Volts) SMU CH2 Figure 6. Plot of DC-DC converter line regulation measured using a single Model 2612B SourceMeter SMU instrument. Figure 7. Testing a non-isolated DC-DC converter using both a scope and two SMUs. 4 WWW.TEK.COM

Figure 8. Screenshot of turn-on time test of DPOPWR software on MSO5000 scope displaying the measured turn-on time (highlighted in red). Turn-On Time One of the built-in tests of the DPOPWR application software is determining the turn-on time of the DC-DC converter. The turn-on time test measures the time delay between when the input voltage is applied to the system and the time it takes to develop the steady output voltage. For this particular test, of the Model 2612B applied the input voltage and Channel 1 (CH1) of the scope was connected across the input of the DC-DC converter. Figure 8 shows the time-based measurement result. Note that, in addition to the time-based graphical result at the top of the screen, in the Results tab of the DPOPWR software, the turn-on time was automatically calculated and displayed, providing repeatable measurements, and eliminating the need for the user to measure the time on the screen manually. Spectral Analysis Another built-in test function, the spectral analysis feature, allows analyzing the unwanted AC components of the output voltage and measuring output noise/ripple in the frequency domain. The spectral analysis test analyzes, measures, and displays the AC component of a signal based on the selected Start, Stop and bandwidth values. Figure 9. Spectral analysis plot of DC-DC converter. Channel 2 (CH2) was connected to the device output. The resulting spectral analysis plot of a DC-DC converter is shown in Figure 9. This software plots the voltage amplitude as a function of frequency and displays the top peak values in a chart on the screen. This measurement indicates several millivolts of switching frequency ripple on the DC output voltage. Detailed information on the DPOPWR application software is available in the Tektronix application note, Power Supply Measurement and Analysis with DPOPWR Application Software. Conclusion Testing DC-DC converters traditionally required several test instruments. However, a single two-channel Series 2600B System SourceMeter SMU Instrument simplifies electrical characterization of DC-DC converters because it combines multiple measurement instruments into one unit. Combining the two-channel Series 2600B SMU instrument with a MSO/DPO5000 or DPO7000 Series Scope makes a more complete solution for providing testing and analysis of DC-DC converters. To generate a spectral analysis plot of the DC-DC converter, the Model 2612B supplied the input voltage. Channel 1 (CH1) of the scope was connected to the device input, and WWW.TEK.COM 5

Contact Information: Australia* 1 800 709 465 Austria 00800 2255 4835 Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777 Belgium* 00800 2255 4835 Brazil +55 (11) 3759 7627 Canada 1 800 833 9200 Central East Europe / Baltics +41 52 675 3777 Central Europe / Greece +41 52 675 3777 Denmark +45 80 88 1401 Finland +41 52 675 3777 France* 00800 2255 4835 Germany* 00800 2255 4835 Hong Kong 400 820 5835 India 000 800 650 1835 Indonesia 007 803 601 5249 Italy 00800 2255 4835 Japan 81 (3) 6714 3010 Luxembourg +41 52 675 3777 Malaysia 1 800 22 55835 Mexico, Central/South America and Caribbean 52 (55) 56 04 50 90 Middle East, Asia, and North Africa +41 52 675 3777 The Netherlands* 00800 2255 4835 New Zealand 0800 800 238 Norway 800 16098 People s Republic of China 400 820 5835 Philippines 1 800 1601 0077 Poland +41 52 675 3777 Portugal 80 08 12370 Republic of Korea +82 2 6917 5000 Russia / CIS +7 (495) 6647564 Singapore 800 6011 473 South Africa +41 52 675 3777 Spain* 00800 2255 4835 Sweden* 00800 2255 4835 Switzerland* 00800 2255 4835 Taiwan 886 (2) 2656 6688 Thailand 1 800 011 931 United Kingdom / Ireland* 00800 2255 4835 USA 1 800 833 9200 Vietnam 12060128 * European toll-free number. If not accessible, call: +41 52 675 3777 Find more valuable resources at TEK.COM Copyright Tektronix. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks, trademarks or registered trademarks of their respective companies. 09/18 EA 1KW-60105-2